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Abstract: Solar radiation is becoming an increasingly popular source of clean energy. Photovoltaic (PV) panels, which house solar cells 

(SCs), are used in converting solar energy into electric energy. The classification of the current-voltage characteristic for PV models is 

considered as nonlinear. Because of the absence of information on manufacturers' datasheets for PV models, numerous parameters remain 

unclear. The precise determination of the inherent properties of SCs is necessary for the accurate design of PV systems. Several algorithms 

have been put forth to optimize these devices' parameters. Research in this area faces two challenges: identifying a model to distinguish 

SCs and addressing the lack of accessibility to data on PV cells. While various methods have been implemented in parameters estimation 

of PV cells, their results normally suffer from inaccuracies. This paper demonstrates the efficiency and precision of the Golden Jackal 

Optimization (GJO) metaheuristic technique in estimating the parameters of PV SCs different models. Three commonly used SCs models; 

the single-diode solar cell model (SDSCM), the double-diode solar cell model (DDSCM), and the triple-diode solar cell model (TDSCM) 

were utilized to showcase the GJO's ability to estimate the values of the parameters of SCs models. The values obtained were compared 

with those generated by several reliable optimization methods, including the Tunicate Swarm Algorithm (TSA), Osprey Optimization 

Algorithm (OOA), Harris Hawk's Optimization (HHO), Rime-Ice Algorithm (RIME), Chimp Optimization Algorithm (ChOA), and Grey 

Wolf Optimization (GWO), using data from the R.T.C France SC. The experimental results and relative analysis show that the GJO 

exhibited a better level of accuracy in estimating SCs parameters than the other algorithms included in the experiments. 

Keywords: Metaheuristic optimization, Golden Jackal Optimization algorithm, solar energy, renewable energy, photovoltaic models. 

1. Introduction 

Renewable energy is energy derived from natural sources 

that are constantly replenished and produced at a higher rate 

than they are consumed. Sunlight and wind, for example, are 

examples of such sources. Because of the fluctuating pricing 

of fossil fuels, their solid wastes, and pollution, renewable 

energy (RE) sources have come to be seen as a potential 

option [1]. Solar energy (SE) is one of the main types of RE 

sources because of its minimal maintenance requirements, 

close to traditional production methods, widespread 

distribution, and noiseless operation [2-6]. A system known 

as a photovoltaic system (PV) uses solar energy to produce 

electricity [7]. The primary use of PVs is for satellites [8], 

water de-salination [9], and heating and cooling [10]. 

According to the number of connected di-odes, there are 

various types of solar cells, including the single-diode (SD), 

double-diode (DD), and triple-diodes (TD) models, as well 

as their variations [11-13]. To achieve the highest 

performance, it is crucial to identify parasitic solar cell 

factors [14]. The model determines how many variables 

there should be. The improved SD model has six 

parameters, while the original has five. The updated DD 

model has eight parameters, while the original has seven. 

The TD model has nine parameters, while its modified 

version has ten parameters [15,16]. Iterative approaches and 

metaheuristic procedures are two types of main solutions 

that can be used to estimate these parameters. 

A Mathematical model for SD is discussed in [17], while 

improvements to solar cell power are given in [18]. Three 

locations are used to perform the I-V characteristics in a 

nonlinear manner [19]. The iterative solution has focused on 

identifying the PV variables in [20-23], using techniques 

such as the Lambert W function [20], Newton-Raphson with 

maximum likelihood [21], the linear least-squares [22] and 

the Gauss-Seidel [23]. Furthermore, several studies limit the 

number of parameters that need to be calculated by 

excluding some variables or by making assumptions to 

eliminate the number of factors that should be calculated 

[24–27]. The very clear benefits of metaheuristic techniques 

have provided applying and confirming different methods 

for solving complex optimization problems [27-35]. 

The main issue in this study is to extract PV variables using 

a novel metaheuristic technique, which is Golden-Jacal 

Optimization GJO method. The considered problem of this 

study is examined previously using several algorithms such 

as artificial bee swarm [12], differential evolution [36], 

generalized oppositional teaching learning-based 

optimization [37], Particle Swarm Optimization (PSO) [38], 

Salp swarm algorithm [39], chaos particle swarm 

optimization [40], Nelder-mead modified particle swarm 
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optimization [41], harmony search [42], Cat Swarm 

optimization [43], cuckoo search algorithm [44], genetic 

algorithms [45], simulated annealing [46], improved 

adaptive differential evolution (IADE) [47], pattern search 

[48], combining a simplified explicit equation with some 

intelligent optimization methods [49], sin-cosine algorithm 

[50] and bacterial foraging algorithm [51]. 

This work is contributed according to the following items: 

• Applying a novel optimization algorithm called Golden 

Jackal Optimization (GJO) in extracting solar cell 

models. 

• The single-diode solar cell (SDSCM), double-diode 

solar cell (DDSCM), and triple-diode solar cell 

(TDSCM) are considered in this study. 

• The objective function used in this work is minimizing 

the root mean square error for the current value. 

• Practical comparison between the Golden Jackal 

Optimization (GJO) technique with another six 

algorithms such as Tunicate Swarm Algorithm (TSA), 

Ospery Optimization algorithm (OOA), Harris Hawk’s 

optimization (HHO), Rime-Ice algorithm (RIME), 

Chimp Optimization Algorithm (ChOA) and Grey Wolf 

Optimization (GWO) is implemented. 

• The statistical analytical results are applied for all the 

considered optimization methods to measure the 

performance evaluation of all these techniques over 30 

independent runs. 

• The convergence and robustness curves are extracted to 

measure the high reliability and faster algorithm. 

• The efficiency of the GJO algorithm is determined 

according to the absolute error value for power and 

current between the measured and extracted data. 

The organization of this paper is as follows: the analysis of 

the solar cell mathematical model is produced in section 2. 

Section 3 discusses the objective function of the problem 

study. The Golden Jackal Optimization GJO algorithm is 

analysed in section 4. The results of the estimated identified 

parameters for SDSCM, DDSCM and TDSC will be 

discussed in section 5. The conclusion of this work is 

presented in section 6. 

2. Analysis of PV Solar Cell Models 

In this study, three solar cell models will be considered; the 

single-diode solar cell model (SDSCM), the double-diode 

solar cell model (DDSCM), and the triple-diode solar cell 

model (TDSCM). 

2.1. Mathematical Analysis of PV SDSCM 

The SDSCM equivalent circuit is clarified as represented in 

Fig. 1, while the mathematical model of SDSCM is defined 

as follows in equations (1) and (2): 

𝐼 = 𝐼𝑝𝑣 − 𝐼𝐷1 − 𝐼𝑠ℎ  (1) 

𝐼 = 𝐼𝑝𝑣 − 𝐼ℎ1 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛1𝐾𝑇𝑐 − 1] −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (2) 

where I is the SDSCM current output, Ipv is the generated 

light current, Ish is the current of shunt resistor, ID1 is the 

current in the diode, Rs is the series resistance, Rsh is the 

parallel resistance, n1 is the emission factor of the diode, q 

is the electron charge, K Boltzmann constant, and Tc the cell 

temperature. 

 

Fig 1. SDSCM Equivalent circuit. 

2.2. Mathematical Analysis of PV DDSCM 

The DDSCM equivalent circuit is clarified as given in Fig. 

2, while the mathematical model of DDSCM is defined as 

follows in equations (3) and (4): 

𝐼 = 𝐼𝑝𝑣 − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ       (3) 

𝐼 = 𝐼𝑝𝑣 − 𝐼ℎ1 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛1𝐾𝑇𝑐 − 1] − 𝐼ℎ2 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛2𝐾𝑇𝑐 − 1] −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ

 (4) 

where ID2 and n2 are the current and the emission factor of 

second diode respectively. 

 

Fig 2. DDSCM Equivalent circuit. 

2.3. Mathematical Analysis of PV TDSCM 

The TDSCM equivalent circuit is clarified as shown in Fig. 

3, while the mathematical model of TDSCM is defined as 

follows in equations (5) and (6): 

𝐼 = 𝐼𝑝𝑣 − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝐷3 − 𝐼𝑠ℎ (5) 

𝐼 = 𝐼𝑝𝑣 − 𝐼ℎ1 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛1𝐾𝑇𝑐 − 1] − 𝐼ℎ2 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛2𝐾𝑇𝑐 − 1] −

        𝐼ℎ3 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛3𝐾𝑇𝑐 − 1] −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
  (6) 

where 𝐼𝐷3 and 𝑛3 are the current and the emission factor of 
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third diode respectively.  

 

Fig 3. TDSCM Equivalent circuit. 

3. Objective Function for Solar Cell Parameters 

Estimation 

Practically, the two primary elements in any problem solved 

using optimization methods are the limits (or ranges) of the 

variables involved and the goal (or objective) function. In 

this paper, the objective function for the solar cell problem 

is to minimize the root mean square error (RMSE) that is 

mathematically represented by the as follow s in equations 

(7) and (8): 

𝐽(𝑉. 𝐼. 𝑋) = 𝐼𝑠𝑖𝑚 − 𝐼𝑒𝑥𝑝  (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐽(𝑉. 𝐼. 𝑋))

2𝑁
𝑖=1    (8) 

where 𝐼𝑒𝑥𝑝 is the measured recorded current, N is the 

number of samples and X is the estimated variable 

parameters of SC model. 

The estimated variable parameters of SDSCM are:  

𝑋 = {(𝑅𝑠.  𝐼ℎ1 .  𝑛1.  𝑅𝑠ℎ 𝑎𝑛𝑑 𝐼𝑝𝑣  )}, 

the DDSCM estimated variables are: 

𝑋 = {(𝑅𝑠.  𝐼ℎ1. 𝑛1 .  𝑅𝑠ℎ  . 𝐼𝑝𝑣  .  𝐼ℎ2 𝑎𝑛𝑑 𝑛2 )},  

and the TDSCM estimated variables are: 

𝑋 = {(𝑅𝑠.  𝐼ℎ1 .  𝑛1.  𝑅𝑠ℎ . 𝐼𝑝𝑣 .  𝐼ℎ2 . 𝑛2 . 𝐼ℎ3 𝑎𝑛𝑑 𝑛3)}. 

The parameters’ selection is based on the fact that these 

variable parameters are not defined in the solar cell 

datasheet. Table 1 presents the boundary limits of the 

estimated variable parameters. 

Table 1. The variables’ lower and upper boundaries of the 

parameters. 

Parameters Lower bound Upper bound 

𝐼𝑝𝑣  0 1 

𝑅𝑠 0 0.5 

𝐼ℎ1, 𝐼ℎ2 𝑎𝑛𝑑  𝐼ℎ3 (𝜇𝐴) 0 1 

𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛3 1 2 

𝑅𝑠ℎ 0 100 

 

Performing a sensitivity analysis on the parameters 

estimated in the previous table can help determine how 

changes in input parameters impact the outputs. Sensitivity 

analysis assesses the robustness of our parameter estimates 

and their sensitivity to variations. Here's a discussion of 

sensitivity analysis for the parameters in Table 1: 

• Sensitivity of Photogenerated Current (Ipv): We can 

conduct sensitivity analysis by perturbing the Ipv 

parameter slightly and observing how it affects the 

RMSE. For instance,  calculate the resulting RMSE for 

each change. If the RMSE remains relatively stable, it 

suggests that the model is not highly sensitive to 

variations in Ipv.  

• Sensitivity of Current (Ih): like Ipv, perturb the Ih 

parameter and observe its effect on RMSE. Determine 

the range of Ih values over which the RMSE remains 

acceptable. This analysis can provide insights into the 

sensitivity of the model to changes in Ih. 

• Sensitivity of Ideality Factor (n1): Sensitivity of 

ideality factor n1 involves varying the ideality factor 

within a reasonable range (e.g., ±0.1) and recording the 

corresponding RMSE values. If the RMSE exhibits 

significant changes with small variations in n1, it 

indicates that the parameter has a substantial impact on 

the model's accuracy. 

• Sensitivity of Series Resistance (Rs): For series 

resistance Rs, analysing how variations in Rs affect 

RMSE. Gradually increase or decrease Rs and record 

RMSE values. The range over which RMSE remains 

within an acceptable range provides insights into the 

sensitivity of the model to Rs. 

• Sensitivity of Shunt Resistance (Rsh): performing 

sensitivity analysis on Rsh is done by varying it within 

a reasonable range (e.g., ±10\%). Observe the 

corresponding changes in RMSE. If RMSE remains 

relatively stable within this range, it suggests that Rsh 

has moderate sensitivity. 

• Sensitivity of RMSE to Model Parameters: 
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additionally, we can conduct a global sensitivity 

analysis by varying all parameters simultaneously 

within their respective ranges and measuring the 

impact on RMSE. This type of analysis provides a 

holistic view of how changes in multiple parameters 

affect the model's performance. 

Interpreting sensitivity analysis for parameters that lead to 

significant RMSE changes with small variations is 

considered sensitive and accurate estimation of these 

parameters is crucial for model accuracy. Parameters with 

low sensitivity (i.e., RMSE remains stable with variations) 

are less critical for model accuracy and may have a lower 

impact on the model's predictive capabilities. Sensitivity 

analysis helps in identifying which parameters should be 

prioritized for accurate estimation and may guide further 

experiments or optimizations. 

4. Golden Jackal Optimization (GJO) Algorithm 

In this section, we present the source of inspiration and the 

mathematical model of Golden Jackal Optimization (GJO) 

[36]. 

4.1. Inspiration 

The Golden Jackal Optimization (GJO) algorithm is a recent 

novel evolutionary optimization technique inspired by the 

foraging behavior of golden jackals in the animal kingdom. 

A medium-sized terrestrial predator in the Canidae family is 

the golden jackal (Canis aureus). These creatures can be 

found throughout Southeast North and East Africa, and the 

Middle, East Asia, Central Asia, and even Europe. They 

range from sea level in Eritrea to 3,500m in Ethiopia's Bale 

Mountain range. This algorithm seeks to find optimal 

solutions within complex search spaces by mimicking the 

hunting strategies employed by golden jackals. GJO begins 

with a population of potential solutions, analogous to a pack 

of jackals. Each solution represents a potential candidate in 

the search for the optimum. 

The core principle of GJO is the dynamic adjustment of 

individual positions within the population over successive 

iterations. This adjustment is influenced by the quality of 

solutions found so far. Similar to how golden jackals adapt 

their hunting tactics in response to the availability of prey, 

GJO adapts the positions of solutions based on their fitness 

values. Promising solutions are given precedence, guiding 

the search towards regions with potentially higher fitness. 

Additionally, GJO introduces randomness into the 

optimization process to simulate the exploratory nature of 

golden jackals. This randomness ensures that the algorithm 

can escape local optima and explore the solution space more 

comprehensively. Through the interplay of these 

mechanisms, the Golden Jackal Optimization algorithm 

efficiently converges towards optimal solutions, making it a 

valuable tool in solving complex optimization problems. 

The following are the primary phases of golden jackal pair 

hunting: 

• Searching and proceeding towards the prey. 

• Enclosing and irritating the prey until it stops moving. 

• Pouncing towards the prey. 

This study uses a mathematical model of a golden jackal 

pair's hunting strategy to create GJO and afterwords perform 

the  optimization process. 

4.2. The GJO Algorithm Mathematical Model 

The development process of the GJO algorithm, as a 

practical and straightforward metaheuristic optimization 

technique, is in details demonstrated in this subsection. 

4.2.1. Search Space Formulation 

Like many other metaheuristic techniques, the GJO 

algorithm is a population-based approach, in which the 

initial solution is randomly dispersed throughout the search 

space as the first iteration, as shown in equation (9). 

𝑌0 = 𝑌𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) (9) 

where rand is a uniform random vector with values in the 

range between 0 and 1 and Ymin and Ymax are the lower and 

upper bounds for these variables. The jackal pair is the one 

of the first and second fittest members of the initialization 

that generates the initial matrix Prey. Equation (10) displays 

the given Prey. 

𝑌0 = [

𝑌1,1 𝑌1,2

𝑌2,1 𝑌2,2

… 𝑌1,𝑑

… 𝑌2,𝑑

⋮ ⋮
𝑌𝑛,1 𝑌𝑛,2

⋮ ⋮
… 𝑌𝑛,𝑑

] 

 (10) 

where 𝑌𝑖,𝑗 denotes the jth dimension of ith prey. Totally, there 

is n preys and d variables. The parameters of a particular 

solution are referred to as the prey position. During 

optimization, a fitness (objective) function is used to 

estimate each prey's fitness value. The resulting matrix 

gathers the fitness values of all the preys, as provided in 

equation (11). 

𝐹𝑂𝐴 =

[
 
 
 
𝑓(𝑌1,1;     𝑌1,2;     …      𝑌1,𝑑)

𝑓(𝑌2,1;     𝑌2,2;     …     𝑌2,𝑑)

⋮
𝑓(𝑌𝑛,1;     𝑌𝑛,2;     …     𝑌𝑛,𝑑)]

 
 
 

 (11) 

where n is the number of the preys, f is the objective 

function, Yi,j indicates the value of the jth dimension of ith 

prey, and FOA is the matrix for preserving the fitness of each 

prey. The male jackal is considered as the fittest, while the 

female jackal will be considered as the second fittest. 

Afterthought, the pair jackals then acquire the 

corresponding prey position. 
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4.2.2. Searching the Prey (Exploration Stage) 

in this section, the GJO algorithm's exploration strategy 

phase is provided . Because of their natural instincts, jackals 

can detect and track their prey, but infrequently the prey 

eludes them and would be difficult to catch. The jackals 

then wait and look for alternative prey as a result. A male 

jackal leads the hunt, and a female jackal follows it. 

Equations 12 and 13 compute the revised positions of the 

male and female jackals. 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. | + 𝑌𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡) (12) 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. | + 𝑌𝐹𝑀(𝑡) − 𝑟𝑙. 𝑃𝑟𝑒𝑦(𝑡) (13) 

where the 𝑃𝑟𝑒𝑦(𝑡), 𝑌𝑀(𝑡) and 𝑌𝐹𝑀(𝑡) represent the 

positions of the male and female jackal, 𝑌1(𝑡) and 𝑌2(𝑡) are 

the updated positions of male and female jackal as per to the 

prey and the Evading Energy E of prey and is calculated as: 

𝐸 = 𝐸1 ∗ 𝐸0  (14) 

where E0 represents the prey's initial energy and E1 

represents its decreased energy. Both initial energy E0 and 

decreased energy E1 are calculated as shown in equations 

(15) and (16). 

𝐸0 = 2 ∗ 𝑟 − 1  (15) 

𝐸1 = 𝑐1 ∗ (1 − (𝑡/𝑇))  (16) 

where t is the current iteration, T is the maximum number of 

iterations, r is any integer between 0 and 1, and c1 is a 

constant value of 1.5. E1 decreases linearly over iterations 

from 1.5 to 0. The Lévy movement is represented using the 

vector rl (as in equations (12) and (13)), which is based on 

the Lévy distribution and contains random numbers. 

Equation (17) is used to calculate rl, which simulates the 

movement of prey in a Lévy fashion [30]. 

𝑟𝑙 = 0.05 ∗ 𝐿𝐹(𝑌)  (17) 

such that: 

𝐿𝐹(𝑌) = 0.01 ∗
𝜇 ∗ 𝜌

(|𝜐
(
1
𝛽

)
|)

 ,       𝜌

= {
𝛤(1 + 𝛽) ∗ 𝑠𝑖𝑛 (

𝜋𝛽
2

)

𝛤 (
1 + 𝛽

2
) ∗ 𝛽 ∗ 2(𝛽−1)

}

1/𝛽

 

where 𝛽 is the default constant and is set to 1.5, 𝜇 and 𝜐 are 

random real numbers in (0, 1) and LF is the function of Levy 

flight. The jackal positions are finally updated, as shown is 

equation (18), by averaging the two equations (12) and (13). 

𝑌(𝑡 + 1) =
1

2
(𝑌1(𝑡) + 𝑌2(𝑡)) 

 (18) 

4.2.3. Enclosing and Pouncing the Prey (Exploitation 

Stage) 

The mathematical model models the behaviour of the male 

and female jackal pair hunting together (given in equations 

(12) and (13)) will be updated as expressed in equations (19) 

and (20) and proceeds as follows: the prey loses energy in 

response to the jackals' harassment, and the jackal pair 

moves to encircle the prey, which they had previously 

spotted. After the victim is confined, the jackals spring on it 

and attack it. 

𝑌1(𝑡) = 𝑌𝑀(𝑡) − 𝐸. | 𝑟𝑙. 𝑌𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡) (19) 

𝑌2(𝑡) = 𝑌𝐹𝑀(𝑡) − 𝐸. |𝑟𝑙. 𝑌𝐹𝑀(𝑡) − 𝑃𝑟𝑒𝑦(𝑡) (20) 

where 𝑌1(𝑡) and 𝑌2(𝑡) are updated positions of male and 

female jackals corresponding to the prey respectively and t 

indicates the current iteration and. Afterwords, the Prey’s 

evading energy E is calculated as per equation (14) and the 

jackal positions are finally updated as per equation (18). 

In equations (19) and (20), the factor rl has the role of 

providing arbitrary behavior throughout the exploitation 

stage and favoring exploration and avoiding local optima. 

The value of rl is determined using equation (17). Using the 

rl element aids in avoiding the slowness of local optima, 

especially in the final iterations. When obstacles are in the 

way of approaching the prey, it would be beneficial to 

consider and use the factor rl. Some natural problems may 

usually arise in the jackals' pursuit tracks, impeding their 

ability to move quickly and suitably in the direction of their 

prey. This is why rl factor is proposed and considered during 

the exploitation stage. 

4.2.4. Exploration Stage to Exploitation Stage 

Transition 

In the GJO method, the transition from exploration to 

exploitation is accomplished by harnessing the prey's 

fleeing energy. The prey has a sharp drop in energy during 

its evasive behaviour. In light of this, the evasive energy 𝐸 

of the prey is modelled as expressed in equation (14). At 

every time, the initial energy 𝐸0 varies erratically from -1 to 

1. The physical waning of the prey is indicated when the 𝐸0 

value decreases from 0 to -1. Conversely, an increase in the 

𝐸0 value from 0 to 1 signifies an improvement in the prey's 

strength. As illustrated in Figure 4, the altering 

evading energy 𝐸 decreases over the iteration procedure. 

When |𝐸| < 1, GJO attacks and exploits the prey; when 

|𝐸| > 1, the jackal pairs seek prey in different portions. In 

conclusion, the development of an arbitrary population of 

prey (possible solutions) marks the start of the search 

process in GJO. A male and female jackal hunting 

pair estimates the prey's expected position during iterations. 

Each candidate in the population modifies how far away it 

is from the pair of jackals. The emphasis on exploration and 

exploitation is achieved by reducing the 𝐸1 parameter from 
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1.5 to 0 correspondingly. When 𝐸 > 1, a hunting pair of 

golden jackals deviates from the prey, and when 𝐸 < 1, they 

concentrate near the prey. Finally, the fulfilment of an end 

criterion completes the GJO algorithm. Figure 4 represents 

the complete entire design of GJO algorithm's pseudocode. 

Fig 4. Pseudo-code of the GJO algorithm [36]. 

5. Results and Discussion 

This section clarifies the parameters extracted for the 

SSCM, DDSCM, and TDSCM models using the GJO 

algorithm. The GJO method is competed with other 

algorithms such as; Harris Hawk’s optimization (HHO) 

[53], Grey Wolf Optimization (GWO) [54], Tunicate 

Swarm Algorithm (TSA) [55], Chimp Optimization 

Algorithm (ChOA) [56], Osprey Optimization algorithm 

(OOA) [57], and Rime-ice algorithm (RIME) [58]. As a case 

study, the R.T.C France module is used for comparing all 

the techniques. The variable setting for all considered 

methods is shown in Table 2. 

Table 2. The variables’ lower and upper boundaries of the 

parameters. 

Algorith

m 

Parameter Setting 

GJO c1 is a constant value equal to 1.5 

GWO E1 decrease linearly from 1.5 to 0 

OOA a decrease linearly from 2 to 0 

RIME ri,j are random numbers belong to the 

interval [0, 1] 

ChOA Ii,j are random numbers belong to the set 

{1, 2} 

TSA r1 is a random number belongs to the 

range (-1,1) 

HHO r2 is a random number in belongs to the 

range (0,1) 

 

One key attribute of GJO is its dynamic adaptation 

mechanism. As GJO iterations progress, solutions with 

higher fitness values influence the positions of other 

solutions within the population. This adaptive nature 

enables GJO to quickly converge towards promising regions 

of the solution space, exploiting areas where the fitness 

landscape exhibits convexity. This adaptability is 

particularly advantageous in scenarios where the 

optimization landscape contains multiple local optima, as 

GJO effectively navigates past these suboptimal solutions. 

Furthermore, GJO’s incorporation of randomness through 

probabilistic jumps adds an element of exploration to the 

optimization process. While traditional optimization 

algorithms may get trapped in local optima, GJO’s ability to 

make random jumps introduces the possibility of 

discovering new, globally optimal regions. This 

stochasticity is especially beneficial in complex, multi-

modal optimization landscapes where deterministic 

methods may struggle. 

Additionally, GJO’s inspiration from the golden jackals 

foraging behavior plays an important role in its 

performance. In nature, jackals exhibit a combination of 

focused search and opportunistic exploration when hunting 

for prey. Similarly, GJO’s balance between exploiting 

known high-value regions (local search) and exploring 

uncharted areas (random jumps) mirrors this adaptability, 

allowing it to effectively adapt to varying optimization 

landscapes. 

5.1. Discussion on Assumptions and Limitations 

Through this subsection, we address assumptions and 

limitations in the context of using the Golden Jackal 

Optimization (GJO) algorithm for PV SC models 

Inputs: The population size N and maximum number of 
iterations T 

Outputs: The location of prey and its fitness value 
Initialize the random prey population Yi (i = 1, 2, . . . N) 
while (t < T) do 

Calculate the fitness values of Prey 
Y1 = best prey individual (Male Jackal Position) 
Y2 = second best prey individual (Female Jackal Position) 
for each prey individual do 

Update the evading energy E using Equations (14), (15) 
and (16) 
Update rl using Equations (17) and (18) 
if (|E| ≥ 1) then 

Exploration phase: Update the prey position using 
Equations (12), (13) and (18) 

end if 
if (|E| < 1) then 

Exploration phase: Update the prey position using 
equations (19), (20), and (18) 

end if 
 end for 
 t = t + 1 

end while 
return Y1 
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parameters estimation: 

Assumptions: 

1.   Model Validity: One of the primary assumptions in our 

study is the validity of the chosen PV solar cell model. 

We assumed that the selected mathematical model 

accurately represents the behavior of the specific solar 

cell under consideration. Deviations from the assumed 

model, due to many factors such as temperature 

variations or nonuniform illumination, could affect the 

accuracy of the estimation of the considered 

parameter.  

2.   Homogeneous Conditions: We assumed that the 

operating conditions for the photovoltaic solar cell, 

such as uniform illumination and constant 

temperature, remain relatively constant throughout the 

parameter estimation process. In practice, real-world 

conditions can vary, introducing uncertainties. 

3.   Measurement Accuracy: Our study relies on accurate 

and precise measurements of the solar cell’s electrical 

characteristics, including current-voltage (I-V) curve 

data. We assumed that these measurements are free 

from significant errors or noise, which might not 

always be the case in practical experiments. 

4.   Objective Function Selection: The choice of the root 

mean square error (RMSE) between both simulated 

and experimental current of the solar cell of R.T.C 

France as the fitness function assumes that minimizing 

this metric leads to the best parameter estimates. 

Limitations: 

1.   Local Optima: Like many optimization algorithms, the 

GJO algorithm is not immune to getting stuck in local 

optima. The effectiveness of GJO in finding global 

optima depends on the objective function landscape. 

Multiple runs with different initial conditions may be 

required to mitigate this limitation.  

2.   Computational Resources: GJO can be 

computationally intensive, especially for complex 

parameter estimation problems or when using a large 

population size. Researchers should consider the 

available computational resources and time 

constraints. 

3.   Sensitivity to Hyperparameters: The performance of 

GJO algorithm can be sensitive to the selection of 

hyperparameters, such as the jumping probability and 

the range of random jumps. Finding suitable 

hyperparameters may require experimentation. 

4.   Convergence Time: The convergence time of the GJO 

algorithm can vary depending on the complexity of the 

optimization problem. Researchers should be aware of 

the potential need for longer computation times for 

challenging parameter estimation tasks. 

5.   Generalization: The optimized parameters obtained 

using GJO algorithm are specific to the dataset and 

conditions used during optimization. They may not 

necessarily generalize well to different experimental 

setups or environmental conditions. Validation and 

sensitivity analysis are essential to assess 

generalizability. 

In conclusion, the use of the GJO algorithm for parameter 

estimation in PV solar cell models holds promise. 

Acknowledging these factors is critical for interpreting the 

results accurately, assessing the robustness of the parameter 

estimates, and understanding the applicability of the method 

in practical scenarios. Future research may focus on 

addressing some of these limitations and refining the 

application of GJO in solar cell modeling and optimization. 

5.2. Discussion of SDSCM Results 

The results of the identified variable parameters for SDSCM 

evaluated from the proposed GJO Algorithm and the 

additional considered techniques at the best RMSE are 

given in Table 3. 

1.   At the level of Photogenerated Current Ipv(A): Among 

the optimization algorithms, GJO and GWO provide 

very similar estimates for the photogenerated current 

Ipv(A), with values around 0.760 A. These two 

algorithms seem to excel in estimating this parameter, 

as indicated by the lowest RMSE (0.000986022 and 

0.001205557, respectively). 

2.   At the level of Current at Diode's Ideality Factor 

Ih1(A): The HHO algorithm produces a notably higher 

estimate for Ih1(A) compared to the other algorithms, 

with a value of 4.75E-07 A. In contrast, ChOA 

estimates the lowest Ih1(A) at 5.07E-08 A. However, 

the RMSE values for Ih1(A) indicate that the ChOA 

algorithm has a considerably higher error 

(0.007640622), suggesting that its estimate for this 

parameter is less accurate. 

3.   At the level of Ideality Factor n1: The optimization 

algorithm HHO estimates the highest ideality factor n1 

at 1.520924087, while ChOA provides the lowest 

estimate at 1.317375646. This parameter exhibits a 

significant variation among the algorithms, which is 

reflected in the RMSE values. The GJO algorithm 

achieves the lowest RMSE (0.000986022), indicating 

that it provides the best estimate for n1. 

4.   At the level of Series Resistance Rs(Ω): Among the 

algorithms, the optimization algorithm HHO estimates 

the lowest series resistance Rs(Ω) at 0.035030244 Ω, 

while ChOA estimates the highest at 0.039827959 Ω. 

The GJO algorithm has the second lowest RMSE 

(0.001006495) for Rs(Ω), suggesting accurate 
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parameter estimation. 

5.   At the level Shunt Resistance Rsh(Ω): The optimization 

algorithm ChOA estimates the lowest shunt resistance 

Rsh(Ω) at 22.22929772 Ω, while HHO provides the 

highest estimate at 73.06072271 Ω. RIME and TSA 

also produce notably different estimates for Rsh(Ω). 

The RMSE values for Rsh(Ω) are relatively high for 

most algorithms, indicating potential challenges in 

accurately estimating this parameter. 

6.   At the level of Root Mean Square Error RMSE: The 

RMSE values quantify the goodness of fit between the 

modeled data and the experimental data. Lower RMSE 

values indicate better model accuracy. The GJO 

algorithm attains the lowest RMSE (0.000986022), 

implying the best overall fit to the experimental data. 

The best method that reaches the optimum value of RMSE 

is the GJO algorithm. The method ordering according to the 

best fitness function is RIME, GWO, HHO, OOA, TSA, and 

ChOA respectively. The SDSCM characteristics based on 

the optimum estimated variable parameters from the GJO 

method are used in the simulation of the curves of P-V and 

I-V as clearly illustrated in Figures 5 and 6 respectively. 

Also, the absolute error for power and current is analyzed in 

those two figures. According to the recorded results, the 

power reaches an absolute error equal to 

0.0000019729262562317 and the current reaches an 

absolute error equal to 0.0000874090632038138. 

5.3. Discussion of DDSCM Results 

The results of the identified variable parameters for 

DDSCM evaluated from the proposed GJO Algorithm and 

the competitive techniques at the best RMSE are outlined in 

Table 4. 

1.   At the level of Photogenerated Current Ipv(A): The 

GJO algorithm yields an estimated photogenerated 

current Ipv(A) of approximately 0.760776216 A, which 

is very close to the value obtained using the GWO 

algorithm (0.760389467 A). Both GJO and GWO 

exhibit the lowest RMSE values (0.000983088 and 

0.001211413, respectively), giving the best fit to the 

experimental data for Ipv(A). 

2.   At level of Current at Diode's Ideality Factor Ih1(A): 

Interestingly, the HHO algorithm estimates a value of 

0.00E+00 A for Ih1(A), indicating that it essentially 

does not predict current in this diode. On the other 

hand, GJO and ChOA estimate significantly higher 

values for Ih1(A). The RMSE values for Ih1(A) are 

relatively high for several algorithms, indicating the 

challenge in accurately estimating this parameter. 

3.   At level of Ideality Factor n1: The GJO optimization 

algorithm estimates an ideality factor n1 of 

approximately 1.999999999, very close to the ideal 

value of 2. This suggests that GJO predicts an ideal 

diode behavior for n1. The RMSE value for n1 using 

GJO is the lowest among the algorithms, indicating an 

accurate parameter estimation. 

4.   At level of Series Resistance Rs(Ω): The optimization 

algorithms GJO, GWO, and HHO provide relatively 

similar estimates for series resistance Rs(Ω), with 

values close to 0.036 Ω. The RMSE values for Rs(Ω) 

are also relatively low for these three algorithms, 

indicating accurate parameter estimation. 

5.   At level Shunt Resistance Rsh(Ω): The optimization 

algorithm TSA estimates the highest shunt resistance 

Rsh(Ω) at 81.11183487 Ω, while ChOA provides the 

lowest estimate at 11.7834362 Ω. The RMSE values 

for Rsh(Ω) vary between algorithms, and TSA has the 

lowest RMSE, suggesting accurate parameter 

estimation. 

6.   Current at Diode's Ideality Factor Ih2(A) and n2: For 

the ideality factor Ih2(A), it appears that the analysis 

includes parameters related to a second diode in the 

DDSCM. Like Ih1(A), Ih2(A) and n2 show variations 

among the optimization algorithms. These parameters 

have relatively high RMSE values, indicating potential 

challenges in accurate estimation. 
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7.   At level of Root Mean Square Error RMSE: The RMSE 

values quantify the good-ness-of-fit between the 

modelled data and the experimental data. Lower RMSE 

values indicate better model accuracy. The GJO 

algorithm achieves the lowest RMSE (0.000983088), 

implying the best overall fit to the experimental data. 

The best method to achieve the optimum value of RMSE is 

the GJO algorithms. The order of the other methods 

according to the best fitness function is RIME, GWO, HHO, 

TSA, ChOA, and OOA respectively. The DDSCM 

characteristics based on the optimum estimated variable 

from the GJO method are used in the simulation of the 

curves of P-V and I-V as clearly shown in Figures 7 and 8 

respectively. Also, the absolute error for power and current 

is analyzed in those two figures. According to the recorded 

results, the power reaches an absolute error equal to 

1.81332614118679E-06 and the current reaches an absolute 

error equal to 8.81539203301252E-06. 

5.4. Discussion of TDSCM Results 

The results of the identified variable parameters for TDSCM 

evaluated from the proposed GJO Algorithm and the 

additional relative techniques at the best RMSE are outlined 

in Table 5. The best method that reaches the optimum value 

of RMSE is the GJO technique. The order of the other 

methods according to the best fitness function is RIME, 

GWO, TSA, HHO, OOA, and ChOA respectively. The 

TDSCM characteristics based on the optimum estimated 

variable parameters from the GJO algorithm are used in the 

simulation of the curves of P-V and I-V as represented in 

Figures 9 and 10 respectively. Also, the absolute error for 

power and current is analyzed in those two figures. 

According to the recorded results, the power reaches an 

absolute error equal to 1.80929475575384E-06 and the 

current reaches an absolute error equal to 

Table 3. Identified parameters at the optimal RMSE for SDSCM. 

Parameter GJO GWO HHO OOA RIME ChOA TSA 

Ipv(A) 0.760775383 0.760434273 0.760447264 0.757522151 0.761039595 0.761802741 0.757291175 

Ih1(A) 3.23E-07 2.67E-07 4.75E-07 3.86E-07 3.04E-07 5.07E-08 2.89E-07 

n1 1.481186363 1.462178429 1.520924087 1.499554883 1.475297989 1.317375646 1.469506585 

Rs(Ω) 0.036377009 0.036825416 0.035030244 0.034982442 0.03654007 0.039827959 0.036480554 

Rsh(Ω) 53.72093421 50.25003 73.06072271 77.75879679 49.52768507 22.22929772 79.78135609 

RMSE 0.000986022 0.001205557 0.001277464 0.00235091 0.001006495 0.007640622 0.002574147 

 

Table 4. Identified parameters at the optimal RMSE for DDSCM. 

Parameter GJO GWO HHO OOA RIME ChOA TSA 

Ipv(A) 0.760776216 0.760389467 0.759490081 0.783324753 0.761041387 0.781287797 0.757932623 

Ih1(A) 4.75E-07 6.73E-07 0.00E+00 2.22E-07 7.75E-08 4.37E-07 3.09E-07 

n1 1.999999999 1.989170397 1.883260056 1.535863568 1.547775056 1.513054471 1.477327384 

Rs(Ω) 0.036575654 0.037380965 0.03639245 0.060063011 0.036465979 0.031746146 0.03587831 

Rsh(Ω) 55.00082774 64.56911816 74.00899105 59.64729661 52.44891214 11.7834362 81.11183487 

Ih2(A) 2.61E-07 2.15E-07 3.19E-07 1.40E-07 2.57E-07 1.65E-08 5.92E-08 

n2 1.463131859 1.445883058 1.479518801 1.44667356 1.471833056 2 1.876476881 

RMSE 0.000983088 0.001211413 0.00137838 0.045497895 0.001011992 0.01422437 0.002177321 

 

Table 5. Identified parameters at the optimal RMSE for TDSCM. 

Parameter GJO GWO HHO OOA RIME ChOA TSA 

Ipv(A) 0.760782337 7.62E-01 7.61E-01 0.780305804 0.760804506 7.54E-01 0.76289745 

Ih1(A) 9.79E-07 3.71E-07 8.67E-07 4.43E-07 9.99E-07 0.00E+00 9.54E-08 

n1 1.999808073 1.50E+00 1.62E+00 1.572350975 1.918323113 1.87E+00 2 

Rs(Ω) 0.036890353 0.035956271 0.030529716 0.047125371 0.036470919 0 0.034134898 

Rsh(Ω) 56.39602373 49.46459462 85.32287663 46.88655892 64.78240147 9.656121549 47.57256276 

Ih2(A) 1.93E-07 0.00E+00 6.42E-08 8.21E-07 9.90E-07 9.88E-07 6.47E-08 

n2 1.438065187 1.654724006 1.608373649 1.695538571 1.996078954 1.619963479 2 

Ih3(A) 7.31E-08 1.24E-09 1.97E-07 1.72E-07 1.17E-07 0.00E+00 5.32E-07 

n3 1.998081004 1.813499871 1.609161597 1.825298084 1.40275812 1.98461433 1.53501469 

RMSE 0.000983227 0.001232716 0.002780114 0.030275843 0.001132313 0.039555218 0.002394933 
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0.0000687911957745202. 

5.5. Analysis of Statistical Data for the Three Models 

Based on 30 separate experimental runs, the statistical data 

of all the considered methods is fulfilled to compute the 

maximum, minimum, standard deviation, and mean of the 

objective function. The minimum and standard deviation 

values of RMSE, respectively, determine the reliability and 

accuracy of the mentioned methods. Tables 6, 7, and 8 

conclude the reported statistical data for the different three 

solar cell models SDSCM, DDSCM, and TDSCM, 

respectively. From these three tables, it is clear that the GJO 

algorithm achieves the optimum value of minimum RMSE 

for the three models SDSCM, DDSCM and TDSCM. 

Furthermore, the optimum standard deviation value for the 

three models SDSCM, DDSCM and TDSCM is achieved by 

the GJO algorithm. So that, the proposed GJO technique is 

the best method on all comparator ones since it achieves 

high accuracy and reliability. The robustness curves of the 

three models SDSCM, DDSCM and TDSCM are clarified 

in Figures 11, 12, and 13  respectively. The convergence 

curves of the three models SDSCM, DDSCM, and TDSCM 

are clarified in Figures 14, 15, and 16 respectively. 

According to these figures; it is recognizable that the GJO 

method converges to the global optimal solution faster that 

all other techniques. Moreover, compared to all other 

methods included in the practical experiment, the GJO 

method also achieves excellent robustness and reliability to 

the optimal solution. 

Table 6. Statistical Results of SDSCM. 

Algorithm Min Mean Max STDV 

GJO 0.000986 0.00102 0.001438 1.15E-04 

GWO 0.001206 0.009907 0.045697 0.013118 

HHO 0.001277 0.024428 0.097538 0.026126 

OOA 0.002351 0.14808 0.289284 0.074319 

RIME 0.001006 0.001972 0.007048 0.001186 

ChOA 0.007641 0.12125 0.22287 0.086321 

TSA 0.002574 0.009278 0.038364 0.011741 

 

 

 

 

 

 

Table 7. Statistical Results of DDSCM. 

Algorithm Min Mean Max STDV 

GJO 0.000983 0.001061 0.001438 0.000145 

GWO 0.001211 0.006315 0.038353 0.008856 

HHO 0.001378 0.010028 0.032096 0.007534 

OOA 0.045498 0.153379 0.292036 0.075031 

RIME 0.001012 0.002079 0.00399 0.000939 

ChOA 0.014224 0.120425 0.222875 0.081475 

TSA 0.002177 0.006585 0.0378 0.008298 

Table 8. Statistical Results of TDSCM. 

Algorithm Min Mean Max STDV 

GJO 0.000983 0.0011 0.001438 0.000171 

GWO 0.001233 0.008177 0.037379 0.010241 

HHO 0.00278 0.044284 0.300537 0.088492 

OOA 0.030276 0.176115 0.310742 0.079704 

RIME 0.001132 0.002467 0.003725 0.000796 

ChOA 0.039555 0.169171 0.2229 0.077667 

TSA 0.002395 0.004801 0.012679 0.001935 

 

Additionally, regarding the minimum fitness (Objective) 

function, the GJO method (besides the 6 algorithms 

included in this experimental study; HHO, GWO, TSA, 

ChOA, OOA, and RIME) is compared with other algorithms 

such as: weighted mean of vectors (INFO) [29], moth–flame 

optimizer (MFO) [35], sine—cosine algorithm (SCA) [50], 

tunicate swarm algorithm (TSA) [55], Runge–Kutta 

optimization (RUN) [59], Gradient-Based Optimizer (GBO) 

[60] and cuckoo search algorithm (CSA) [61]. Results on 

the minimum fitness (Objective) function are represented in 

Table 9. The data of the INFO, MFO, SCA, TSA, RUN, 

GBO, and CSA were expressed in [2,3]. 
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Table 9. Minimum Fitness (Objective) Function Statistical 

results for the three photovoltaic models. 

Algorithm SDSCM DDSCM DDSCM 

GJO 0.000986022 0.000986022 0.000986022 

GWO 0.001205557 0.001205557 0.001205557 

HHO 0.001277464 0.001277464 0.001277464 

OOA 0.002350910 0.002350910 0.002350910 

RIME 0.001006495 0.001006495 0.001006495 

ChOA 0.007640622 0.007640622 0.007640622 

TSA 0.002574147 0.002574147 0.002574147 

INFO 0.000986022 0.000986022 0.000986022 

MFO 0.001211865 0.001211865 0.001211865 

SCA 0.013427050 0.013427050 0.013427050 

TSA 0.002027996 0.002027996 0.002027996 

RUN 0.001024176 0.001024176 0.001024176 

GBO 0.000986020 0.000986020 0.000986020 

CSA 0.000991184 0.000991184 0.000991184 

6. Conclusion and Future Work 

This research has investigated the application of a recent 

optimization metaheuristic technique, which is the Golden 

Jackal Optimization (GJO) algorithm, in estimating the 

variable parameters of different three PV solar cells models: 

single-diode solar cell model (SDSCM), double-diode solar 

cell model (DDSCM), and triple-diode (TDSCM). The main 

idea of this work is to efficiently evaluate the performance 

of GJO algorithm in the proper estimation of the three PV 

solar cells models parameters. Due to the manufacturer's 

lack of data, the SDSCM was classified as a non-linear 

equation between current and voltage five unknown 

variable parameters. Additionally, the DDSCM and 

TDSCM work similarly to the SDSCM with the exception 

that the DDSCM had seven unknown variable parameters, 

while the TDSCM has nine. Minimizing the root mean 

square error between the simulated current and the 

experimental current of the R.T.C. France solar cell was the 

goal of the derived parameters in the three PV solar cell 

models. Minimizing the root mean square error between the 

simulated current and the experimental current of the R.T.C. 

France solar cell was the goal of the estimated parameters in 

the three PV solar cell models. Minimizing the objective 

(fitness) function of parameter extraction of the three PV 

solar cells models SDSCM, DDSCM, and TDSCM is the 

primary role of using GJO algorithm. Many benefits were 

achieved of the GJO algorithm such as its fast convergence 

between analysis and exploitation, balance, and accurate 

solutions. Compared to other six rival algorithms that were 

examined in the study, the GJO produced  more 

accurate results.  
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Fig 5. The I-V curve of SDSCM based on the GJO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. The P-V curve of SDSCM based on the GJO algorithm. 
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Fig 7. The I-V curve of DDSCM based on the GJO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. The P-V curve of DDSCM based on the GJO algorithm. 
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Fig 9. The I-V curve of TDSCM based on the GJO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. The P-V curve of TDSCM based on the GJO algorithm. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 365–383 |  379 

 

 

 

 

 

Fig 11. The robustness curve of SDSCM. 

 

 

 

 

 

 

 

 
Fig 12. The robustness curve of DDSCM. 

 

 

 

 

 

 

 

 

 
Fig 13. The robustness curve of TDSCM. 
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Fig 14. The convergence curve of SDSCM. 

 

 

 

 

 

 

 

 
Fig 15. The convergence curve of DDSCM. 

 

 

 

 

 

 

 

 

 
Fig 16. The convergence curve of TDSCM. 
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An important finding to emerge in this study is that the GJO 

is a strong alternative technique to resolve PV solar cell 

systems optimization problems. In the future, further 

research should be applied using the GJO to compute the 

current-voltage characteristics of multi-diode diodes and 

models, as well as to determine the PV parameters of 

multidimensional diodes and models. 
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