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Abstract: DE and ACO were chosen based on their documented superior performance across diverse literature, and their novelty in the 

security industry, where no prior implementation attempts had been made. Various approaches exist for coordinating overcurrent relays, 

each offering unique performance advantages that distinguish it from others. As the number of coordination pairings grew, so did GA 

exhibited the least favorable outcomes, proving to be the slowest with the greatest impact on execution time. This observation was 

derived from a comparative analysis of the outputs of the three algorithms. In contrast, ACO and DE not only demonstrated superior 

speed but also consistently yielded better results, showcasing resilience to an escalation in the number of coordination pairs. 
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1. Introduction 

Protection is a crucial element extensively employed 

across the entire electrical power system. Due to its cost-

effectiveness compared to other protection methods, in 

sub-transmission and distribution networks, overcurrent 

relays are often used. The primary objective in 

coordinating these overcurrent relays is to find settings that 

decrease time. These relays need to operate in response to 

faults within the protective zone. Simultaneously, it aims 

to establish a predetermined backup schedule for relays 

situated in zones adjacent to the protective area. 

Consequently, the highest fault current detected by a relay 

within its safe zone must surpass the fault currents detected 

in neighboring zones. It is acknowledged that the 

overcurrent protection principle may be beyond the scope 

for specific configurations of mesh systems, essentially 

pushing the limits of its protective capacity. Coordinating 

distribution system overcurrent relays is essential to fulfill 

fundamental requirements such as sensitivity, reliability, 

selectivity, and speed. 

Through the implementation of real-time optimization 

methods in coordinating overcurrent relays, we achieved 

enhanced results. These included accelerated fault 

extinction, a diminished probability of erroneous tripping, 

and a decreased measure of fault extinction delay across 

seasons. The swift attainment of these outcomes was a 

direct result of our ability to expedite the optimization 

process. 

2. Literature Survey   

Over the past few decades, the predominant approach 

among protection specialists for coordinating Directional 

Overcurrent Relays (DOCRs) has been manual 

coordination. However, this manual coordination has been 

reframed as an optimization challenge because of its 

complicated and nonlinear nature of the underlying 

problem. To address this complexity, various optimization 

strategies have been proposed. One such strategy, 

introduced in 1988, involved coordinating DOCRs using 

linear programming within the framework of deterministic 

optimization theory (LP). This approach presented the 

challenge as a linear function, with dials generated based 

on provided pickup current values. Subsequent research 

has further explored the application of LP to this issue, 

appreciating its straightforward nature. 

In the contemporary landscape, heuristic methods from the 

realm of artificial intelligence (AI) have experienced a 

remarkable surge in popularity for addressing coordination 

challenges. Noteworthy examples of these approaches 

encompass the particle swarm optimization (PSO) and 

genetic algorithm (GA). The GA has garnered frequent 

attention across diverse literature due to its robustness, 

simplicity and straightforward execution. This method is 

rooted in progressive principles, mirroring the natural gene 

selection, encompassing key processes such as selection, 

reproduction, and mutation, forming the foundational 

concepts of the algorithm.  

Lately, hybrid approaches have surfaced to tackle 

coordination challenges, offering advantages such as a 

reduced search space, quicker execution times, and a 
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decrease in the required number of iterations required to 

arrive at a solution. Among these, hybridizing the blending 

in particle swarm optimization (PSO) and genetic 

algorithm (GA) stand out as two recently devised methods 

seamlessly integrated with linear programming (LP).  

Although Ant Colony Optimization (ACO) hasn't been 

applied in coordination studies, it has recently found utility 

in the examination of power generation scheduling, power 

flow economic dispatch and reactive power flow planning. 

ACO has demonstrated its efficacy as a potent tool in 

solving intricate problems across diverse domains. 

Notably, ACO offers a distinct advantage over Genetic 

Algorithms (GA) through the utilization of a pheromone 

matrix which plays a global memory role, contributing to 

more efficient and rapid convergence of solutions. 

DE is a form of Evolutionary Algorithm (EA). However, in 

contrast to many other EAs, DE stands out for its 

simplicity and ease of implementation. In various studies 

comparing DE with other algorithms, its overall 

performance, including accuracy, convergence speed, and 

robustness, proves highly compelling. These attributes 

render DE particularly attractive for addressing real-world 

optimization problems, emphasizing the importance of 

obtaining an approximate solution within a reasonable 

computational timeframe. 

3. Real-Time Coordination of Relay 

The study of coordinating DOCRs predominantly centers 

around a fixed network structure within an Interconnected 

Mesh Power System (IMPS), framed as an issue of 

optimization. However, practical power systems operate in 

dynamic environments with ever-changing topologies due 

to line outages, transformer failures, and variations in 

generating unit status. In certain scenarios, alterations in 

network topology or element operation can lead to a lack 

of selectivity, causing the protective system to operate non-

selectively, resulting in a loss of coordination. 

This paper aims to address this challenge by proposing a 

solution to coordinate all protections seamlessly during 

every change in element operation or network topology. 

Achieving this goal necessitates the creation of an 

algorithm that operates in real time, works synergistically 

regarding optimization algorithm, ensuring continuous 

coordination effectiveness in dynamic operating 

conditions. 

Figure 1 depicts the flow diagram for coordination of 

overcurrent relays in real-time. 

 

Fig 1 : Flow Diagram of Real Time Coordination. 

4. Real Time Algorithm 

An algorithm that operates in real time involves gathering 

data on the most recent changes in elements and the 

network. This data serves as input for subsequent relay 

coordination calculations. It is thought that the online 

update hardware mechanism has already been created; the 

required hardware merely has to be installed together with 

an appropriate real-time algorithm. 

The following is a summary of the algorithm: 

1. Initiate the process by updating the system's data in 

accordance with changes in elements and the network. 

2. Construct or modify the Ybus utilizing the inverse of 

the Inspection method and the Incident method based 

on the acquired data. 

3. Automatically generate lists of "Relay Names" and 

"Coordination Pairs." 

4. Execute a load flow analysis, employing methods such 

as Newton Raphson or an alternative technique. 

5. Construct or modify the Zbus using Partial Inversion 

Motto and Block construction method. 

6. Conclude the algorithm by running fault analysis, 

employing methods like Symmetrical Components 

method or Thevenin's method. 

Upon completion of the aforementioned steps, the 

algorithm will have determined the pairs of coordination as 

well as the fault currents and maximum load for each relay, 

serving as input for the optimization strategies used on the 

initial topology of the network. This is represented in 

Figure 2. 
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Fig 2: Real-Time Coordination Flow Diagram. 

Yet, to guarantee that the relay configurations derived from 

the subsequent algorithm for coordinating align with one 

or more output without an element affecting 

synchronization, it is imperative to compute maximum 

load and currents at fault considering various n-1 

contingency topologies. Prior to sending data to the 

optimization algorithms in charge of coordinating 

overcurrent relays, this algorithm incorporates sensitivity 

filtration. This crucial step guarantees the efficient 

coordination of all pairs in the system. Coordination pairs 

not aligning with the specified sensitivity analysis level 

will be excluded from the coordination process. This 

strategy prevents the algorithms for optimization from 

expending unnecessary effort on attempting to figure out 

how to configure these insensitive relay pairs, recognizing 

that such pairs lack suitable settings. Equation (1) gives the 

sensitivity analysis formula: 

 

where k = 1.4, the smallest number between [1.4, 1.6]. 

Relays that fail to meet sensitivity criteria, even when 

considering the minimum 𝑘, will be excluded. Here, the 

term "sensitivity" refers to the relationship between the 

pickup current and short circuit current in the two-phases 

of a relay. A satisfactory sensitivity level requires the short 

circuit current in the two-phases to be at least 1.5 times the 

pickup current. This criterion is essential because currents 

situated close to the typical curve of relay's vertical 

asymptotic zone exhibit extended operation times. Using 

the pickup current as a point of reference, faults located 

near or within the vertical asymptotic area, or too close to 

the pickup current, may decrease sensitivity, leading to 

potential loss of sensitivity in certain instances. 

Optimization Algorithms' Objective Function 

It is critical to define the objective function that will be 

used to assess the effectiveness of relay settings, gauging 

their ability to meet specified needs. This type of function 

can comprise a combination of various criteria, directly 

influencing the optimization algorithms' (such as ACO, DE 

and GA) output quality. An indicator is required to convey 

whether a setting is unfavorable (outside satisfaction 

limits), satisfactory (within satisfaction limits), or optimal 

before its inclusion in the evaluation of objective functions. 

In the context of relay coordination, the time, specifically 

Coordination Time Interval (CTI), serves as indicator. 

The initial step involves evaluating all settings for each 

relay within the population. The differentiating factor at 

this stage lies in the current flowing across a short 

circuit observed by both primary relay and backup 

relay. Despite this procedural difference using the 

manual approach, the underlying logic aligns with the 

Coordination Time Interval (CTI) principle. 

Consequently, equation (2) stipulates that the genuine 

calculation of CTI involves the subtraction of the 

backup time from the primary time. 

 

This represents the authentic CTI of the relays, commonly 

referred to as the limitations of the primary and backup 

relays. To calculate the indicator, subtract the pre-specified 

CTI from the actual CTI, displayed in equation (3). 

 

As previously explained, the Coordination Time Interval 

(CTI) indicator serves to categorize settings as unfavorable 

(beyond satisfaction limits), satisfactory (within 

satisfaction limits), or optimal, allowing for appropriate 

reward or penalty assignment before integration into the 

objective function. Termed as CTI error, this indicator 

results from the subtraction of two CTIs. A zero error 

implies ideal settings, a rare occurrence, and most relays 

will not attain this perfection. A positive error suggests that 

the settings are good or acceptable, maintaining 

coordination, but with a time lag higher than the 

predefined threshold. 

Equations (4) and (5) articulate the boundaries specified 

for the relay settings. 
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Here, 'dial' represents the relay dial configuration. found 

between the max. dialmax and min. dialmin ranges and Ipickup 

is the pickup current of relay detected within its max. 

Ipickupmax and min. Ipickupmin ranges. 

The primary function encompasses the total count of 

violations, the combined primary time and backup time, 

and CTI equals the total of errors in the number of pairings 

that are coordinated. All three algorithms— Differential 

Evolution Algorithm, Ant Colony Algorithm, and Genetic 

Algorithm, share a common primary function in their 

implementation. It is represented in equation (6). 

It is advisable to apply a slight penalty to encourage 

convergence towards zero error, aligning with the pre-

defined CTI. In cases where the error has a negative value, 

indicating a coordination loss, a more substantial penalty is 

recommended to prevent significant mal coordination. 

 

Where, 𝛼, 𝛽 𝑎𝑛𝑑 δ are variables that affect the effect of 

any sub-objective function in any other system. The 

number of violations of coordination limitations is 

denoted by NV, 𝑁𝐶𝑃 stands for the quantity of pairs that 

are coordinated, In this context, 'tprincipala' represents the 

primary operation time of relay a, and 'tbackupb' represents the 

backup operation time of relay b and 𝐸𝐶𝑇𝐼𝐿
is the Lth 

coordination pair’s CTI error. 

5. Protection Coordination  

Using a Genetic Algorithm 

Genetic algorithms (GA) are natural selection-based 

adaptive heuristic search methods applied to genes that 

belong to the area of evolutionary computing. 

Every living organism is composed of cells, and within 

each cell resides an identical set of chromosomes, 

analogous to individuals. These chromosomes, comprised 

of genes or DNA blocks, encode specific proteins or traits 

(such as eye color), each with its designated place on the 

chromosome. The chromosome stores potential solution 

information in the form of genes with binary, real, integer, 

or floating-point elements. 

Reproduction involves a recombination process, 

commonly known as crossover, where offspring or new 

chromosomes are created through the merging of genes 

from specific parent chromosomes. Typically, 

chromosomes with favorable fitness values are selected as 

parents. However, it's important to note that relying solely 

on the best chromosomes for reproduction may result in 

reaching a premature solution or getting bound in a local 

optimum. 

The algorithm commences with numerous solution sets, 

represented by chromosomes, collectively constituting a 

population. The solutions obtained from a specific 

population are selected to generate a new and refreshed 

population. with the anticipation that it will exhibit 

improvement over the previous one. The selection of 

solutions for forming new ones is guided by their fitness; 

the more apt a solution, the greater its likelihood of 

contributing to the reproduction process. 

The entire procedure is reiterated until a specified 

condition is fulfilled, such as attaining the maximum 

number of repetitions or improving the best solution. This 

criterion is referred to as the stopping criteria. 

In cases where the number of chromosomes is insufficient, 

the algorithm has limited opportunities for crossover, 

exploring only a fraction of the search space. Conversely, 

an excess of chromosomes results in a broader exploration 

of feasible solutions, but this comes at the cost of 

significantly increased execution time. 

Ant Colony Algorithm 

Ant agents refer to a group of artificial ants tasked with 

constructing solutions for an optimization problem. They 

communicate information about solution quality using a 

communication method similar to that seen in real ant 

colonies. 

In the AS graph, the matrix delineates the search space, 

comprising discrete combinations (states) of control 

variables (stages). The Pheromone matrix stores data on 

chemical pheromones deposited by ants, providing 

information on the intensity of pheromones corresponding 

to each discrete setting. This matrix reflects the 

appealingness of potential routes with relation to the 

solution, with higher intensity indicating a greater 

likelihood of being an ant agent opted to be a part of the 

solution. 

The algorithm begins with multiple solution sets (states), 

collectively forming the search space for AS graphs. This 

AS graph remains constant during the entire search 

procedure, maintaining consistency and not undergoing 

changes from one iteration to the next.  

The whole process is reiterated until a specified condition 

is satisfied. This point is referred to as the criterion for 

stopping. 

The AS-graph's total number of states is represented by its 

size. When there are too few states, the algorithm has less 

chances to find the best answer, examining only a portion 

of the search area. Conversely, an excess of states 

enhances the chance of encountering the optimum result 

but significantly slows down the overall procedure. 
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Differential Evolution Algorithm 

Like a conventional evolutionary algorithm (EA), the 

Differential Evolution algorithm uses procedural 

operations. But unlike typical EAs, it disturbs members of 

the current generation population with scaled variations 

from randomly selected, unique population members. This 

eliminates the need for a separate probability distribution 

to generate offspring. This feature reduces the number of 

mathematical operations, resulting in shorter execution 

times with respect to other algorithms.  

The trial solutions are called genomes or parameter vectors 

in the Differential Evolution community. Each vector of 

parameters encapsulates a wealth of information pertaining 

to potential solutions. Crossover is a mechanism akin to 

reproduction, generating offspring or new individuals by 

means of gene recombination from specific parameter 

vectors known as target or parents’ vectors. The 

individuals generated through this process are referred to 

as trial vectors, emerge from this recombination process. 

The procedure starts with several sets of solutions, each of 

which is a population made up of all the parameter vectors. 

Selected solutions from an existing population are utilized 

to form a new population. Through the selection process, 

the algorithm ensures that the population either preserves 

or enhances its performance in minimizing the objective 

function, thus preventing deterioration. 

𝐹, 𝐶𝑟, and 𝑁𝑃 are the three main control parameters in DE. 

They're regarded as constant values. 

Algorithm Comparison and Real-Time Coordination: 

GA, DE & ACO 

In this part, we assess the performance of each algorithm 

using the IEEE 14 bus test system, highlighting both their 

positive and negative aspects. The evaluation criteria 

include the execution time, a crucial factor determining the 

algorithm's quality, resilience, and convergence 

capabilities. The search area is systematically narrowed by 

subjecting the test system to repeated iterations and 

analyzing outcomes, aiming for more precise results and 

faster algorithm convergence. 

The trio of algorithms—Differential Evolution, Genetic 

Algorithm & Ant Colony Optimization are equipped with 

settings for continuous dial and k. Adjusting the step size 

impacts the widening of the AS graph and influences the 

time required for the task, with a smaller time denoting 

faster execution. The decision to use dial and k for real-

time coordination was based on information provided in 

Table 1. Careful consideration ensured that these 

parameters were neither excessively large nor too small, 

optimizing result accuracy. 

The algorithm execution is set to terminate after surpassing 

one thousand iterations, simplifying comparisons across 

approaches by removing individual halting conditions. 

This iteration limit was chosen as, beyond 1,000 iterations, 

the progress in algorithms becomes less apparent compared 

to thresholds like 3,000 or 5,000 iterations. The simulation 

involves a total of 500 agents for GA, DE, and ACO 

scenarios, prioritizing speed among participating agents. 

Parameter Settings 

A comprehensive evaluation and comparison of three 

techniques were conducted using the IEEE Fourteen bus 

test system, as illustrated in Figure 3. The voltage on buses 

connected to the high voltage side of transformers was set 

at 34.5kV, while buses linked to the LV side maintained a 

voltage of 22 kV. 

A comprehensive evaluation and comparison of three 

techniques were conducted using the IEEE Fourteen bus 

test system, as illustrated in Figure 3. The voltage on buses 

connected to the high voltage side of transformers was set 

at 34.5kV, while buses linked to the LV side maintained a 

voltage of 22 kV. 

 

 

A comprehensive evaluation and comparison of three 

techniques were conducted using the IEEE Fourteen bus 

test system, as illustrated in Figure 3. The voltage on buses 

connected to the high voltage side of transformers was set 

at 34.5kV, while buses linked to the LV side maintained a 

voltage of 22 kV. 
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Table 1 presents data supporting the belief that all relays 

exhibit a highly inverted time characteristic curve. Unlike 

traditional naming conventions involving numerical 

designations, the real-time algorithm automatically assigns 

relay names as strings of numbers. Each relay's three-digit 

name signifies the proximity of the buses it connects: the 

first digit denotes the bus in close proximity, the second 

indicates the more distant bus, and the 3rd signifies the 

number of parallel lines that connect them. 

For instance, relays connecting buses 1 and 2 near bus 1 

are denoted as [1 2 1] and [1 2 2]. Relays near bus 2 for the 

same connection are represented as [2 1 1] and [2 1 2]. 

Impedance testing on lines connecting buses 1 and 2 

revealed identical values, leading to shared grounding and 

identical maximum load currents of 815A for relays [1 2 

2], [1 2 1], and [2 1 1]. Despite detecting the same 

maximum load currents, all three relays can withstand load 

currents up to 1,849 A at full capacity. 

The figures presented aimed to minimize strain on 

participants, necessitating the computation of leakage 

current by opening the circuit to its far end. This operation 

served to obtain the maximum overcurrent detected by the 

relay while limiting the risk of malfunction in the remote 

end relay. Additionally, it was emphasized that changes in 

network topology or component operation would require 

recalculating load flow and fault analysis using a real-time 

method. 

Specific data values include Xd values of 0.01 for 

generator one and 0.3 for generator two. The data from the 

first 14 bus loads represent the maximum load, accounting 

for 70% of the minimum load. 

6. Result & Discussion 

The simulation of the 14 bus test system is repeated, 

employing ACO, DE andGA, with parameters as outlined 

in the preceding section, specifically at minimum load 

conditions. Following the application of a sensitivity filter, 

total of 48 (forty-eight) relay coordination pairs found. 

Each of the three algorithms underwent ten simulations, 

and the algorithm's convergence was determined by 

averaging the best fitness across iterations in the ten 

simulations. Figure 4 demonstrates this for comparison. 

 

Fig 4 : Convergence analysis of average fitness for the 14 - 

bus test systems of GA, ACO & DE in 10 simulations at 

minimal load. 

Table 2 displays the average number of violations of 

coordination constraints, the convergence of fitness 

averaged across iterations, and the time averages for Ant 

Colony Optimization, Differential Evolution & Genetic 

Algorithm. 

 

Based on these findings, it is evident that both Ant Colony 

Optimization & Differential Evolution exhibit lesser 

violations of coordination constraints, faster performance 

and superior convergence, compared to Genetic Algorithm. 

Notably, in both DE & ACO, all coordination pairs are 

successfully coordinated across the 10 simulations. In 

contrast, some of the 10 GA simulations do not achieve 

coordination for all pairs. DE particularly stands out for its 

exceptional performance in these aspects. 

Table 3 displays the mean operation time, relay settings, 

Coordination Time Interval (CTI), and sensitivity for the 

ten for Ant Colony Optimization, Differential Evolution & 

Genetic Algorithm simulations. 

 

7. Conclusion 

The analysis reveals that as the number of coordinating 

pairs increased, Genetic Algorithm (GA) exhibited the 
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poorest outcomes, with the slowest execution time and a 

considerable impact on the total execution time. This 

conclusion stems from a comparative assessment of 

outcomes across the three algorithms. Conversely, both 

Ant Colony Optimization & Differential Evolution 

demonstrated significantly faster execution times, yielded 

superior results, and were relatively unaffected by an 

increase in the total number of coordinating pairs. In this 

particular study, the invested execution time is a crucial 

factor, alongside resultant quality, durability, and 

convergence capability. 

Differential Evolution stands out with the best overall 

performance among the algorithms investigated in this 

paper when compared to others. The application of real-

time coordination validated the theory's correctness. The 

relay operating time is reduced, system sensitivity is 

heightened, and preparations are made for potential 

emergencies. 
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