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Abstract: Emotion classification based on Electroencephalography (EEG) and physiological signals has gained significant attention in 

recent years due to its potential applications in affective computing and human-computer interaction. In this paper, we propose a novel 

algorithm that combines a hybrid feature extraction technique with soft labels and weighting factors to improve emotion classification. Our 

approach incorporates a hybrid technique that combines Fourier Transform and Time Domain features extracted from EEG recordings with 

existing features of arousal, valence, and dominance from the dataset. To address overfitting, we employ Laplacian Eigenmaps for 

dimensionality reduction and unsupervised spectral clustering to derive soft labels. These soft labels enhance the generalizability of the 

classifier. The classification stage employs a Support Vector Machine with a Radial Basis Function kernel, taking into account the soft 

labels and a weighting factor based on wheel strength. Experimental results demonstrate the effectiveness of our approach, with improved 

accuracy and specificity compared to a baseline SVM RBF classifier without soft labels. Therefore, our proposed algorithm offers a 

promising solution for emotion classification, providing insights into the underlying emotional states captured by EEG and physiological 

signals. 
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1. Introduction 

Emotion recognition plays a crucial role in various domains, 

including affective computing, mental health monitoring, 

and human-computer interaction. Being able to accurately 

classify and understand human emotions can lead to 

significant advancements in these areas, enabling more 

personalized and adaptive systems. Electroencephalography 

(EEG) and physiological signals have emerged as valuable 

sources of information for emotion classification, as they 

provide insights into the underlying neural and 

physiological processes associated with emotional states [1-

8]. 

In recent years, there has been a growing interest in 

leveraging machine learning techniques to analyze EEG and 

physiological signals for emotion recognition. These signals 

capture the electrical activity and physiological responses of 

the human brain and body, offering a direct window into the 

individual's emotional experiences. By extracting relevant 

features from these signals and training classifiers on 

labeled data, it becomes possible to automatically identify 

and classify different emotional states[5-7]. 

The DEAP dataset, a widely used benchmark dataset in the 

field of emotion recognition, provides a valuable resource 

for studying the relationship between EEG and 

physiological signals and emotional experiences. This 

dataset includes recordings from 32 volunteers who watched 

a subset of 40 music videos while their EEG and 

physiological signals were recorded. The participants also 

self-evaluated their arousal, valence, and dominance levels 

on a discrete, 9-point scale, providing ground truth labels for 

emotion classification. 

In this paper, we propose an algorithm for emotion 

classification based on the DEAP dataset, incorporating a 

hybrid technique for feature extraction and a novel approach 

for addressing the challenges of limited training data and 

over fitting. Our proposed algorithm combines features 

extracted from the EEG recordings using a hybrid method 

that incorporates Fourier Transform and Time Domain 

features, along with the existing features of arousal, valence, 

and dominance from the dataset. By integrating these 

features, we aim to capture a comprehensive representation 

of the underlying emotional states. To address the 

limitations of limited training data, we employ a manifold 

learning algorithm, specifically Laplacian Eigen maps, for 

dimensionality reduction. This allows us to explore the 

intrinsic structure of the high-dimensional feature space and 

identify meaningful lower-dimensional representations. 

Furthermore, we utilize unsupervised spectral clustering to 

derive soft labels from the reduced feature space, which 

helps improve the generalizability of our classifier [8-12]. 
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In the classification stage, we employ a Support Vector 

Machine (SVM) with a Radial Basis Function (RBF) kernel 

as our classifier. The SVM classifier takes into account the 

soft labels derived from spectral clustering, enabling the 

incorporation of generalizable information into the 

classification process. Additionally, we introduce a 

weighting factor based on the wheel strength parameter, 

which penalizes misclassifications depending on the 

strength of the corresponding emotion felt by the volunteers. 

This weighting factor aims to address the issue of hard 

misclassifications and improve the overall performance of 

the classifier. The objective of this research paper is to 

present our proposed algorithm and evaluate its 

performance in emotion classification using the DEAP 

dataset. We compare our approach with a baseline SVM 

RBF classifier without soft labels to assess the effectiveness 

of the introduced techniques. Through a comprehensive 

analysis of accuracy, per-class sensitivity, specificity, 

confusion matrices, and Receiver Operator Characteristics 

(ROC) curves, we demonstrate the advantages and potential 

of our proposed algorithm [13-18]. 

The remainder of this paper is organized as follows: Section 

2 describes the dataset used in this study and provides an 

overview of the features extracted from the EEG recordings. 

Section 3 presents the methodology, detailing the hybrid 

technique for feature extraction, dimensionality reduction 

using Laplacian Eigenmaps, and the incorporation of soft 

labels and weighting factor in the SVM classifier. Section 4 

presents the experimental results and discussions, including 

the accuracy and performance evaluation of our approach 

compared to the baseline. Finally, Section 5 concludes the 

paper, highlighting the contributions of our work and 

outlining potential future research directions. 

Overall, our research aims to contribute to the field of 

emotion classification by proposing a novel algorithm that 

effectively combines EEG and physiological signals with 

hybrid feature extraction, dimensionality reduction, and soft 

label incorporation. The results of this study have the 

potential to advance the development of emotion 

recognition systems and pave the way for more accurate and 

robust applications in various domains. 

2. Methods 

2.1. Dataset 

The dataset used in this approach is the DEAP 

dataset[https://www.eecs.qmul.ac.uk/mmv/datasets/deap/re

adme.html]. The study included 32 volunteers watched a 

subset of 40, one-minute extracts of music videos. EEG and 

physiological signals were extracted from each participant 

during the study.  

The volunteers in the study self-evaluated arousal, valence 

and dominance on a discrete, 9-point scale. The participants 

also rated the emotion that they felt using an emotion wheel. 

The emotion wheel consists of 16 emotions ranging from 

pride, elation and surprise to sadness, fear, shame and anger. 

To add complexity to the emotion wheel, each wheel 

consists of a parameter called as wheel strength that is 

discretized between 0 and 4, 4 being the strongest feeling of 

the particular emotion. Fig. 1 illustrates the self-study design 

and also lists the 16 emotions wheel slice.  

The study also makes the face video of the volunteers 

available, however, for this approach, we do not consider the 

same. The EEG recordings were available as 32 ‘.bdf’ files 

as a 48-channel recording at 512 Hz. 22 of the volunteers 

were recorded in Twente and the remaining 10 at Geneva. 

The EEG channels followed the 10/20 naming system for 

locations and indices labeling.   

2.2. Feature Extraction 

The raw features from the EEG recordings are typically 

extracted using Fourier Transform and Time Domain 

features(specified as Hybrid method in fig. 2.) appropriately 

for different channels. The emotions described in the wheel 

slice are used as labels. The Wheel Strength however is used 

as a weighting factor that punishes the loss function for 

misclassification. The loss function penalizes the 

misclassified inputs based on the Wheel Strength, greater 

the Wheel Strength, higher the penalty for wrongly 

classified inputs. This is described in detail in the following 

part of the paper.   

Principal Component Analysis was first explored with 

unfavorable results. The algorithm employed was a variant 

of the Laplacian Eigenmaps (LE). Laplacian Eigenmaps was 

selected for dimensionality reduction in our study due to its 

suitability for complex, nonlinear relationships within our 

combined EEG and DEAP dataset features. Unlike linear 

methods such as Principal Component Analysis (PCA), 

Laplacian Eigenmaps excels at preserving the intrinsic 

geometry of high-dimensional data by creating a graph 

representation and utilising eigenvalue decomposition. The 

features with reduced dimensions were then passed through 

Unsupervised Spectral Clustering as an exploratory step. 

We combine these extracted features with the features from 

the dataset that include Arousal, Valence and Dominance. 

Fig. 2 describes the feature extraction process  

 

Fig. 2. Features are extracted from the EEG recording 

using the Hybrid Method and features from the DEAP 

dataset to form the combined set of features 



  

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 418–424 |  420 

2.3. Classification 

The combined features contain features from the dataset as 

well as the features extracted from the manifold 

dimensionality reduction technique is then passed to an 

unsupervised clustering.   

Unsupervised Spectral Clustering: is a method for forming 

clusters out of data points without depending on labels that 

have already been assigned. By creating a similarity graph 

of the data, where nodes stand in for data samples and edges 

for pairwise associations, it is able to accomplish this. 

Spectrum Clustering locates natural clusters in the data by 

examining the spectrum qualities of the graph, such as its 

eigenvalues and eigenvectors. It is frequently used in 

applications like image segmentation, network community 

detection, and, in our context, for adding soft labels to 

improve emotion classification using EEG data. This 

method is especially useful for discovering complex, non-

linear structures in high-dimensional datasets. Based on the 

results of the clustering, we decided to employ the results of 

the clustering, i.e., the assigned clusters as soft labels that 

could be used in fine-tuning of the classifier. 

Support Vector Machine (SVM) with a Radial Basis 

Function (RBF) kernel was used as a classifier. Among 

classification algorithms, the SVM with RBF kernel excels 

at managing complex, nonlinear data relationships. By using 

the RBF kernel's capacity to evaluate similarity between 

data points, it accomplishes this by changing the input data 

into a higher-dimensional space where it becomes more 

separable. In this modified space, SVMs then locate a hyper 

plane that maximizes the margin between various classes, 

offering them a flexible option for problems like EEG-based 

emotion classification where linear separation is 

insufficient.  

The RBF kernel was used as the features were not linearly 

separable in both 2 and 3 dimensions. All the parameters for 

the SVM remains at the default value. The implementation 

of SVM used for this approach is the Scikit-Learn 

implementation of SVM [https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html

#sklearn.svm.SVC]. The regularization parameter, C was 

set to ‘1.0’ which is the default value. The gamma value of 

the classifier was set to ‘scale’. However, this value can also 

be set to ‘auto’ with no difference in performance. The 

standard loss function for SVM is depicted in equation (1): 

J(𝜃) = 𝐶[∑ 𝑦(𝑖)𝐶𝑜𝑠𝑡1(𝜃
𝑇(𝑥(𝑖)) + (1 −𝑚

𝑖=1

𝑦(𝑖))𝐶𝑜𝑠𝑡0(𝜃
𝑇(𝑥(𝑖))] +

1

2
∑ 𝜃𝑗

2𝑛
𝑗=1                       

(1)  

  Where m = number of samples, n = number of features. 

The soft labels received from Spectral Clustering is 

incorporated in the loss function of the SVM. This is done 

to add generalizability to our classifier. Since we are 

restricted to data samples from 32 volunteers, this step 

becomes crucial then to generalize to a larger population. 

The characteristics of the data in a broad-sense is described 

by the clustering algorithm. The SVM however can overfit 

to the training sample, adding the labels from the clustering 

can help us avoid the overfitting. However, this would result 

in the SVM classifier being less accurate on the test set. This 

is however, a compromise that must be made to account for 

limited training data. 

The 16 emotions described in the wheel slice are used as 

ground truth labels. However, each label is also associated 

with a weight that is described by the Wheel Strength. Along 

with the soft labels, the wheel strength also adds a weighting 

parameter to the loss function described in Figure 3. The loss 

function including Soft Label and Weighting Factor from 

Wheel Strength  equation (2): 

Loss  = SVM_Loss * ( Soft_Label * Weighting_Factor )    

(2) 

The weighting factor penalizes the wrongly classified inputs 

by a factor of itself. If the weighting factor is 1, the penalty 

for classification only depends on the loss function and the 

Soft Label, however, if the weighting factor is 2 and the 

input is misclassified, the loss function penalizes the 

misclassification by a factor of 2. This adds a layer of 

complexity to the classifier. The classifier is penalized for 

‘hard’ misclassifications where the strength of the emotion 

felt is high. However, if the Wheel Strength is 0, the 

weighting factor is removed the loss function. This loss 

function is given in the formula (3): 

 Loss = SVM_Loss * ( Soft_Label)       

(3) 

The weighting factor along with the soft label improves the 

performance of the classifier by addressing the issue of 

‘hard’ misclassification and generalizability of the network 

respectively.  

The proposed algorithm ensures high classification accuracy 

along with generalizability on a varied data population set 

which is achieved by incorporating the soft labels. The result 

of the SVM classifier is a label corresponding to the Wheel 

Slice that is associated to one of 16 emotions. The output 

probabilities can also be extracted and then ranked in 

descending order to additionally derive the next best 

predictions. The pseudocode for the approach is described 

below.  

Step 1: x1 + x2 → XD 

 x1 → ft.hybrid 

 x2 → ft.dataset 

 d  → dimension 
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Step 2: Manifold: XD → Xd ,    

d<D 

 

Step3: Clustering: Xd →ys,  

 s→ SOFT LABELS 

Step 4: Classification: Xd ,ys ,w → y1,    

w→WEIGHTED LABELS 

y1 →PRED.CLASS 

The proposed algorithm for classification is described in 

Fig. 3.  

 

Fig. 3. Proposed architecture for the classifier that includes 

dimensionality reduction using Laplacian Eigenmaps 

followed by Spectral Clustering where soft labels are 

derived. The SVM classifier with RBF kernel uses the 

emotions described in the Wheel Slice as ground truth 

labels which are weighted by the Wheel Strength 

3. Results and Discussion 

Laplacian Eigenmaps was used to reduce the dimensions 

from ‘n’ to 2. The 2-dimensional feature space explored 

using Spectral Clustering. Since we know that this is a 16-

class problem, i.e., 16 emotions in the Wheel Slice, 16 

clusters were chosen. Therefore, the model selection process 

can be avoided due to the knowledge of the number of 

classes. The result of the classification is depicted in Fig. 4.  

 

Fig. 4. Result of Spectral Clustering with 16 distributions. 

These labels are then used as Soft Labels for the SVM 

classifier 

 The above feature space was classified using the 

approach described in the Methods section with SVM using 

RBF kernel with soft labels and weighting factor altering the 

loss function. The classified feature space using soft labels 

as features to the SVM RBF kernel is  shown in Fig. 5.  

 

Fig. 5. Classified feature space using regular SVM RBF 

with soft labels 

The Accuracy, per-class sensitivity and specificity of SVM 

RBF with soft labels is shown in Fig. 6.  

 

Fig. 6. Accuracy, per-class sensitivity and specificity of 

SVM RBF with soft labels 
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The confusion matrix associated with the described 

approach is depicted in Fig. 7. 

We calculated accuracy, which measures the proportion of 

correctly categorized instances to all occurrences in the 

dataset, to evaluate the effectiveness of our classification 

strategy. The classification outcomes are broken down in 

more detail by the confusion matrix, which is shown in 

Figures 7 for SVM RBF with soft labels asinput features. 

The true class is represented by each row, and the anticipated 

class is represented by each column, in the confusion matrix. 

True positive (TP) examples are represented by the elements 

along the diagonal, while incorrect classifications are 

represented by the off-diagonal elements. 

We calculated accuracy per class and sensitivity to acquire 

understanding of the model's performance across various 

emotion classes. The accuracy of each of the 16 emotions in 

the Wheel Slice is measured by accuracy per class. It is 

calculated by dividing the total number of examples in a 

class by the number of instances that were correctly 

predicted for that class. Sensitivity, also known as the true 

positive rate, measures how well a classifier can recognise 

positive occurrences (in this case, certain emotions). It is 

calculated by dividing the total number of instances of a 

class by the number of true positive predictions for that 

class. As shown, the accuracy per class and sensitivity 

metrics allow us to gauge the effectiveness of our strategy 

for each emotion category. 

 

Fig. 7.  Confusion Matrix for SVM RBF with soft labels 

The Receiver Operator Characteristics (ROC) along with 

Area Under the Curve (AUC) score for the described 

approach is shown in Fig. 8.  

Using ROC curves and AUC scores, we evaluated 

classification performance. Figures 8 (SVM RBF with soft 

labels) show ROC curves that show how well the models 

identify between emotions, with higher AUC indicating 

better performance. AUC ratings that differ between 

emotions indicate different levels of discrimination. The 

ROC AUC values offer a more thorough perspective of 

model performance, demonstrating strengths and 

shortcomings in distinguishing particular emotions despite 

the improved accuracy and sensitivity of SVM RBF without 

soft labels.  

The accuracy and sensitivity scores per class is higher for 

the SVM RBF approach without soft labels approach. 

However, the specificity for the described approach is 

higher when compared to SVM RBF approach without soft 

labels. This can be attributed to the generalizability factor 

that is incorporated into our approach by using soft labels 

from Spectral Clustering.  

4. Conclusion 

In this research paper, we proposed an algorithm for emotion 

classification based on EEG and physiological signals 

obtained from the DEAP dataset. We employed a hybrid 

technique for feature extraction, combining Fourier 

Transform and Time Domain features from the EEG 

recordings with the existing features of arousal, valence, and 

dominance from the dataset. 

 

Fig. 8. ROC and AUC score per class for the SVM RBF 

with soft labels approach 

To classify the combined features, we employed a manifold 

learning algorithm for dimensionality reduction, 

specifically Laplacian Eigenmaps, followed by 

unsupervised spectral clustering. The clusters obtained from 

spectral clustering were used as soft labels, providing 

generalizability to the classifier. We utilized a Support 

Vector Machine (SVM) with a Radial Basis Function (RBF) 

kernel as the classifier, incorporating the soft labels and the 

weighting factor derived from the wheel strength parameter. 

The results of our proposed approach demonstrated 

promising performance in emotion classification. The 

accuracy, per-class sensitivity, and specificity of our 

approach were evaluated and compared with an SVM RBF 

approach without soft labels. Although the SVM RBF 

approach without soft labels showed higher accuracy and 
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sensitivity scores per class, our approach exhibited higher 

specificity. This suggests that our approach not only 

achieved good overall classification accuracy but also 

provided better discrimination for specific emotions. 

The incorporation of soft labels derived from spectral 

clustering and the weighting factor based on wheel strength 

in the loss function of the SVM classifier contributed to the 

improved performance of our approach. By considering the 

generalizability of the network and accounting for the 

strength of the emotions felt by the volunteers, our classifier 

demonstrated enhanced accuracy and robustness. 

The proposed algorithm presented in this paper offers a 

valuable framework for emotion classification using EEG 

and physiological signals. By combining different feature 

extraction techniques, dimensionality reduction, and a 

modified loss function, we were able to achieve satisfactory 

results. However, there is still room for further exploration 

and improvement in this field. 

Future research can focus on investigating alternative 

dimensionality reduction techniques, exploring different 

classification algorithms, and incorporating additional 

physiological signals to enhance the classification accuracy. 

Moreover, expanding the dataset to include a larger and 

more diverse population would help validate the 

generalizability of the proposed approach. 

In conclusion, our research contributes to the field of 

emotion classification by proposing a hybrid technique for 

feature extraction, incorporating soft labels and a weighting 

factor in the SVM classifier, and demonstrating the 

effectiveness of these techniques in improving classification 

accuracy. This work lays the foundation for further 

advancements in emotion recognition and has the potential 

to find applications in various domains, such as affective 

computing, mental health monitoring, and human-computer 

interaction. 

Ethical approval: All procedures performed in studies 

involving human participants were in accordance with the 

ethical standards of the institutional and/or national research 

committee and with the 1964 Helsinki declaration and its 

later amendments or comparable ethical standards. 

Informed consent:  Informed consent was obtained from 

all individual participants included in the study. 
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Fig. 1. Describes the parameters of the self-study. Valence, Arousal and Dominance are discretized between 1 and 9. The 

Wheel Slice lists 16 emotions that the volunteer can feel and the Wheel Strength describes the strength of the emotion that 

was felt by the volunteer

 


