
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 448–457 |  448 

Gait Silhouette Enhancement with Modified CLAHE and Precise Gait 

Recognition Using a Lightweight Convolutional Neural Network  

Nithyakani P.1, Ferni Ukrit*2 

 

Submitted: 17/09/2023         Revised: 18/11/2023           Accepted: 30/11/2023  

Abstract: Gait recognition is a behavioural biometric that can recognize an individual from a distance based on their walking pattern. 

Gait recognition techniques are persistently evolving for security purposes, as new advances in person recognition, range from traditional 

machine learning to deep learning. Various circumstances, such as lighting conditions, wearing garments, carrying a bag, and walking 

surfaces, can affect gait recognition performance. Furthermore, gait recognition from different points of view is a big challenge. A new 

framework, GRLNet: Light-weight Convolution Neural Network for Gait Recognition is proposed to identify the individual in various 

lighting conditions, clothing, etc. GRLNet is a portable architecture with a reduced memory size. Depth-wise and point-wise separable 

convolution is used to reduce the floating–point operations (FLOPs) and several parameters. A novel Hamming Correlated Gait Cycle 

Detection and Modified Contrast Limited Adaptive Histogram Equalization (MCLAHE) for gait silhouette image is proposed to enhance 

the gait energy image. Experiments on the popular public benchmark CASIA-B dataset was done to evaluate the efficiency of our 

proposed framework and our approach outperformed state-of-the-art solutions with covariates of carrying bag and wearing different 

clothes. 
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1. Introduction 

Biometrics is the science of recognizing and authenticating 

an individual based on some observable trait of their 

physical or behavioural characteristics. Because gait 

biometric methods can recognize an individual at a 

distance and distinct from other biometrics like 

fingerprints, iris, ears, and palms. Further, gait traits [1] are 

not easy to disguise and can be easily identified even in a 

low-resolution image. Popular applications of gait 

recognition include subject identification, gender and age 

prediction, rehabilitation, behaviour analysis, disease 

diagnosis and rehabilitation.  

Human gait cycles are made up of swing and stance phases 

[2] which are distinctive due to the variety of joint motions 

and simultaneous actions it entails. Model-based and 

appearance-based gait identification approaches dominate 

the earliest studies in this field. Researchers have 

concentrated more on the latter group with numerous 

silhouette-based features, frequency-domain features, 

chrono-gait pictures, and Gabor GEIs, as well as motion-

based features due to the good recognition rate with low 

resolution images [3]. CASIA-B, USF, OU-ISIR, HuGaID, 

etc. are only a few of the well-known publicly available 

datasets for human gait cycle recognition[18]. Moghaddam 

et al. [4] completed a survey on human gait identification 

algorithms based on walking styles exploring several 

publicly available datasets, test procedures, state-of-the-art 

solutions, future directions, and problems. To recognize 

cross-view gaits, Z. Zheng et al[6] suggested the Multi-

view Gait Generative Adversarial Network (MvGGAN) to 

improve the recognition performance of CASIA B and 

OuMVLP datasets.  

Researchers have recently utilised deep learning 

algorithms such as convolutional neural 

network[5][6][7][8]][10][13], capsule network[9] and  

BiLSTM[15] to enhance software that recognise person 

with gait. Wang et al [11] introduces a new Middle-fusion 

TCNN and Last-fusion TCNN, to use the inherent feature 

expression capability of CNN and the temporal 

peculiarities of human gait.  A deep neural network and a 

fuzzy entropy-controlled skewness (FEcS) technique are 

used to provide an integrated framework for HGR[12]. 

Khan et al [14] implemented a fully automated deep 

learning and improved ant colony optimization (IACO) 

framework to increase the efficiency in different view 

angle. Xiaoguang Liu et al[16] have proposed lightweight 

double-channel depth-wise separable convolutional neural 

network to reduce the complexity of the deep learning 

model which recognize  person with gait features extracted 

from wearable devices. 

The difficulty of the computation is still another crucial 

factor in addition to accuracy. Real-world activities 

frequently aim to achieve the highest level of accuracy 
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within a constrained computing budget, as determined by 

the target platform (for example, hardware) and application 

situations (e.g., auto driving requires low latency). This 

drived several projects, like Xception, MobileNet, 

MobileNet V2, ShuffleNet, and CondenseNet, to create 

lightweight architecture and achieve better speed-accuracy 

tradeoffs. These works rely primarily on group convolution 

and depth-wise convolution. The number of float-point 

operations, or FLOPs, is a common way to measure how 

hard a computation is. In this research work, the 

challenging intra subject variation factors[17] such as view 

angle, clothing and carrying objects are focused on to 

improve gait recognition with better accuracy when 

compared with state of art technique using CASIA B 

dataset[19]. 

The main contributions made by the proposed research 

work are listed below. 

(i) A novel silhouette image enhancement using 

Modified Limited Adaptive Histogram Equalization 

(MCLAHE) to overcome the loss of standard image 

enhancement techniques. 

(ii) Hamming Distance correlated Gait Cycle detection 

algorithm is proposed to increase the gait recognition 

performance. 

(iii) Lightweight convolution neural network for gait 

recognition is proposed to reduce the number of 

parameters with portal architecture. 

2. Method Overview 

The general appearance-based gait recognition method 

involves video capture, frame separation, background 

subtraction, silhouette extraction, feature extraction, and 

recognition. The proposed approach enhances the 

silhouette image using modified contrast limited adaptive 

histogram equalization. The Gait cycle is detected from the 

enhanced silhouette image with the Hamming distance 

correlated approach. Gait energy Image (GEI) is generated 

from the images which form a gait cycle and feeds into the 

proposed Lightweight convolutional neural network for 

human recognition as shown in fig. 1.   

2.1. MCLAHE Enhancement of  Silhouette Images   

Contrast Limited Adaptive Histogram 

Equalization(CLAHE) improves the contrast and reduces 

the amplification of noise in the given image[20]. CLAHE 

performance is determined by the clip limit and the number 

of tile parameters. Clip limit interpolates with the 

neighboring pixel in the selected kernel. Amplification of 

noise is controlled by clip limit whereas the value of 

several tiles is taken automatically. Though CLAHE 

enhances the image quality, improper selection of clip limit 

and number of tiles leads to information loss. To overcome 

this issue, Modified CLAHE is proposed in which bilateral 

filtering is incorporated to retain the fine edges of the gait 

silhouette image. Modified CLAHE enhancement 

techniques improve the quality of the gait silhouette image 

with the desired clip limit.  

 

Fig. 1.  The proposed architecture GRLNet with three phases 1. Image enhancement technique with MCLAHE (Modified 

Contrast Limited Histogram Equalization). 2. Gait cycle detection using Manhattan Distance Technique. 3. Gait 

Recognition using the proposed lightweight convolutional neural network. 
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2.2. Hamming Correlated Gait Cycle Detection 

The Gait cycle detection phase plays an important role in 

the gait energy image generation. A complete gait cycle 

detection is quite difficult in real-time. Sugandhi et al has 

derived the overlap based approach to detect the gait 

cycle[21]. In this work, Hamming correlated gait cycle 

detection algorithm is proposed to find the complete gait 

cycle accurately in a live stream with the reduced 

parameter. The proposed technique uses perceptual 

hashing and hamming distance. The perceptual hashing 

algorithm scales the original image to a gray-level image 

with a size of 8 x 8.  For every 64 pixels, hashing 

calculation is carried on.  

Perceptual hashing : Given two images Img1 and Img2, 

their associated perceptual hashes h1 = H(Img1) and h2 = 

H(Img2), a similarity metric  Dist(h1,h2)′ shows that Img1 

and Img2 are similar  or not with slight content-preserving 

changes.  In order to detect similar images using perceptual 

hashing methods, the hashes obtained from the images are 

compared using a similarity metric. The minimum number 

of bit flips necessary to change one hash into another is 

known as the Hamming Distance (HD) [22]. The 

Hamming Distance between two hash strings Ph1 and Ph2 

proves the similarity. Equations (1),(2) and (3) gives the 

formula to calculate the hamming distance of two hash 

string derived from two gait sequence as  shown in Table 

1. 

  (1) 

  (2) 

   (3) 

Hamming distance between two similar images has a very 

small value. The threshold level is used to determine the 

similarity. If HD<Threshold level, two images are similar, 

else not similar.  

2.3.  Gait energy image  

The Enhanced silhouette image's gait sequence, S(x,y), 

which constitutes a complete gait cycle, is processed to 

create the gray-level gait energy image, E. The coordinate 

of the 2D image is represented by the values of x and y. N 

stands for the number of gait frames determined by the 

hamming correlated gait cycle detection approach, and the 

gait energy image (GEI) is shown as stated in (4). 

    (4) 

Consequently, the gait energy image effectively 

encapsulates the dynamic alterations in silhouette shapes 

within each enhanced gait frame. Several advantages of 

utilizing the Gait Energy image over binary silhouettes 

include: 1) Decreased storage requirements and 2) 

Accelerated computational processes with a reduced 

likelihood of introducing noise. 

3. Proposed Depth Separable Based Light-

Weighted Convolution Network 

The proposed Lightweight convolutional neural network 

leverages depth-wise convolution [27] to reduce 

computational costs. As the number of multiplications 

increases, so does the computational cost of the model. The 

dimensions of the input image are represented as Di x Di x 

Table 1. Calculation of Hamming distance correlation for detecting gait cycle 

 

Frame Number Perceptual hash value Hamming Distance (FRAME 1, FRAME n) Status (Threshold value = 7) 

1 38383c3c7c783c7c - Added to gait cycle1 

2 ff181c1c3c3c3c3c 12 Added to gait cycle 1 

3 183c1c1c3c3c7e7e 10 Added to gait cycle 1 

4 181c1c1c3c3e7e7e 12 Added to gait cycle 1 

5 3838383c3c3cee76 10 Added to gait cycle 1 

6 38381c3c3c3c7ee6 10 Added to gait cycle 1 

7 383838387c3c7e76 8 Added to gait cycle 1 

8 30383878787c7e76 10 Added to gait cycle 1 

9 30383838787c7e7e 8 Added to gait cycle 1 

10 38383838783e7e76 10 Added to gait cycle 1 

11 383c3c3c3c3c3e3c 6 Added to gait cycle 1 

12 1d0d0f0f1d1f0f0f 32 Next gait cycle 2 
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N, with "C" denoting the number of channels, "Di" 

representing the height and width of the input image, and 

"KxK" indicating the size of the convolution kernel. After 

the convolution operation, the resulting feature map has 

dimensions of "Do x Do x N." This output from the 

convolution serves as input for a point-wise convolution 

with a 1x1 kernel[29]. To create the final output feature 

map of size "Df x Df x S"  point-wise convolutions are 

applied. 

The total number of multiplications is determined by 

adding those required for Depthwise and Pointwise 

convolutions: 

Total Multiplications  

= Multiplications for Depthwise + Multiplications for 

Pointwise 

= (Do2 x K2 x N) + (Do2 x N x S) 

= Do2 x N x (K2 + S) 

Depthwise Convolution / Standard Convolution  

= (Do2 x N x (K2 + S)) / (Do2 x K2 x N x S) 

= (1 / Do2) + (1 / K2) 

Thus, the utilization of depthwise convolution results in 

reductions in both computational cost and the number of 

parameters compared to standard convolution. 

The suggested lightweight convolutional neural network's 

network topology with 8 layers utilize the special 

properties of convolving kernels for each input channel 

and merging the results of output channels, a separable 

convolutional layer has been included as shown in Fig. 1. 

The typical convolution receives the pre-processed 

enhanced gait energy image. The input image is down 

sampled and its dimensions are reduced with the assistance 

of the pooling layer, yielding several feature maps. This 

model makes use of a max pooling filter with a non-

overlapping function [26]. With the help of weights, the 

convolutional layer performs convolution across the width 

and length of the input image across the chosen regions of 

the image and delivers the output to the following layer. 

The recognition features are then extracted using four 

depth separable convolution layers. After every depth-

separable convolution, max pooling and ReLU activation 

are used. The Softmax function and cross-Entropy Loss are 

used to calculate categorical cross-entropy. 

Normalization, max pooling, dropout, and L1 and L2 

regularization techniques are strategically employed to 

counteract overfitting. A batch normalization layer is 

incorporated into every convolutional layer within this 

model to mitigate overfitting while simultaneously 

enhancing training efficiency [23]. To combat overfitting 

and curtail parameter proliferation in subsequent layers, 

the convolution layer is paired with a max pooling layer 

[24]. Dropout layers are applied to all convolution layers 

as well [25]. In this context, the Adam optimizer (Adaptive 

Moment Estimation) is harnessed, and it dynamically 

calculates the learning rate for each training epoch. Adam's 

application facilitates faster convergence, more efficient 

learning, and guards against learning rate decay when 

compared to alternative adaptive learning rate algorithms. 

The model's training leverages the parameters outlined in 

Table 2. 

Table 2. Parameter of the proposed Model 

Parameter Value 

Number of Epochs 100 

Batch Size 32 

Initial Learning rate 0.001 

Shuffling Every epoch 

Optimizer Adam 

Learning decay rate 0.00001 

Processor GPU 

 

The provided table outlines the crucial parameters 

governing the training of the proposed model. First, the 

number of epochs determines how many complete passes 

the model makes through the training dataset; here, it's set 

at 100 epochs. Batch size signifies the number of data 

samples processed together in each training iteration, with 

a batch size of 32 in this case. The initial learning rate sets 

the starting point for controlling parameter adjustments 

during training, initialized at 0.001. Shuffling reveals 

whether the dataset is randomly reorganized before each 

epoch, a practice employed here. The Optimizer, Learning 

Decay Rate, and Processor respectively dictate the 

optimization algorithm (Adam), the learning rate's 

reduction rate (0.00001 per epoch), and the hardware used 

(GPU for enhanced computational speed). These 

parameters collectively define the training process, 

significantly influencing the neural network's performance 

and outcomes. 

4. Experimental Results and Discussions 

In the process of subjecting the proposed model to a 

comprehensive experimental evaluation, a meticulous and 

systematic approach is adopted to compare it with a 

diverse set of alternative models. Each of these models is 

subjected to the same rigorous training regimen, 

encompassing 100 epochs of training, a fixed batch size of 

32, and the consistent use of the Adam optimizer. This 

unwavering adherence to uniform training parameters not 

only guarantees a level playing field but also establishes 

the foundation for a fair and consistent benchmarking 
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process. Through this methodical evaluation, the 

performance of the proposed model can be rigorously 

assessed in relation to its peer models, enabling a robust 

and insightful comparison. 

1. Original - Convolutional neural network (CNN) with 

silhouette gait image  

2. GEI + CNN - Convolutional neural network (CNN) 

with Gait Energy Image (GEI)  

3. GEI + LWCNN - Lightweight Convolutional neural 

network (LWCNN) with Gait Energy Image (GEI) 

4. EGEI+ CNN - Convolutional neural network (CNN) 

with Enhanced Gait Energy Image (EGEI) 

5. EGEI+ LWCNN - Lightweight Convolutional neural 

network (LWCNN) with Enhanced Gait Energy Image 

(EGEI) 

6. MCLAHE+EGEI+CNN- Convolutional neural 

network (CNN)  with Hamming distance correlated 

Enhanced Gait Energy Image (EGEI) and Modified 

Contrast Limited Adaptive Histogram Equalization 

(MCLAHE) 

7. GRLNet: MCLAHE+EGEI+LWCNN - Lightweight 

Convolutional neural network (LWCNN)  with 

Hamming distance correlated Enhanced Gait Energy 

Image (EGEI) and Modified Contrast Limited 

Adaptive Histogram Equalization (MCLAHE)  

The evaluation results showcase the accuracy and loss 

metrics of three distinct models: the Light Weight 

Convolutional Neural Network (LWCNN) paired with Gait 

Energy Image (GEI), LWCNN with GEI, and the novel 

Light Weight Convolutional Neural Network (LWCNN) 

integrated with Hamming distance correlated Enhanced 

Gait Energy Image (EGEI) and Modified Contrast Limited 

Adaptive Histogram Equalization (MCLAHE). 

Impressively, these models demonstrated accuracy rates of 

94.82%, 95.34%, and 97.65%, respectively, as graphically 

depicted in Fig. 2. Notably, the proposed GRLNet model 

outperformed its counterparts, boasting the highest 

accuracy across various invariants such as normal walking, 

carrying a bag, and wearing different attire. Notably, it 

becomes evident that with the increase in the number of 

epochs, all models exhibit a consistent upward trend in 

accuracy. However, the proposed GRLNet model, 

equipped with the fusion of MCLAHE, EGEI, and 

LWCNN, consistently outshines the others, achieving the 

highest accuracy scores. Moreover, when considering the 

training metrics, the GRLNet model, trained on the CASIA 

B dataset, emerges as the frontrunner with an impressive 

training accuracy of 97.65% and an exceedingly low 

training loss of 0.02%. These results collectively underline 

the superior performance of the proposed GRLNet model 

in the context of gait recognition, affirming its prowess 

across various scenarios and cementing its status as the 

standout choice among the evaluated models. 

The table 3 provides a comprehensive overview of the 

performance metrics for various experimented models in 

the context of gait recognition. The Accuracy (%) metric 

showcases the percentage of correctly recognized gait 

patterns by each model, with higher values indicating 

superior overall performance. Precision measures the ratio 

of true positive predictions to all positive predictions, 

assessing the accuracy of gait pattern identifications. 

"Recall" quantifies the proportion of true positive 

predictions among all actual positive instances, reflecting a 

model's ability to capture relevant gait patterns. The F1 

Score combines precision and recall, yielding a single 

value that considers false positives and false negatives for 

a holistic performance assessment. Lastly, the AUC (Area 

Under the Curve) represents a model's capability to 

distinguish between positive and negative instances in a 

receiver operating characteristic (ROC) curve, with higher 

AUC values indicating better discrimination ability. In this 

context, model 7( MCLAHE+ EGEI + LWCNN), stands 

out as it achieves the highest accuracy, precision, recall, F1 

score, and AUC, signifying its superiority in gait 

recognition among the experimented models.  

Figure 3 highlights the covariate factors that pose 

challenges in gait recognition, specifically, variations in 

carrying objects, clothing, and view angles. It serves as a 

visual representation of the recognition rates associated 

with these covariates. Notably, the gait images captured 

under normal conditions (NM) exhibit the highest 

recognition rate, reaching an impressive 98%. This 

signifies that the gait recognition system excels when 

individuals walk without carrying objects or wearing 

different attire. Even in scenarios involving carrying bags 

(BG) or wearing different clothes (CL), the system's 

performance remains robust, with recognition rates 

standing at 97%. This data underscores the system's ability 

to handle diverse conditions and demonstrates its 

adaptability in real-world scenarios, where variations in 

clothing or carrying objects are common, while still 

maintaining a remarkably high level of accuracy. 

A comprehensive analysis of gait recognition accuracy 

across a spectrum of view angles, carrying bag and 

wearing different clothes focusing on the performance of 

different recognition methods using normal gait images is 

given in Table 4. 

4.1. Normal Condition with different view angle 

The gait recognition accuracy with normal gait image 

captured in various angles such as 0◦, 18◦, 36◦, 54◦, 72◦, 

90◦, 108◦, 126◦, 144◦, 162◦ and 180◦ is shown in Table 4.  

Normal gait image (NM01 – NM04) is taken as the gallery 

dataset against the probe set (NM05 – NM06). The 
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proposed model GRLNet (MCLAHE+EGEI+LWCNN) 

outperforms the other models and increased the recognition 

rate with view angle 0◦, 18◦,90◦, 108◦, 126◦, 144◦ and 180◦ 

with mean accuracy of 98%. 

 

Fig. 2.  Accuracy and Loss of the Proposed Model on the Training Dataset. 

 

.  

Fig. 3 Comparative analysis of Gait recognition with covariates such as Normal (NM), carrying Bag(BG) and wearing 

different clothes(CL). 

Table 3. Performance metrics of Gait recognition with Experimented models 

Model Accuracy (%) Precision Recall F1 Score AUC 

1. Original 94.23 0.91 0.95 0.92 0.94 

2. GEI + CNN 94.61 0.89 0.93 0.91 0.93 

3. GEI + LWCNN 94.82 0.93 0.94 0.89 0.93 

4. EGEI+ CNN 94.76 0.88 0.89 0.90 0.94 

5. EGEI+ LWCNN 95.34 0.94 0.95 0.93 0.95 

6. MCLAHE+EGEI+CNN 95.67 0.91 0.93 0.94 0.96 

7. MCLAHE+EGEI+LWCNN 97.95 0.93 0.97 0.96 0.97 
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4.2. Carrying Bag Condition with different view angle Normal gait image (NM01 – NM04) is taken as the gallery 

dataset against the probe set (BG01 – BG02). The 

Table 5. Performance metrics of Gait recognition with Experimented models 

Models 
Accuracy 

(%) 

Parameters 

(In million) 

Training 

Time 

(Seconds) 

Testing Speed 

(Seconds) 

Floating Point 

Operations  

(e + 02 G) 

CNN [29] 94.5 10 8640.412 32.8 8 

Vgg19- CNN[30] 93.6 28 6516.674 42.6 12 

Xception 96.8 15 7918.765 16.5 5 

Mobilenet 95.3 8 2918.765 12.3 3 

Proposed GRLNet 97.95 2 1103.94 8.4 1.5 
 

Table  4. Gait Recognition accuracy with different view angle, normal gait image, carrying bag and wearing different clothes 

Probe Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean 

Normal 

1. Original 
91.3 94.7 96.1 97.8 94.2 92.8 94.9 95.6 96.2 96.2 91.6 95 

2. GEI + CNN 
91.6 94.8 97.2 97.8 94.5 93.8 93.1 93.5 95.7 97.2 93.1 95 

3. GEI + LWCNN 
91.8 95.1 97.3 97.4 92.8 94.1 93.6 94.6 97.1 96.2 93.5 95 

4. EGEI+ CNN 
91.8 95.2 97.3 98.2 94.6 94.2 94.7 95.8 94.7 97.7 92.6 95 

5. EGEI+ LWCNN 
92.5 95.2 97.9 98.5 93.2 94.4 94.1 95.6 97.7 98.2 94 96 

6. MCLAHE+EGEI+CNN 
92.9 96.1 98.8 93.2 99.0 94.7 94.2 95.7 98.1 98.3 94.4 96 

7. MCLAHE+EGEI+LWCNN 

(Proposed) 96.5 97.9 98.5 98.3 98.9 99.1 99.2 99.1 98.4 96.5 96.5 98 

Bag 

1. Original 
90.5 94.2 95.6 97.1 93.9 92.5 94.1 95.4 95.6 95.7 90.7 94 

2. GEI + CNN 
91.6 94.2 96.7 97.8 94 93.1 93.1 93.4 94.9 96.7 92.9 94 

3. GEI + LWCNN 
91.2 94.9 97.2 96.8 92.1 93.4 93.3 94.5 96.5 95.2 92.7 94 

4. EGEI+ CNN 
91.1 94.8 96.7 97.5 93.6 94 94.6 95.5 94.2 96.8 92.1 95 

5. EGEI+ LWCNN 
91.9 94.4 97.2 97.9 92.7 94.1 93.6 95.5 97.3 98.1 93.7 95 

6. MCLAHE+EGEI+CNN 
92 95.9 98.1 98.8 93 94.2 93.4 95.4 97.4 98.3 94 96 

7. MCLAHE+EGEI+LWCNN 

(Proposed) 94.9 95.2 97.9 98.1 97.5 93.7 96.8 95.6 99.2 97.8 96.9 97 

Clothes 

1. Original 89.6 93.3 95.4 96.4 93.7 91.7 93.7 95.3 95.4 95.4 89.9 94 

2. GEI + CNN 90.9 93.3 96.6 97.5 93.4 93 92.5 93.4 94.6 96 92.6 94 

3. GEI + LWCNN 90.4 94.2 97 96.3 91.2 92.5 92.3 94.1 95.6 94.8 91.9 94 

4. EGEI+ CNN 90.6 94.5 96.4 96.9 93.1 93.8 93.7 95.4 93.5 96.8 91.4 94 

5. EGEI+ LWCNN 91.4 93.8 96.7 97.8 92.1 94.1 92.8 94.7 97.2 98 92.8 95 

6. MCLAHE+EGEI+CNN 91.7 95.5 97.4 98.2 92.5 93.6 92.9 94.7 96.6 98.3 93.1 95 

7. MCLAHE+EGEI+LWCNN 

(Proposed) 95.8 95.4 98.3 97.8 96.2 95.7 96.8 95.5 98.8 97.2 97.6 97 
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proposed model GRLNet (MCLAHE+EGEI+LWCNN) 

outperforms the other model and increased the recognition 

rate with view angle 0◦, 72◦,90◦, 108◦, 126◦, 144◦ and 180◦ 

with mean accuracy of 97%. 

4.3. Wearing Different Clothes Condition with different 

view angle 

 Normal gait image (NM01 – NM04) is taken as the gallery 

dataset against the probe set (CL01 – CL02). The proposed 

model GRLNet (MCLAHE+EGEI+LWCNN) outperforms 

the other models and increased the recognition rate with 

view angle 0◦, 18◦,90◦, 108◦, 126◦, 144◦ and 180◦ with 

mean accuracy of 97%. 

4.4. Comparison of proposed GRLNet with other state 

of art deep neural networks on CASIA B Dataset  

The proposed GRLNet is compared with the performance 

of other deep neural networks such as CNN, Vgg-19, 

Xception and Mobile net for gait recognition on CASIA B 

dataset.  Table 5 provides a comprehensive performance 

comparison of the proposed GRLNet with several state-of-

the-art deep neural networks, such as CNN, Vgg19-CNN, 

Xception, and Mobilenet, across various essential metrics. 

The accuracy (%) metric evaluates the model's proficiency 

in correctly classifying gait patterns, and the proposed 

GRLNet achieves the highest accuracy at 97.95%. In terms 

of model complexity, measured by the number of learnable 

parameters (in million), the GRLNet excels with a 

remarkably efficient 2 million parameters. Training time 

(in seconds) reflects the duration needed for model 

training, with the GRLNet demonstrating exceptional 

efficiency by completing training in 1103.94 seconds. 

Testing speed (in seconds) gauges the model's inference 

efficiency, and the GRLNet performs exceptionally well 

with a testing speed of 8.4 seconds. Lastly, floating-point 

operations (e + 02 G) measure computational intensity, and 

the GRLNet stands out with the lowest requirement at 

1.5e+02 G, highlighting its efficiency. In summary, the 

GRLNet outperforms other models in accuracy, model 

efficiency, training time, testing speed, and computational 

requirements, making it an excellent choice for real-world 

gait recognition applications that prioritize both accuracy 

and efficiency. 

5. Conclusion 

In conclusion, the task of real-time individual recognition 

based on gait sequences presents significant challenges. 

These challenges include handling various environmental 

factors such as fluctuating lighting conditions, multiple 

view angles, the presence of carried objects, and different 

clothing attire. To address these challenges, the research 

introduces GRLNet, a lightweight Convolutional Neural 

Network (CNN) designed specifically for gait recognition. 

The approach enhances gait silhouette images using the 

innovative Modified Contrast Limited Adaptive Histogram 

Equalization (MCLAHE) technique and introduces a novel 

Hamming Correlated Gait Cycle Detection method to 

improve the quality of gait energy image generation. The 

architecture of GRLNet leverages depth-separable 

convolution to reduce computational demands in terms of 

parameters and floating-point operations. This 

optimization significantly accelerates the training and 

testing processes for gait image recognition. To evaluate 

the effectiveness of the proposed method, experiments 

were conducted using the CASIA B dataset, encompassing 

various view angles (ranging from 0° to 180°), scenarios 

involving the carrying of bags, and diverse clothing types. 

The findings demonstrate that GRLNet achieves 

substantially improved performance, with an impressive 

recognition rate of 97.95%. Importantly, the results of gait 

recognition on enhanced silhouette images highlight the 

superior performance of the model in terms of recognition 

accuracy, parameter count, floating-point operations, and 

computational speed. GRLNet's lightweight architecture 

positions it as a suitable solution for deployment on low-

performance edge computing devices, with promising 

potential for future integration into smartphone terminals. 
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