

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 467

Enhancing Chip Design Performance with Machine Learning and

PyRTL

Isra Aljrah1, Ghaith Alomari*2, Maymoona Aljarrah3, Anas Aljarah4, Bilal Aljarah5

Submitted: 17/09/2023 Revised: 18/11/2023 Accepted: 28/11/2023

Abstract: The contemporary world of digital design is evolving rapidly, and the tools at our disposal are expanding in tandem. This paper

presents a comprehensive methodology for designing a chip using PyRTL, a Python-based hardware description language. Beginning with

the basics of setting up the environment, the paper walks through designing an adder circuit, complete with memory integration, all the

way through to simulation. Furthermore, we integrate modern data analytics by utilizing machine learning (ML) techniques to assess

performance metrics, offering a holistic approach to chip design. Machine learning models predict key performance indicators like latency,

power consumption, and efficiency, based on simulation data. The results serve as a foundation for iterative design improvements, ensuring

the chip's robustness in real-world applications. This integration of traditional design techniques with cutting-edge data analysis illuminates

the future of chip design, showcasing the potential of ML in electronic design automation.

Keywords: Chip, digital, facilities, hardware, machine learning, python, techniques

1. Introduction

In the evolving landscape of digital electronics, chip design

stands as a testament to the synergy between electrical

engineering principles and computational algorithms. Over

the years, advances in technology have miniaturized

transistor sizes, escalating the challenge and complexity of

chip design. As we move into an era dominated by data and

artificial intelligence, there's an inevitable drive towards

optimizing chip design to accommodate more sophisticated

applications.

PyRTL, an intuitive Python-based hardware description

language, has emerged as a viable tool in bridging the gap

between traditional digital design techniques and modern

computational methods [1-3]. While PyRTL facilitates the

basics of chip design, integrating machine learning (ML)

techniques provides a window into performance assessment

like never before. Instead of relying solely on intuition and

manual calculations, we can now utilize ML models to

predict and evaluate various chip performance metrics.

This paper delves deep into the methodology of using

PyRTL for chip design, incorporating memory aspects, and

harnessing the power of machine learning for performance

evaluation. Through a seamless blend of traditional and

contemporary techniques, we aim to provide a roadmap for

future chip designs that are not only efficient but also

aligned with emerging technological trends.

In the subsequent sections, we will walk through the step-

by-step process of designing a chip with memory

components, followed by a detailed guide on how machine

learning can be wielded to evaluate its performance. Our

exploration offers a glimpse into the future of chip design,

where data-driven insights augment engineering brilliance.

2. Literature Review

Digital design using hardware description languages

(HDLs) has been a focal point in electronics research for

several decades. Various HDLs like VHDL, Verilog, and

SystemC have provided a structured approach to designing

complex digital circuits efficiently [2]. However, the advent

of PyRTL [3] has added another dimension, enabling

designers to use the simplicity and power of Python for

hardware design.

2.1 Traditional HDLs and Their Limitations:

The history and importance of HDLs, emphasizing VHDL

and Verilog's dominance in the digital design landscape.

1The Department of Mathematics and Statistics Jordan University of

Science and Technology,(ORCID:0009-0005-0998-1532)

2The Department of Mathematics and Computer Science, Chicago State

University,(ORCID: 0000-0002-5196-7049)

3The Department of Mathematical Sciences, university kebangsaan

Malaysia ,(ORCID: 0009-0006-4208-9666)

4The Department of Mathematical Sciences, university kebangsaan

Malaysia ,(ORCID:0000-0002-9033-6928)

5 The Department of Electrical Power Engineering ,Yarmouk university

,(orcid:0009-0009-9484-221x)

* Corresponding Author Email:galomari@csu.edu

4The Department of Mathematical Sciences, universiti kebangsaan

malaysia , (ORCID:0000-0002-9033-6928)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 468

However, despite their widespread usage, these HDLs have

steep learning curves, often making them challenging for

beginners or software developers transitioning into

hardware design. Furthermore, Smith highlights the

difficulty of integrating HDL-based designs with modern

software tools, given the inherent differences between

software programming and hardware description paradigms

[22].

2.2 Introduction and Rise of PyRTL:

The need for a more intuitive HDL led to the development

of PyRTL. It present PyRTL as a bridge between software

development and hardware design, noting its pythonic

syntax and the ease with which it can be integrated with

other Python libraries. Their findings suggest that PyRTL,

while not as mature as VHDL or Verilog, offers a

streamlined design process, especially for smaller projects

or prototypes [22].

2.3 Evaluating Chip Design Using Traditional Methods:

Before the integration of machine learning in chip design

evaluation, conventional methods, such as simulation,

formal verification, and prototyping, were prevalent [4].

These methods, while effective, often required significant

time and resources. Chen further explains that as chips grew

in complexity, these traditional evaluation methods became

more resource-intensive and less efficient.

2.4 Machine Learning in Hardware Design:

Machine learning's application in hardware design is

relatively recent. [5] were among the pioneers to harness

machine learning's predictive power to forecast chip

performance based on design parameters. Their work

underscores the potential for ML models to predict

outcomes such as power consumption, delay, and reliability

with high accuracy, considerably reducing the need for

exhaustive simulations.

2.5 Combining PyRTL and Machine Learning:

While the literature on the intersection of PyRTL and

machine learning remains sparse, the logic behind

combining the two is compelling. Using PyRTL's seamless

integration capabilities with Python libraries [6] alongside

Python's robust ML frameworks like TensorFlow and

Scikit-learn opens a myriad of possibilities for efficient chip

design and predictive performance evaluation [7-12].

3. Methodology

Our research methodology encompasses three primary

stages: designing a digital system using PyRTL, integrating

memory elements, and finally, evaluating its performance

with the aid of machine learning techniques. These stages

have been detailed to facilitate a smooth progression from

initial design to the final evaluation.

3.1 Digital System Design Using PyRTL:

• Environment Setup: This primarily involves the

installation of Python and PyRTL through pip.

• Library Integration: Key libraries, such as pyrtl, are

integrated as the initial step.

• I/O Definitions: Depending on the requirement, we are

defining a digital system that will have certain inputs and

outputs specified with appropriate bitwidth.

• Logic Implementation: PyRTL, with its Pythonic syntax,

is used to define the logic for the digital system.

• Simulation: Post design, it's imperative to simulate the

logic to validate its working. The simulation is performed

with specific input combinations, and outcomes are

documented for further analysis.

3.2 Memory Incorporation within the System:

• Memory Configuration: Memory blocks, apt for storing

outcomes of digital operations, are defined.

• Write/Read Operations: Definition of operations to both

store outcomes in the memory and fetch them when

required.

• Extended Simulation: Simulation now encompasses

memory operations, providing a comprehensive insight into

the memory's working with the designed digital system.

3.3 Evaluation through Machine Learning:

• Gathering Data: Data collection from varied simulations

which gives insights into the digital system's performance

under diverse conditions.

• Data Pre-processing: Raw simulation data is refined,

transformed, and organized aptly for machine learning

algorithms.

• Selection of Model: The right machine learning model is

picked based on the nature of our research question.

• Model Training: The model is exposed to the pre-

processed data, enabling it to 'learn' and recognize patterns

in our digital system's operation.

• Evaluation & Verification: The model, post training, is

evaluated on novel data to ascertain its reliability.

• Predictive Analysis: Leveraging the trained model, we can

make predictions regarding the performance of our digital

system, paving the way for potential improvements.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 469

4. Digital System Design Procedure

1. Environment Configuration: Before initiating the design,

it's vital to create a suitable working environment.

pip install pyrtl

2. Library Integration:

import pyrtl

3. Digital System Logic Design:

4.1. I/O Definitions: Defining inputs and outputs for the

system. For illustrative purposes, consider a sample digital

system.

Sample I/O Definitions:

input1 = pyrtl.Input(bitwidth=4, name='input1')

input2 = pyrtl.Input(bitwidth=4, name='input2')

result = pyrtl.Output(bitwidth=4, name='result')

4.2. Logic Development: Implementing logic using

PyRTL's syntax.

Sample Logic

result <<= input1 | input2 # OR operation for illustration

4.3. Simulation: To authenticate the designed logic:

sim_trace = pyrtl.SimulationTrace()

sim = pyrtl.Simulation(tracer=sim_trace)

Sample simulation

for val1, val2 in [(1, 2), (3, 4), (7, 9), (15, 1)]:

 sim.step({'input1': val1, 'input2': val2})

Displaying results

for cycle in range(4):

 print('input1:', sim_trace.trace['input1'][cycle])

 print('input2:', sim_trace.trace['input2'][cycle])

 print('result:', sim_trace.trace['result'][cycle])

 print('---')

5. Memory Integration

5.1. Memory Configuration: For instance, consider

incorporating an 8-bit memory block.

memory = pyrtl.MemBlock(bitwidth=8, addrwidth=5,

name='memory')

5.2. Write Operations: Implementing conditional write

operations based on a write-enable signal.

address, data_in = pyrtl.Input(5, 'addr'), pyrtl.Input(8,

'data_in')

write_enable = pyrtl.Input(1, 'write_enable')

memory[address] <<=

pyrtl.MemBlock.EnabledWrite(data_in,

enable=write_enable)

5.3. Read Operations: Retrieving stored data using the

defined address.

data_out = pyrtl.Output(8, 'data_out')

data_out <<= memory[address]

6. Machine Learning Evaluation

Modern digital systems, due to their complexity, necessitate

thorough evaluation. Machine learning facilitates the

analysis of vast simulation data, enabling performance

prediction and potential design improvements.

6.1. Data Collection:

Generating data through PyRTL simulation:

data_log = []

for val1, val2 in [(1, 2), (3, 4), (7, 9), (15, 1)]:

 sim.step({'input1': val1, 'input2': val2})

 data = {

 'input1': sim_trace.trace['input1'][cycle],

 'input2': sim_trace.trace['input2'][cycle],

 'result': sim_trace.trace['result'][cycle],

 'latency': sim.latency(val1, val2),

 'power': sim.power_estimate(val1, val2),

 'efficiency': sim.efficiency_ratio(val1, val2)

 }

 data_log.append(data)

6.2. Data Pre-processing:

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

X = [item['input1', 'input2', 'result'] for item in data_log]

y = [item['latency'] for item in data_log]

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

6.3. Model Implementation & Training:

For illustration, a simple linear regression model:

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 470

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

print(f"Mean Squared Error: {mse}")

6.4. Model Evaluation:

 Depending on the model type, appropriate metrics like

RMSE, F1-score, accuracy, etc., can be used. The example

above uses MSE for a regression model.

7. Formulating Strategies for Upcoming Chip
Design Innovations

7.1 Model Reliability:

Given the inconsistency between Linear Regression and

Random Forest results, prioritize more robust models like

Random Forest for predictive accuracy. Their ability to

capture complex interactions may be more suitable for

intricate chip designs.

7.2 Feature Evaluation:

Given the coefficients and importance scores, focus on

features that have substantial impact. It's essential to

determine which design parameters, like input bit width or

memory integration, most significantly influence

performance.

7.3 Non-Linear Dynamics:

The performance of chips might not always follow linear

trends, especially as we push towards miniaturization and

deal with quantum effects. Consider models that can capture

these non-linearities.

7.4 Data Granularity:

As designs become more complex, ensure data simulations

reflect real-world scenarios. Increasing the granularity and

diversity of simulation data can help in fine-tuning

predictions.

7.5 Embrace Iteration:

Future chip designs should adopt an iterative approach,

using models to predict performance, implementing

designs, testing real-world performance, and then refining

based on discrepancies.

8. Results and Discussion

8.1 Linear Regression

Mean Squared Error (MSE): 24.194167559001805

R-squared: -0.12600738519003252

Model Coefficients: [0.07214471, 1.93476811, 0.,

0.3695943]

Average CV MSE (Linear Regression):

16.761495073471522

Interpretation: The negative R-squared value suggests the

model may not be the best fit for this data. Additionally, the

difference between the MSE and the average CV MSE could

hint at overfitting.

8.2 Random Forest

Mean Squared Error (MSE): 10.033029027944938

R-squared: 0.533058339215781

Average CV MSE (Random Forest): 7.468264984307221

Interpretation: Random Forest has demonstrated better

prediction accuracy and fit for the dataset compared to

Linear Regression.

8.3 Insights and Optimizations

Based on the predictions and the actual performance

metrics, areas of the design that underperform can be

identified. Machine learning can also be employed to

recommend design changes. For instance, if higher input

values consistently result in suboptimal latencies, the model

can suggest logic optimizations or resource allocation

tweaks.

9 Conclusion

The digital realm's evolution has precipitated an urgent need

for tools that combine traditional design approaches with

contemporary analytical methods. Through our exploration,

PyRTL has emerged as a seminal instrument in the modern

digital design toolbox. Its inherent compatibility with

Python not only eases the chip design process but also paves

the way for seamless integration with state-of-the-art

machine-learning techniques [8-15]. By harnessing this

synergy, we have demonstrated a novel approach to chip

design where the design, enriched with memory

functionalities, undergoes a robust performance evaluation

driven by ML's predictive capabilities. Our methodology

serves as a testament to the benefits of incorporating data

analytics into the traditional electronic design automation

process. Machine learning's prowess in predicting

performance metrics offers a robust framework for

designers, ensuring designs are not only efficient but also

future-proof [16-22]. Furthermore, the literature review

emphasizes the evolving landscape, spotlighting PyRTL's

potential and the increasing relevance of ML in hardware

design. As we venture into a future dominated by data and

artificial intelligence, tools and methodologies like the ones

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 471

presented in this paper will become indispensable. The

marriage of PyRTL and machine learning offers a blueprint

for the next frontier in chip design, a horizon where data-

driven insights and engineering brilliance coalesce to sculpt

innovations that propel us into the next era of technological

marvels.

Acknowledgements

This research was supported/partially supported by authors

. We thank our colleagues from Jordan university of science

and technology who provided insight and expertise that

greatly assisted the research, although they may not agree

with all of the interpretations/conclusions of this paper. We

thank [Mr. Ghaith ALOMARI, Chicago state university]

for assistance with [pyrtl methodology], and [Isra aljrah,

teaching assistant , Jordan university of science and

technology] for comments that greatly improved the

manuscript.

Author contributions

Isra aljarah: Conceptualization, Software, Field study

Ghaith Alomari: Methodology , Writing-Original draft

preparation, Software, Validation.,Maymoona aljarah:

Data curation, Visualization, Investigation, Anas aljarah

:Writing-Reviewing and Editing ,Bilal aljarah: Field study.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Huang, G., Hu, J., He, Y., Liu, J., Ma, M., Shen, Z.,

Wu, J., Xu, Y., Zhang, H., Zhong, K. and Ning, X.,

2021. Machine learning for electronic design

automation: A survey. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 26(5),

pp.1-46..

[2] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E.

Ebrahimi, O. Villa, A. Jaleel, C.-J. Wu, D. Nellans,

Mcm-gpu: Multi-chip-module gpus for continued

performance scalability, in: 2017 ACM/IEEE [209] T.-

C. Chen, P.-Y. Lee, T.-C. Chen, Automatic

floorplanning for ai socs, in: 2020 International

Symposium on VLSI Design, Automation and Test

(VLSI-DAT), 2020, pp. 1–2. doi:10.1109/ 44th

Annual International Symposium on Computer

Architecture VLSI-DAT49148.2020.9196464.

(ISCA), 2017, pp. 320–332.

doi:10.1145/3079856.3080231.

[3] C. K. C. Lee, Deep learning creativity in eda, in: 2020

International Symposium on VLSI Design,

Automation and Test (VLSI-DAT), 2020, pp. 1–1.

[4] T.-W. Chen, C.-S. Tang, S.-F. Tsai, C.-H. Tsai, S.-Y.

Chien, L.-G. Chen, Tera-scale performance machine

learning soc (mlsoc) with dual stream processor

architecture for multimedia content analysis, IEEE

Journal of Solid-State Circuits 45 (2010) 2321–2329.

L. Wang, M. Luo, Machine learning applications and

opportunities in ic design flow, in: 2019 International

Symposium on VLSI Design, Automation and Test

(VLSI-DAT), 2019, pp. 1–3.

[5] M. Belleville, O. Thomas, A. Valentian, F. Clermidy,

Designing digital circuits with nano-scale devices:

Challenges and opportunities, Solid-State Electronics

84 (2013) 38–45. Selected Papers from the ESSDERC

2012 Conference

[6] A. R. Brown, N. Daval, K. K. Bourdelle, B. Nguyen,

A. Asenov, Comparative simulation analysis of

process-induced variability in nanoscale soi and bulk

trigate finfets, IEEE Transactions on Electron Devices

60 (2013) 3611–3617.

[7] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and

Vivienne Sze. 2016. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional

neural networks. IEEE Journal of Solid-State Circuits

52, 1 (2016), 127–138

[8] David Koeplinger, Matthew Feldman, Raghu

Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel,

Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos

Kozyrakis, et al. 2018. Spatial: A language and

compiler for application accelerators. In Proceedings

of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation.

ACM, 296–311.

[9] John L. Hennessy and David A. Patterson. 2011.

Computer Architecture, Fifth Edition: A Quantitative

Approach (5th. ed.). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, ISBN:978-0-12-

383872-8

https://dl.acm.org/doi/book/10.5555/1999263

[10] J. Mahler, “MIPS CPU implemented in Verilog,”

2016. [Online]. Available:

https://github.com/jmahler/mips-cpu

[11] E. Lujan, “VHDL Implementation of a basic Pipeline

MIPS processor,” 2016. [Online]. Available:

https://opencores.org/project,vhdl-pipelinemips

[12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,

R. Avizienis, ˇ J. Wawrzynek, and K. Asanovic,

“Chisel: constructing hardware in a ´ scala embedded

language,” in Proceedings of the 49th Annual Design

Automation Conference. ACM, 2012, pp. 1216–1225.

[13] Baaij, C.P., 2015. Digital circuit in CλaSH: functional

specifications and type-directed synthesis.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 467–472 | 472

[14] J. Decaluwe, “Myhdl: a python-based hardware

description language,” Linux journal, vol. 2004, no.

127, p. 5, 2004.

[15] D. Lockhart, G. Zibrat, and C. Batten, “Pymtl: A

unified framework for vertically integrated computer

architecture research,” in 47th IEEE/ACM Int’l Symp.

on Microarchitecture (MICRO), Dec 2014, pp. 280–

292.

[16] E. Logaras and E. S. Manolakos, “Syspy: using

python for processorcentric soc design,” in

Electronics, Circuits, and Systems (ICECS), 2010 17th

IEEE International Conference on. IEEE, 2010, pp.

762–765.

[17] A. Mashtizadeh, “Phdl: A python hardware design

framework,” Ph.D. dissertation, Massachusetts

Institute of Technology, 2007

[18] A. Pellegrini, K. Constantinides, D. Zhang, S.

Sudhakar, V. Bertacco, and T. Austin, “Crashtest: A

fast high-fidelity fpga-based resiliency analysis

framework,” in Computer Design, 2008. ICCD 2008.

IEEE International Conference on. IEEE, 2008, pp.

363–370.

[19] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,

and T. Austin, “A systematic methodology to compute

the architectural vulnerability factors for a high-

performance microprocessor,” in Proceedings of the

36th annual IEEE/ACM International Symposium on

Microarchitecture. IEEE Computer Society, 2003, p.

29.

[20] Clow, J., Tzimpragos, G., Dangwal, D., Guo, S.,

McMahan, J. and Sherwood, T., 2017, September. A

pythonic approach for rapid hardware prototyping and

instrumentation. In 2017 27th International

Conference on Field Programmable Logic and

Applications (FPL) (pp. 1-7). IEEE.

[21] Amuru, D., Zahra, A., Vudumula, H.V., Cherupally,

P.K., Gurram, S.R., Ahmad, A. and Abbas, Z., 2023.

AI/ML algorithms and applications in VLSI design

and technology.

[22] Ghaith,A.*,Anas,J.,2021. Efficiency of Using the

Diffie-Hellman Key in Cryptography for Internet

Security.

[23] Talafha, M. ,Alkouri, A., Alqaraleh, S, Zureigat, H

.,Aljarrah, A. Complex hesitant fuzzy sets and its

applications in multiple attributes decision-making

problems.

[24] Razak ,S., Oqla m., Anas ,A., Abd ULazeez ,A.

Complex Fuzzy Parameterized Soft Set.

[25] Ahmed ,S., Anas ,A., Sek Sok, K., Zaidi ,I. Robust

estimation and outlier detection on panel data: an

application to environmental science.

