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Abstract: Despite ongoing research, the current diagnostic methods of thyroid cancer may still have limitations, leading to potential 

errors in determining the malignancy of thyroid nodules. To address these challenges, this research introduces a cutting-edge multimodal 

thyroid cancer diagnosis framework that integrates data from multiple sources, including both ultrasound images and its clinical data. To 

carry out the experiments, the researchers utilised the Thyroid Nodule Ultrasound Images Dataset (TDID), an open-access public dataset.  

The research is divided into two phases. In phase I, a wide range of machine learning and deep learning models are employed to create 

thyroid cancer prediction models using thyroid US image and the corresponding clinical data. The models that consistently demonstrated 

high prediction accuracy are selected for further consideration. Phase II focuses on creating ensemble combinations of models to perform 

multimodal prediction of thyroid nodules.  The results of the experiments are highly promising, with certain ensemble combinations 

achieving impressive accuracy. A web app interface, ThyroPredict, has been developed, to generate a final prediction from the uploaded 

ultrasound image and initial radiologist's input. ThyroPredict app is powered by multimodal ensemble framework. 
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1. Introduction 

With the fast-approaching end of the first quarter of the 

twenty-first century, the healthcare industry is undergoing 

transformative changes fueled by the application of 

Artificial Intelligence (AI) technology. This technological 

advancement has ushered in a new era of disease 

diagnosis, where the analysis of big data using AI 

algorithms has shown great promise in improving the 

accuracy and efficiency of diagnostic processes. Within 

this context, recent research conducted on the female 

population in India has shed light on a high prevalence of 

thyroid disorders among women of reproductive age. 

These studies have indicated a notable increase in the 

incidence of thyroid diseases with age in India. 

The focus of this paper is on thyroid cancer, a form of 

cancer that affects the thyroid gland, a small, butterfly-

shaped organ responsible for producing hormones that 

regulate various body functions. The disruption in the 

balance of these hormones can lead to thyroid diseases, 

making accurate diagnosis crucial for effective treatment 

and management. In the United States, the diagnosis of 

thyroid cancer has been on the rise, largely attributed to the 

widespread adoption of thyroid ultrasound, enabling the 

detection of small thyroid nodules that might have 

previously gone unnoticed. Moreover, women are found to 

be four times more likely to be affected by thyroid cancer 

com-pared to men, as suggested by recent studies. Thyroid 

cancer is a significant global health concern, affecting 

individuals of all ages and genders. Achieving accurate 

diagnosis in a timely manner is of utmost importance to 

provide appropriate treatment and management. However, 

diagnosing thyroid cancer can be challenging due to the 

complexity of the disease, the various imaging modalities 

used, and the heterogeneity of the patient population. To 

address these challenges, this paper proposes a novel 

approach for multimodal thyroid cancer diagnosis, 

leveraging deep learning and machine learning ensembles. 

To detect malignant nodules accurately, the Thyroid 

Imaging Reporting and Data System (TIRADS) score is 

considered as a benchmark in this study. Physicians rely on 

ultrasound imaging to assess thyroid nodules, evaluating 

visual characteristics observed in the scans. The TIRADS 

approach facilitates risk stratification and differentiation 

between benign and malignant nodules, and various 

versions of TIRADS exist with slight variations in their 

scoring criteria. The primary research question addressed 

in this study is whether multimodal ensemble prediction 

models can effectively and efficiently predict the 

malignancy of thyroid nodules compared to single 

modality prediction methods. By combining data from 

multiple sources, including ultrasound images and clinical 

data, the proposed approach aims to achieve higher 

diagnostic accuracy and reliability. 

In the subsequent section of the paper, a comprehensive 

review of the literature on thyroid cancer diagnosis and the 

utilisation of deep learning and machine learning tools in 
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this field is presented. Following this, the dataset and 

methodology employed in the study, including the 

architecture of the models and the evaluation metrics, are 

described in detail. The research delves into experiments 

with various ensembles of models using both ultrasound 

images and clinical datasets, highlighting further 

improvements in performance. The ensemble classifier 

achieves a remarkable accuracy of 94.78%, underscoring 

the potential of this approach for precise thyroid cancer 

diagnosis. The ThyroPredict app powered by the ensemble 

prediction model, as an aid to radiologists is discussed 

further in the results. 

This research contributes to the healthcare industry by 

exploring innovative techniques for multimodal thyroid 

cancer diagnosis, demonstrating the pivotal role of AI 

technology in the advancement of disease diagnosis. The 

paper concludes with a discussion of the findings and 

outlines the scope for future research and improvements on 

the ensemble framework and ThyroPredict app. 

2. Related Work 

Thyroid cancer diagnosis has been a topic of intensive 

research in recent years. The use of deep learning and 

machine learning algorithms are popular models in the 

pipeline of clinical prediction of thyroid diseases. In 

particular, the use of multimodal imaging and the 

integration of clinical data have shown promising results in 

improving the accuracy of thyroid cancer diagnosis. 

Several studies have investigated the use of CNN for 

thyroid cancer ultrasound image classification. CNN is a 

deep learning technique that has shown success in image 

analysis tasks. In a study by Wenfen Song, Shuai Li et al. 

in 2019 [7], a CNN-based model was developed to classify 

thyroid nodules as malignant or benign using ultrasound 

images. The model achieved a high accuracy of 98.2% in 

diagnosing malignant nodules. Another study by Yi-Cheng 

Zhu et al. which came out in 2021 proposed a generic 

DCNN architecture with transfer learning for thyroid 

cancer diagnosis using ultrasonographic images [8]. They 

achieved an average accuracy of 86.5% in classification. 

RNN is another deep learning technique that has shown 

potential in time-series analysis. In a study [9] by 

Sobhanan Warrier, Gayathry et al. in 2022, an RNN-based 

model was proposed for the diagnosis of cancer. The 

objective of their hybrid optimisation approach is to utilise 

multispectral photoacoustic imaging and transfer learning 

techniques for the purpose of cancer detection and 

classification using ultrasound images. The model 

displayed excellent accuracy above 90%. In a research 

paper [10] by Elmer et.al in 2020, each geometric and 

morphological feature was labelled as benign and 

malignant and the performance of the selected features was 

evaluated using machine learning. In a three-stage expert 

system called FS-PSO-SVM, with feature selection 

methods, optimisation and finally machine learning with 

SVM in a study [11], researchers obtained an optimal 

SVM model with the most discriminative feature subset 

and the optimal parameters. 

In another study with a new dataset [12], researchers 

Khalid Salman et.al. were able to achieve the classification 

of thyroid diseases as hypothyroidism, hyperthyroidism 

and normal, with high accuracy with the ensemble method 

of random forest algorithm. Koundal et al. [13] introduced 

a comprehensive approach for detecting thyroid nodules 

based on image analysis. Their method achieved a high 

accuracy of up to 93.88% in identifying thyroid nodules.  

Machine learning models linear model Ridge, LR and XG 

Boost models are used in developing a free online tool for 

clinicians to predict patients with high thyroid cancer risk 

by Jianhua Gu et.al. in a study conducted in 2022 [14]. In 

their research on the detection of cancerous thyroid 

nodules, Nanda S, and M Sukumar utilised local binary 

pattern variants (LBPV) for feature extraction [15], 

employing which, they were able to accurately classify 

between benign and malignant thyroid nodules with 

impressive accuracy of 94.5%. 

In research conducted by Xi, N.M. [16], Random Forest, 

and GBM exhibit better overall diagnostic accuracy in the 

range of 78% to 85% and the capacity to identify 

malignant nodules. In a study conducted in 2021 by 

Wenjun Li et.al, [17] a low-level and high-level feature 

fusion classification network CNN-F is proposed to 

classify the benign and malignant nodules. In diagnosing 

thyroid diseases their classification accuracy reaches 

85.92%. These methods can potentially improve the 

accuracy of thyroid cancer diagnosis, which is crucial for 

effective management and treatment of the disease. 

However, further research is needed to validate and 

optimise the performance of these models in real-world 

clinical settings. 

3. Novelty 

This research represents a significant advancement in the 

field of thyroid cancer diagnosis, where accurate 

assessment is crucial before undertaking the primary 

treatment of thyroidectomy.  

 This showcases the potential of the proposed multimodal 

approach for accurate thyroid cancer diagnosis. By 

leveraging the power of deep learning and machine 

learning, integrating multiple data sources, and utilising a 

standardised scoring system, the research demonstrates the 

importance of AI technology in advancing disease 

diagnosis in the healthcare industry. The novelty of this 

research lies in its comprehensive approach, which goes 

beyond traditional single-modality diagnosis methods. By 
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integrating ultrasound images and clinical data and 

employing an ensemble of models, this study provides a 

more holistic and accurate assessment of thyroid cancer.  

The potential impact of this research on healthcare is 

significant, as it offers a valuable tool for physicians to 

make more informed decisions, leading to improved 

patient outcomes and better prognosis of thyroid cancer 

cases. As the healthcare industry continues to embrace AI 

technology, this research sets a promising precedent for the 

future of disease diagnosis and treatment. 

4. Methodology 

This section is divided into five major subsections. The 

first two subsections show the datasets, feature engineering 

and preprocessing on the clinical and US image datasets. 

The subsequent subsections introduce the architecture of 

deep learning and machine learning models. Last 

subsection introduces the proposed ensemble prediction 

framework which powers the ThyroPredict app. 

4.1 Dataset Overview 

The dataset used in our study is TDID [18] which is open 

access and provided ultrasound (US) images of jpeg 

format, and the corresponding ground truth by expert 

radiologists in xml format. The TDID US image dataset, 

which is publicly available and is created by the 

Universidad Nacional de Colombia, includes a total of 380 

thyroid cancer cases. Each case has single or multiple 

image files. Thus, the thyroid US images for 380 cases has 

a total of 455 image files. All the images are in RGB 

format with the size of 560X360 pixels. The xml file 

contains information about each patient, and provide 

details about nodule characteristics, location coordinates 

(ground truth), and TIRADS scores. The TIRADS score 

[19] ranges from 2 to 5, with scores of 2 and 3 indicating 

benign nodules and scores of 4a, 4b, 4c, and 5 indicating 

malignant nodules. The dataset includes 72 benign cases 

and rest malignant cases. If the 4a,4b, and 4c are 

considered as intermediate label, then there are a total of 

325 intermediate cases. The xml file provides the clinical 

data which includes case number, gender, age, 

composition, echogenicity, margins, calcifications, 

TIRADS score, image number and the x and y coordinates 

to mark the Region of Interest (RoI) or ground truth in the 

ultrasound image.  

These attributes from the xml files are first captured to a 

csv file to create a clinical dataset corresponding to the 

thyroid US image dataset. Apart from this primary data, x 

and y coordinates in the xml file is used to compute thyroid 

nodule’s width, height, L/S ratio and the taller than wide 

attribute. These are additional columns added to clinical 

dataset. Thus, the dataset has a total of 10 attributes and 

455 tuples.  

4.2 Pre-processing and Feature Engineering 

Data Preprocessing involves tasks such as handling 

missing values, removing outliers, normalising, or scaling 

features, and encoding categorical variables. Feature 

Engineering step involves tasks such as dimensionality 

reduction, feature scaling, or creating new features based 

on domain knowledge. These steps enhance data quality, 

and removes noise and inconsistencies, helps to 

standardise the format, and extracts relevant features. 

4.2.1 Thyroid Clinical Dataset 

Data Cleaning: Pre-processing techniques such as handling 

missing data, outlier detection, and data imputation are 

performed to ensure data integrity and reduce bias. To 

handle missing values or NaNs (Not a Number) in the data 

set, the missing rows are dropped or filled them with mean 

or most frequent domain values (imputation by mode).  

Feature Scaling and Normalization: Pre-processing by 

scaling and normalising variables, are carried out to avoid 

dominance of certain features. Continuous attributes such 

as age, width, height, and L/S ratio (Long to Short ratio) 

values are transformed into discrete values.  

Encoding Categorical Variables: All categorical variables 

are encoded into numerical representations (one-hot 

encoding). For example, the simple integer attribute of age 

is first converted into categorical data with age ranges of 

20. This categorical data is encoded to numerical 

representations by encoder. 

Label Encoder is used to encode the categorical variables 

of the feature matrix. After encoding the categorical 

variable, the features are scaled using standard scaler.   

The TIRADS score is the class label in our experiments. 

For binary classification, labels are benign, and malignant. 

For multiclass classification, labels are benign, 

intermediate, and malignant.  

Handling Imbalanced Data: The distribution of target 

classes is imbalanced, since it has fewer benign cases 

compared to malignant cases. oversampling techniques like 

SMOTE are applied to balance the dataset.  

4.2.2 Thyroid US Image Dataset 

The thyroid US images are preprocessed using the 

annotation information or the ground truth provided in xml 

files of the TDID dataset. The image files have their 

corresponding xml file which provides x, y coordinates of 

the ground truth. The US images are annotated, and 

cropped around the RoI. This reduces unnecessary 

background noise. Image augmentation methods are 

applied to increase the dataset size. Each image is flipped, 

rotated, translated, zoomed, and shifted to create a new 

image file. Thus, the number of images is increased many 

folds.  
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The image size is reduced before they are trained by the 

model. These image pre-processing steps are crucial to the 

efficient performance of the deep learning and machine 

learning models. The original ultrasound thyroid nodule 

image, and its preprocessed images are shown in Figures 

1a, 1b, and 1c. 

                                                                                                         

Fig 1a:  Thyroid US original image 

 

 

 

 

 

   

  Fig 1b:  Thyroid US image with RoI outlined               

 

Fig 1c:  Thyroid US image- annotated around RoI 

TIRADS score is extracted from xml file as class label of 

classification task. Both binary and multiclass 

classification are tested on the models.  

4.3 Deep Learning Architecture  

We experimented on the architecture, hyperparameters, 

and optimisation methods used in deep learning models 

CNN, Inception-v3 model, ANN and RNN for 

classification task on thyroid US images. RNN and ANN 

are used in the classification using both thyroid clinical 

dataset as well as US images. An overview of deep 

learning model configurations used in these experiments 

are given in the subsections. 

 

4.3.1 CNNs and Inception-v3  

Convolutional Neural Networks are widely used for image 

analysis tasks, including medical image segmentation and 

diagnosis as can be seen from these studies [7], [8], [20], 

[21], and [22]. In a typical CNN architecture, the input 

image is first passed through a series of convolutional 

layers, each of which applies a set of learnable filters to the 

input image to extract relevant features.  

The image pre-processing steps mentioned in previous 

section 4.2.2 are crucial to the efficient performance of the 

CNN model to extract relevant features from the image in 

the early layers. The architecture of CNN model used in 

this study is as follows: 

1. Input layer: It accepts the grayscale ultrasound image 

as an input. The US images that are procured from 

the TDID dataset are of the size 560 x 360 RGB 

images. The image is resized to fit the model. 

2. The first layer is a Conv2D layer with 128 filters, 

each having a size of 3x3. The activation function is 

Rectified Linear Unit (ReLU). After each 

convolutional layer, an activation layer is applied to 

introduce non-linearity into the model. This layer 

takes input images with a shape of (224, 224, 3) 

where 3 represents the RGB color channels. 

3. A MaxPooling2D layer with a pool size of (2, 2). 

Max pooling reduces the spatial dimensions of the 

input by taking the maximum value in each 2x2 

region. 

4. Conv2D layer with 256 filters of size 3x3 and ReLU 

activation. 

5. A MaxPooling2D layer with a pool size of (2, 2). 

6. A Flatten layer, which flattens the multi-dimensional 

output of the previous layer into a 1D vector, 

preparing it for the fully connected layers. 

7. A fully connected layer with 512 units and ReLU 

activation.  

8. Final fully connected layer with either 2 or 3 units, 

representing the output classes of the model. The 

activation function used is softmax.  

The CNN model architecture is given in Figure 2. 
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Fig 2:  CNN model visualisation: Conv2D layer 128 filters size 

3x3 →Maxpool layer (2,2)→Conv2D layer 256 filters of size 

3x3→ Maxpooling (2,2)→Flatten layer→Fully Connected 

layer of 512 units → Dense fully connected layer of 2 

Units→Output binary Class 

The InceptionV3 is a pre-trained model of convolutional 

neural network (CNN) architecture designed for image 

classification tasks. InceptionV3 [23] has been trained on 

the ImageNet dataset, which consists of millions of labeled 

images. A brief description of the architecture used in this 

study: 

1. First layer: The InceptionV3 base model is the first 

layer in the sequential model. This allows the model 

to leverage the pre-trained features extracted by the 

InceptionV3 model. 

2. Flattening Layer: The output of the base model is 

flattened, converting it into a 1-dimensional array.  

3. Fully connected layers (Dense layers): Dense layer 

with 512 neurons and ReLU activation function. 

This layer helps in learning complex patterns in the 

data.  

4. The final Dense layer: Output layer of either 2 or 3 

neurons depending on the binary or multiclass 

scenario. It uses the sigmoid/softmax activation 

function. Sigmoid is suitable for binary, while 

softmax is suitable for multiclass classifications. 

Five instances of this model are appended to form an 

ensemble of Inception-v3 model. The architecture is as 

shown in Figure 3. 

 

 

 

Fig 3: Inception-v3 single model architecture: Base 

model→Flatten layer→Fully Connected layer of 512 units → 

Dense fully connected layer of 2 Units→Output binary Class 

4.3.2 Recurrent Neural Networks (RNNs) and ANN 

Recurrent Neural Networks are another type of neural 

network commonly used for time-series data analysis, 

including medical image analysis tasks such as tumor 

growth prediction. 

Optimisation methods such as back propagation through 

time (BPTT), which is a variant of gradient descent, is 

used to train the model. To preprocess the thyroid US 

images, all the preprocessing steps in 4.2.2 are carried out. 

In this study, recurrent neural network (RNN) model 

architecture using the Keras framework is employed. The 

model is created using the Sequential function, which 

allows stacking layers on top of each other in a sequential 

manner. 

RNN model architecture used in the study is as follows:   

1. The first layer is a Bidirectional layer with an LSTM 

(Long Short-Term Memory) layer inside it. The LSTM 

layer has 64 units, which control the memory and 

processing of sequential data. We employed 3 such 

Bidirectional layers with LSTM layer with 64 units. 

2. The final layer is a fully connected output layer. The 

activation function used is softmax. 

This model consists of multiple bidirectional LSTM layers, 

which capture information from both past and future 

timesteps in the input sequences. The Dense layer at the 

end maps the LSTM outputs to the binary or multiclass 

output. 

The RNN architecture used in the research is shown in 

figure 4 as follows: 
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Fig 4: RNN model: Input Layer → Bidirectional layer with an 

LSTM with 64 units→ Bidirectional layer with an LSTM with 

64 units → Bidirectional layer with an LSTM with 64 units → 

Dense fully connected layer of 2 Units→Output Class (binary 

class output scenario) 

The clinical dataset extracted from the xml files, is used for 

creating a thyroid cancer prediction model using RNN, and 

ANN deep learning classifiers. CNNs are more commonly 

associated with image processing tasks due to their ability 

to effectively capture local patterns and spatial 

relationships in two-dimensional data. So, in our 

experiment, CNN, and Inception-v3 models are not used 

for classification using clinical dataset. Dataset pre-

processing is an important prerequisite for deep learning 

algorithms to work effectively. RNN and ANN models are 

applied on clinical data as well as US image data and 

yielded good accuracy. 

4.4 Machine Learning Architecture  

This study proposes a multimodal thyroid cancer diagnosis 

approach that combines 2 datasets; ultrasound image 

dataset, and its corresponding clinical dataset. Support 

Vector Machine (SVM), eXtreme Gradient Boosting 

(XGB), KNN, Decision trees (DT), Naïve Bayes’ (NB), 

and Random Forest (RF) models are used to train the 

datasets. 

4.4.1 Machine Learning Model with Clinical Data 

The clinical dataset of 10 attributes and 455 tuples, is 

prepared for machine learning. This dataset is preprocessed 

as mentioned in the clinical dataset pre-processing section 

4.2.1 above.  

A 10-fold validation is performed to improve the 

efficiency before it is tested on test dataset. The prepared 

dataset is divided into train and test subsets in 80:20 ratio. 

4.4.2 Machine Learning Model with Image Data 

Preprocessing step is a crucial one and the accuracy of the 

classification depends on effective preprocessing of image. 

For detailed preprocessing of image data refer to section 

4.2.2. 

Feature Extraction is achieved by Discrete Fourier 

Transform (DFT) that converts a signal from the spatial 

domain to the frequency domain. The frequency spectrum 

is used to extract features that are relevant for diagnosing 

thyroid nodules. Frequency components in the spectrum 

correspond to the various features of the image such as 

edges or texture of the nodule, overall shape, and size of 

the nodule. We extracted features from the frequency 

spectrum, by using statistical measures like mean, 

variance, skewness, and kurtosis. Using DFT for feature 

extraction improved the accuracy of the model in 

diagnosing malignant thyroid nodules in ultrasound 

images. 

DFT can be represented as follows: 

Let x(t) be input signal representing the US image of a 

thyroid nodule in the spatial domain, where t is the spatial 

domain variable.  

Let X(f) be discrete Fourier Transform (DFT) of x(t) 

representing the frequency spectrum, where f is the 

frequency domain variable. 

The DFT of the signal x(t) is, 

             X(f)= ∑ N−1 x(t)⋅ e −j2πft/N                                         (1)                          

 

Where N is the number of samples in the input signal, and 

j is the imaginary unit. 

The frequency spectrum X(f) captures the frequency 

components of the image, which correspond to various 

features such as edges, texture, shape, and size of the 

thyroid nodule.  

To extract features from the frequency spectrum X(f), 

statistical measures are applied. 

Mean, μ = N1 ∑f=0   X(f)                                              (2)      

 Variance, σ2 =1/N ∑f=0 ∣X(f)−μ∣2                                            (3) 

 Skewness, γ = (1/N ∑f=0 ∣X(f)−μ∣3) / σ3                    (4) 

Kurtosis, κ = (1/N ∑f=0 ∣X(f)−μ∣4) / σ4                     (5)     

These statistical measures provide quantitative information 

about the distribution of frequency components in the 

spectrum. The extracted statistical features mean, variance, 

skewness and kurtosis from the frequency spectrum are 

then used as inputs for a diagnostic model to distinguish 

between malignant and non-malignant thyroid nodules. 

This DFT-based feature extraction is found to increase the 

accuracy of thre model in thyroid nodule. 

For training the SVM model, a radial basis function (RBF) 

kernel was used. For gradient boost method, we used the 

XG Boost library. For Random Forest algorithm scikit-

learn library is used. 

t=0  
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Once the models are trained, their performance is 

evaluated using metrics such as accuracy, precision, recall, 

and F1-score.  A 10-fold cross-validation is used to prevent 

overfitting on training data. The trained models are tested 

using new US images of thyroid nodules which are not 

used during training. The models are trained for both 

binary or multiclass classifications scenarios. 

 

Fig 5: Machine learning model architecture with thyroid 

US. 

The machine learning architecture of thyroid image data is 

shown in Figure 5. 

4.5 Proposed Ensemble Prediction framework  

ML and DL models are trained individually on image and 

clinical datasets and their performance is evaluated in 

phase I. The models which demonstrated high accuracy 

with good performance consistency are selected to the next 

phase. In phase II, multiple ensemble prediction models 

are trained on thyroid US image data and clinical data. The 

ensemble which showed highest prediction accuracy is 

used in ThyroPredict web app framework. 

Our proposed ThyroPredict web app framework is as 

follows: 

1. Clinical data extraction: In the first step, radiologist can 

upload the US image in the interface provided in the app, 

and input their first assessment of the US image. The RoI 

can be marked on the image. The clinical data input from 

the radiologist, as well as the RoI will be converted into an 

xml file and stored for future reference. Clinical data is 

extracted from this xml file. Additional attributes such as 

nodule width, height, L/S ratio, and ttw are also calculated 

from RoI and added to clinical data.  

2. Preprocess data: The image and clinical data are 

preprocessed and prepared for prediction on the ensemble 

model. The preprocessing steps mentioned in section 4.2 

are applied on both image and clinical data. RoI extracted 

from the xml file is used in the annotation of image file in 

this step. 

3. Classification: ThyroPredict is an ensemble of two types 

of classifiers. Image data is loaded into image classifier 

ensemble. Clinical data is loaded into clinical data 

classifier ensemble. These ensembles are trained on 

thyroid nodules image and clinical datasets respectively.  

4. Prediction Vector: When a new thyroid US image data 

with its RoI is given to this ensemble, individual 

predictions are generated by models and are added to a 

prediction vector. 

5. Majority voting: A majority vote on prediction vector is 

performed. The mode (most frequent value) across the 

predictions is the final prediction. For our proposed model, 

an odd number of models is combined to avoid tie breaker 

scenario. 

6. Prediction: Final prediction is, either a benign or a 

malignant class. 

The mathematical model of the majority voting ensemble 

can be expressed as follows: We have M individual 

models, each producing a binary prediction (1 or 0) for a 

given instance. 

Each instance is represented by an index j, where 1≤ j ≤N,  

and N is the total number of instances. 

For each instance j, let pi,j represent the prediction of the 

ith model, where 1≤ i ≤M.  

pi,j can take values of 1 (positive prediction) or 0 (negative 

prediction). 

The majority voting ensemble prediction pj for the jth 

instance can be calculated using the Heaviside step 

function (H) as shown in eqation no. 6. 

M  

pj=H (∑i=1 pi,  j −M/2)                                               (6) 

Here, H(x) is the Heaviside step function, defined as: 

1, if  x >=0  

0, if  x < 0 

In this representation, the sum of positive predictions from 

the individual models sum pij is calculated, and then 

subtract M/2 from it. 

The Heaviside step function is then applied to determine 

whether the result is positive or negative, leading to the 

final ensemble prediction 1 or 0. 

The majority voting ensemble predicts the positive class if 

the sum of positive predictions from individual models is 
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at least half of the total number of models. Otherwise, it 

predicts the negative class. Figure 6 shows the proposed 

ThyroPredict framework. 

 

Fig 6: Proposed ThyroPredict web app framework. 

5. Results and Discussion 

5.1 Experimental Setup 

The experiments on clinical dataset with ML models are 

conducted on a personal computer with an Intel(R) Core 

(TM) i5-1035G1 CPU, 1.19 GHz Processor and 8GB 

RAM. The operating system is 64-bit Windows 11. The 

environment for deep learning is Python 3.8.5 and Keras 

2.4.3 with TensorFlow 2.4.0. The experiments with ML, 

DL and Inception-v3 models on image datasets are 

conducted on Google Colab Pro with V100 / A100 Nvidia 

GPU, Python 3.10.11 and Keras 2.12.0 with TensorFlow 

2.12.0.  

In the DL model training, the loss function used are Binary 

and Categorical Cross Entropy, the optimizer is adam, and 

the performance evaluation indices are accuracy and loss. 

The learning rate of 0.001 is used in DL models. Some 

more specifications of the experiment are: dropout rate is 

0.3; activation functions are ReLU, Sigmoid, and softmax; 

batch size is 32, and epochs for all deep learning models is 

fixed at 200. 

In phase I of this experiment, following scenarios are 

tested:  

Datasets: Clinical dataset, and Image dataset 

Model Architectures: ML models, and DL models.  

Class Labels: Binary and Multiclass 

Thus, there is a total of 8 scenarios possible with these 

combinations.  

In phase II of our experiment, model ensembles are trained 

on both image and clinical datasets to give a multimodal 

prediction output. Majority voting is employed for final 

output of the ensemble of model combinations.  

To develop the ThyroPredict web app, Python Flask, 

javscript and html are used. Flask is a python web 

framework. The app was hosted locally in the Flask web 

server. 

5.1.1. Phase I: Performance Evaluation of Models  

In phase I of the experiment, all ML and DL models are 

evaluated on multiple scenario combinations of datasets, 

and class labels. The performance of each model is 

evaluated in terms of accuracy metric. The best models are 

selected for the next phase. The comparison of model 

performances in accuracy metric is shown in the 

corresponding charts in figures 7 to 9. All ML models 

showed a jump in accuracy when scenario changed from 

multiclass to binary classification. 

 

     Fig 7:  Prediction accuracy scores of Binary classifications 

 

  Fig 8:  Prediction accuracy scores Multiclass Classifications. 

In phase I, DL models CNN and Inception-v3 are not 

trained and evaluated on thyroid clinical dataset, since 
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these models are primarily designed for image data 

analysis, and they are not the most common or effective 

choice for this task. 

5.1.2. Phase II: Our Proposed Ensemble Prediction 

Model 

The models with highest accuracies are selected to phase II 

for creating ensembles to experiment on the combination 

of image and clinical data in only binary classification 

scenario. Ensemble of models are created and first 

evaluated in terms of accuracy. To select the best 

performing model, precision, recall, and F1 score metrics 

are used to further evaluate the performance. While 

accuracy provides an overall measure of the model's 

correctness, precision, recall, and F1 score helps to assess a 

model's performance [24], particularly in imbalanced or 

skewed datasets. These parameters are calculated as 

follows:  

Accuracy =   TP+TN / TP+TN+FP+FN         (7) 

Precision =    TP / TP+FP                        (8) 

Recall      =    TP / TP+FN                                     (9) 

Where, TP, True Positive: number of malignant cases 

correctly classified as malignant. 

FP, False Positive: number of benign cases misclassified as 

malignant. 

TN, True Negative: number of benign cases correctly 

classified as benign. 

FN, False Negative: number of malignant cases 

misclassified as benign. 

Precision, also known as Positive Predictive Value or PPV, 

is calculated as the ratio of true positives to the sum of true 

positives and false positives. Precision provides insight 

into the model's accuracy when it predicts a positive class, 

as in equation no. 8. 

Recall, also known as sensitivity or true positive rate, 

measures the model's ability to correctly identify positive 

instances out of all the actual positive instances. It is 

calculated as the ratio of true positives to the sum of true 

positives and false negatives, as in equation no. 9.  

The F1 score calculation is based on precision and recall, 

which is shown in equation no. 10. F1 score is useful when 

there is an uneven distribution of classes in the dataset.  

F1 Score = 2 * ((precision * recall) / (precision + recall))       

(10) 

The ensemble prediction model with ANN and SVM on 

image dataset in combination with SVM, DT and RF on 

clinical dataset produced a prediction accuracy of 94.78%, 

and precision of 95.5% and recall of 71.4%. This ensemble 

showed the best performance in our experiments. 

All the tested and passed ensemble prediction model 

combinations and their performance metrics are shown 

graphically in Figure 9. 

 

Fig 9: Performance metrics of ensemble prediction models  

5.2. ThyroPredict App 

The proposed ensemble prediction model is used to power 

the ThyroPredict app, which uses Flask as web server in 

the local machine, and is developed using Python, HTML, 

CSS and JavaScript. The user interface of ThyroPredict is 

easy to navigate. The radiologist can upload the ultrasound 

image and input the initial details and assessments. On 

submission of the data in the home page, image and 

corresponding clinical data of the patient is processed by 

the ensemble prediction model. The RoI marked on the 

image will be used in annotating the image in pre-

processing. The x-y coordinates of RoI will be used to 

compute some additional clinical data such as Long to 

Short ratio, taller than wide etc. The home page and the 

final prediction of the app are shown in Figures 10, and 11. 

 

 

Fig 10: ThyroPredict app homepage after data entry and image 

upload 
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Fig 11: ThyroPredict app final prediction page 

5.3. Performance Comparisons of Proposed Ensemble 

Prediction Model with other Similar Models 

To evaluate and compare our proposed model with other 

similar works, we have selected studies which worked on 

TDID dataset. In a study using deep learning and machine 

learning methods [ 20], a prominent work by Dat Tien 

Nguyen in 2019 with CNN-based network for classifying 

ultrasound thyroid images yielded an overall accuracy of 

close to 87% using the TDID dataset.  

The study by Nanda and Sukumar [15] mentioned in the 

literature, used deep learning-based and LBPV-based 

methods using feature extraction and classification 

techniques that are similar to our proposed approach.  

The overall accuracy reported by Zhu et.al., [21] using the 

original TDID dataset is 93.75%, which is obtained by 

performing the data augmentation on both training and 

testing datasets, which is like our experiments. They 

obtained a classification accuracy of about 84.0% using 

Resnet18-based network with the TDID dataset. In our 

experiments, the ensemble of five Inception-v3 models 

achieved an accuracy of 90.22% on TDID thyroid US 

image dataset, after data augmentation on training and test 

data subsets.  

Additionally, it should be noted that the studies conducted 

by Chi et al. [22] and Sundar et al. [25] utilised multiple 

datasets other than TDID dataset for their researches. Their 

accuracy scores are 79.36 and 77.57% respectively. A 

study by Guan Q. et.al. [26] exploited a VGG-16 deep 

convolutional neural network (DCNN) model to 

differentiate papillary thyroid carcinoma (PTC) from 

cytological images. They tested the dataset on VGG-16 

network and Inception-V3. The accuracy comparisons are 

given below in the table.  

In a recent study [27] by Luoyan Wang, et.al, in 2022 

proposed a CNN model, called n-ClsNet, for thyroid 

nodule classification. Their model n-ClsNet achieved an 

average accuracy score of 93.8% in the thyroid nodule 

classification task. In their study in 2020, Dat Tien Nguyen 

et.al. [28] have achieved an accuracy score of 92.05%, 

with their model using Min, Max and Sum methods for 

thyroid nodule classification. 

This is presented in Tables 1 and 2 below. There are 2 

types of comparisons. Table 1 shows the comparison 

between our proposed method and the other state-of-the-art 

methods which used the same dataset TDID. Table 2 

compares between the proposed method and other thyroid 

nodule ensemble classification approaches in other related 

studies. 

Table 1: Accuracy Comparison table of models which 

used other data sources, and our proposed model 

Reference Accuracy 
Network/ 

Model 

[13] 93.88   

[15] 94.5 LBVP 

[20] 87   

[28] 92.05 

Min, 

Max, 

Sum 

Method 

[21] 84 
Inception 

Model 

[21] 93.75 
Overall 

Accuracy 

[22] 79.36 FDCNN 

[23] 77.57   

Our 

Proposed 
94.8 

Ensemble 

of ANN, 

SVM, 

Model 
 DT and 

RF 

 

Table 2: Accuracy Comparison of other models which 

used TDID dataset, and our proposed model. 

Reference Accuracy 
Network/ 

Model 

[12] 90.91 

Average 

Accuracy 

of ML 

Models 

[16] 85 RF/ XGB 

[17] 85.92 CNN - F 

[24] 87.5 
Inception 

V3 

[26] 87.5 

Inception, 

VGGNet-

16 
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[27] 93.8 

TNUI -21 

dataset, 

nCls-Net 

Our 

Proposed 
94.8 

Ensemble 

of ANN, 

SVM, 

Model 
 DT and 

RF 

 

6. Conclusions and Future Scope of the Study 

The main goal of this study is to develop a state-of-the-art 

ensemble model which will classify and predict thyroid 

nodules based on multiple modalities, clinical and US 

image data.  

From the experiments, an ideal model for thyroid nodule 

classification has emerged: a majority voting ensemble of 

ANN, SVM model trained on image dataset in 

combination with SVM, RF, and DT models trained on 

clinical dataset. 

An app developed based on this ensemble prediction 

model have demonstrated that our proposed ensemble 

method surpasses the classification accuracy achieved by 

many state-of-the-art models. The ThyroPredict app is 

specifically designed to offer a second opinion to doctors, 

particularly radiologists, in the diagnosis of thyroid 

nodules. 

The Recall (sensitivity) metric of our ensemble is found to 

be a bit weak (71.4%). Recall, also known as True Positive 

Rate (TPR) gives us the correctly classified positive 

instances out of all positive instances. It implies that some 

of the benign cases are also misclassified as malignant. A 

major future scope of this research is to reduce the false 

negatives and thus increase the sensitivity of the prediction 

app.  

The accuracy result analysis of models shows that the 

prediction accuracies of DL and ML models trained on 

image dataset are relatively lower than the same models 

trained on their corresponding clinical dataset. Thus, the 

future scope of this study is to improve the image dataset 

prediction accuracy.  

Another observation in the study is that the predictions 

with multiple class (viz. benign, intermediate, and malign) 

are less accurate compared to binary class (viz. benign, and 

malign) predictions. Thus, another key area of 

improvement is multiclass classification accuracy of 

thyroid nodule diagnosis. 

Key findings of our study of multimodal ensemble 

prediction can be used to identify areas for future research 

and development, and recommendations for clinicians and 

researchers. In conclusion, our ensemble model powered 

ThyroPredict app can be effectively used in thyroid cancer 

diagnosis and has shown promising results. 

Data Availability Statement 

Publicly available dataset is analysed in this study. This 

data can be found here: www.cimalab.unal.edu.co. 
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