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Abstract: FPGA-based embedding system designs have been preferred for industrial applications and prototyping because of the 

advantages of parallel processing, reconfigurability and low cost. Due to having characteristic structure of the parallel processing of 

Artificial Neural Networks (ANNs), these systems provide the advantage of speed and performance when they are implemented with 

FPGA-based hardware. The hardware implementation of transfer functions used for modeling non-linear systems is a challenging 

problem. Therefore, this problem creates convergence problems. In this paper, non-linear Sprott 94 S system has been modeled using 

ANNs running on FPGA. All related parameter values and processes are defined with IEEE-754-1985 32-bit single precision floating-

point number standard. ANN-based Sprott 94 S system design has been developed using VHDL synthesized using Xilinx ISE Design 

Tools. In test stage, ANN-based Sprott 94 S system has been tested using 3X100 data set and obtained error analysis results have been 

presented.  The constructed design has been performed for Xilinx VIRTEX-6 family XC6VHX255T-3FF1923 FPGA chip using 

Place&Route process and chip usage statistics have been given. The clock frequency of ANN-based Sprott 94 S system which has 

pipeline processing scheme has been obtained with the value of 304.534 MHz. Accordingly, the proposed FPGA-based ANN system has 

produced 3X3.284 billion outputs in 1 second. 
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1. Introduction

Currently, Field Programmable Gate Array (FPGA) chips have 

been used many areas since they have advantages like parallel 

processing, reconfigurablity, high speed comparable to other 

HardWare (HW) systems, possibility of the verification the 

designs by testing before the implementation of the HW, very 

low-cost than Application Specific Integrated Circuits (ASIC) 

HW for prototyping. Control [1], sensors [2], image processing 

[3], signal processing [4], converter systems [5], computer 

graphics [6], medicine [7], radio frequency systems [8], Artificial 

Neural Networks (ANNs) [9] are among the usage areas of 

FPGAs. ANNs, which are one of the research areas of FPGA-

based HW, are parallel information processing systems in their 

nonlinear structure. These systems need speeding up the 

computational process in real time engineering applications. 

There are also other ways to implement the ANNs as HW: Digital 

Signal Processing (DSP) chips and ASIC. Once an ANN is 

implemented as an ASIC HW, the network configuration cannot 

be modified later. Since the DSP chip performs given tasks in a 

serial fashion, DSP chip implementations cannot exploit the 

parallelism in ANN applications. The Transfer Functions (TFs) 

that used in ANNs have been divided into two parts, namely 

linear and nonlinear [10]. Because of having exponential 

operations in nonlinear TFs, the implementation of these 

functions in HW could be difficult when high speed and precision 

are required. In this paper, high speed discrete-time ANN-based 

system has been modelled using FPGA chips. Logarithmic 

Sigmoid (LogSig) TF has been used for the hidden layer of ANN-

based system. In the work, 32-bit single precision floating-point 

standard has been used and the system is coded with Very High 

Speed Integrated Circuit (VHSIC) Description Language 

(VHDL). In Section 2, general information about FPGA chips 

and ANNs have been given. In Section 3, the Sprott 94 S system 

has been presented. In Section 4, the structure and test process of 

the designed ANN-based discrete-time Sprott 94 S system on 

FPGA have been given. Besides, chip statistics and performance 

results obtained from implementation have been presented. 

Finally, the results of the study have been interpreted and some 

orientations have been announced for future work in Section 5. 

2. General Information

2.1. FPGA Chips 

FPGA chips, which provide flexibility in programmable systems 

using prebuilt resources, are high performance, reprogrammable 

and capable of parallel processing devices. Nowadays, these 

chips have various clock frequencies and HW features. IEEE-

754-1985 64-bit, 32-bit or 16-bit floating-point and IQ-Math

fixed point representations have been used in these chips by

coding with VHDL, Verilog and Handle-C. Figure 1 shows

Virtex-6 FPGA board produced by Xilinx. In general, FPGA

chips consist of Input/Output-Blocks (I/O-Bs) that are dedicated

to communicate with the outer world, Configurable Logic Blocks

(CLBs) that perform logic functions and interconnects that can be

programmable. CLBs contain Look up Tables (LUTs),

multiplexers and flip-flop units [11].
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Figure 1. Xilinx Virtex-6 FPGA board 

2.2. Artificial Neural Networks 

Recently ANNs are artificial intelligence structures developed for 

modelling nonlinear systems by mimicking the learning skills of 

human brain. ANN-based systems are utilized in numerous areas 

such as motors [12], control [13], medical [14], optimization [15, 

16], signal-image processing [17, 18], prediction [19, 20]. TFs 

used in ANNs are divided into two parts: linear and nonlinear. 

While pure linear, positive linear, hard limiting, and symmetric 

hard limiting TFs are the examples of linear TFs, radial basis, 

logarithmic sigmoid and hyperbolic tangent sigmoid TFs are the 

examples of nonlinear TFs [21]. There are ANN structures like 

Feed Forward Neural Networks (FFNN), Recurrent Neural 

Networks (RNN) and Cascade-Correlation Neural Networks 

(CCNN) in literature. The structure of FFNN has been given in 

Fig. 2.  

Figure 2. The structure of multilayer feed forward artificial neural 

network with one hidden layer 

ANNs generally consist of three layers namely, an input layer, 

one hidden layer and an output layer. As the input layer accepts 

the input variables to ANN from environment, the output layer 

transmits the environment. The hidden layer is the section where 

the proposed nonlinear system is modelled using neuron cell 

mathematically. Each artificial neuron consists of five parts 

namely inputs, weights, bias, TF and output.    

The general structure of neuron has been presented in Figure 3. 

Firstly, the input data I1, I2…..In are multiplied with their 

corresponding weights w1, w2…..wn and then summed together. If 

the neuron has bias value then the x value has been reached by 

summing the obtained value with the bias value. The result has 

been fed in the transfer function and the obtained value; y has 

been transferred to the output. 

Figure 3. The general structure of neuron with bias 

3. The numerical model of Sprott 94 S system

In general, chaotic systems are described with differential 

equations. The differential equations for Sprott 94 S [22] 

nonlinear autonomous system are given in Equation (1). In this 

equation, α and β are the system parameters and x, y and z are 

dynamic variables of this system. The variations in system 

parameters have changed the dynamic characteristic of the system 

[23]. For this reason, these parameters are quite important for 

determining the system behaviour. The Sprott 94 S system is 

simulated with the system parameters of α=-4.0 and β=1.0. The 

initial conditions of the system have been set x0=y0=z0=0.05 for 

producing chaotic signals. The system is described by the 

following nonlinear Equation (1): 
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The numeric simulation of the system has been executed using 

Matrix Laboratory (Matlab)-Simulink software for extracting the 

phase portrait of Sprott S system. The numeric simulation model 

of the system is presented in Figure 4. 

Figure 4. The Matlab-Simulink model of Sprott S system 

The output graphic of Sprott S system obtained from Matlab-

Simulink model is given in Figure 5. In addition, phase portraits 

of Sprott 94 S system were displayed in performing numerical 

simulation, as shown in Figure 5 for parameters of α =-4.0 and 

β=1.0 and initial conditions x0=y0=z0=0.05. As shown in Figure, 

the system exhibits chaotic behaviour. 

2

4

∑ f1

1

23

Input Layer

∑ f2

∑ fk

∑ fK

∑ f1

∑ fi

W11

WKM

W11

WKM

Hidden Layer Output Layer

X1

X2

X3

X4

Y1

Y2

1

I1

I2 

Bias

∑ f(x)
x y

w1
w2

4
1

s

1

s

1

s

X

Z

Y

1

International Journal of Intelligent Systems and Applications in Engineering 



IJISAE, 2016, 4(2), 33-39  |  35 

Figure 5. Sprott 94 S system: x, y and z time series and phase portraits obtained from Matlab-Simulink modeling results: x-y phase portrait, x-z phase 

portrait and y-z phase portrait 

4. Discrete-Time ANN Based Implementation of
Sprott 94 S System on FPGA 

In this work, ANN-based Sprott 94 S system has been modelled 

using Matlab for implementing the discrete-time of the system on 

FPGA. For the ANN-based Sprott 94 S system, the structure of 

Feed Forward Multi-Layer Neural Network has been used. ANN-

based system has 3 inputs and 3 outputs, respectively and 

pureline transfer function has been used for the output layer. The 

hidden layer has 7 neurons consisting Logarithmic Sigmoid 

(LogSig) transfer function which is one of the nonlinear transfer 

functions realized difficult by HW 10,000 samples have been 

generated by using fifth order Runge-Kutta-Butcher (RK-5-B) 

algorithm [24]. The generated samples have been divided into 

two groups: 8,000 samples for training and 2,000 samples for the 

test process. 100,000 epochs have been defined in training 

process with Levenberg-Marquardt (LM) algorithm. At the end of 

the training, the performance value (Mean Square Error (MSE)) 

has reached 2.30E-13. After the performed training and test 

processes, FPGA-based ANN has been evaluated using the 

obtained values of weight and bias coded inVHDL.  

In the presented work, Look-Up-Table (LUT) and COordinate 

Rotation DIgital Computer (CORDIC) based approximations [25] 

have been united for the implementation of LogSig transfer 

function used in the hidden layer of ANN on FPGA. The 

calculations between the values of –π/4-π/4 in other words 

e0.7853981-e-0.7853981 are possible using the values of Sinh(x) and 

Cosh(x) generated by CORDIC unit. In the proposed work, the 

received values to transfer function can be calculated between e-48 

and e+47.25 using CORDIC-LUT-based approximation. 

In Figure 6, the neuron structure used in hidden layer and FPGA-

based multilayer feed-forward ANN structure have been given. 

The input values of Xp1, Xp2 and Xp3 have been multiplicated by 

the corresponding weight values 𝑊11
̅̅ ̅̅ ̅, 𝑊21

̅̅ ̅̅ ̅ and 𝑊31 ̅̅ ̅̅ ̅̅  using the

units of Mult1, Mult2 and Mult3 on FPGA. Since these operations 

have parallel and pipeline processing scheme, the result of the 

first multiplication has been summed with the bias value for 

avoiding the latency process. Then, the obtained value by 

summing two intermediate values has been transmitted to LogSig 

transfer function.  

The value of -x signal has been obtained with negation process 

for LogSig transfer function. After that, the obtained value has 

been divided by ψ=0.75 for degrading the value to be calculated 

by CORDIC unit and the obtained ψ value has been converted to 

fixed point number standard. The fractional (λ) and integer (ω) 

parts of the ψ value have been separated each other by 

transmitting to two pipeline channels. After the latency process, 

eω value which corresponds to ω, has been obtained from LUT. 

In the second pipeline part, the calculation of λ value has been 

performed using CORDIC, taken ψ ≥ λ into consideration. In 

here, first of all 2-bits have been added to the most significant bit 

(MSB) of λ (16-bit) for compability of ψ (18-bit). Then, the 

obtained value λ has been multiplied by ψ to send result value, τ 

to CORDIC unit. sin(τ) and cos(τ) have been transmitted to adder 

unit by calculating them in CORDIC unit. In there, e 

τ value has 

been obtained by summing these two signals and has been sent to 

multiplier unit by converting to float-point standard. Then, the 

values of e 

τ and e ω have been multiplicated to reach e-x value. e-x 

value has been summed with FP 1.0 value and the transfer 

function value of LogSig(x) has been calculated by dividing the 

obtained value into FP 1.0 value (in 32-bit single precision IEEE-

754-1985 floating-point number standard).
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Figure 6. The neuron structure of hidden layer and FPGA-based Sprott 94 S system feed forward-multilayer ANN 

ANN-based Sprott 94 S system on FPGA has been coded with 

VHDL. 32-bit IEEE-754-1985 single precision floating-point 

number standard has been used in the implementation. The 

Place&Route process has been performed by synthesizing with 

Xilinx ISE Design Tools (DTs) 14-1 simulation program for 

Xilinx Virtex–6 family XC6VHX255T-3FF1923 chip. The 

statistical parameters of clock speed and FPGA chip utilization 

summary have been investigated and given in Table 2. 

Furthermore the minimum pulse period of ANN-based Sprott 94 

S system has been obtained 3.284 ns using Xilinx ISE DTs 14-1 

simulation program.  

The discrete time series results of x, y and z of the presented 

ANN-based Sprott 94 S system obtained from the implementation 

on Virtex-6 FPGA chip using Xilinx ISE DTs have been shown 

in Figure 7. Just after 137 clock cycle, ANN-based Sprott 94 S 

system produces the first outputs. After the first outputs, system 

outputs have been produced once per a 137 clock cycle. Although 

32-bit IEEE-754-1985 floating-point number standard has been 

used in the design, the simulation results of Xilinx ISE Design 

Tools 14-1 have been shown in Hexadecimal number standard to 

examine the discrete time series of x, y and z more comfortable. 

Table 1. FPGA chip utilization summary for the ANN-based Sprott 94 S system 

Xilinx 

FPGA 

Chip 

Slice 

Register 

Number 

DSP48E1s 

Number 

LUTs 

Number 

Occupied 

Slices 

Number 

Bounded 

IOBs 

Number 
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Frequency 

(MHz) 

VIRTEX-6 75,551 7 76,308 23,278 195 304.534 
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Figure 7. ANN-based Sprott 94 S system dicrete time series on FPGA 

The binary values of the designed ANN-based Sprott 94 S system 

in 32-bit single precision IEEE–754-1985 floating-point number 

standard related to x, y and z discrete time signals obtained the 

implementation on Virtex-6 FPGA chip using Xilinx ISE DTs 

14-1 have been saved in a file during the simulation test process. 

After the conversion of the saved values to the real number 

system, the discrete time series produced by ANN-based Sprott 

94 S system using the first 3x100 data set have been presented in 

Figure 8. 

Figure 8. The discrete time series of ANN-based Sprott 94 S system designed on FPGA using Xilinx ISE Design Tools 14-1 

The error analyses of Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Normalized Mean Squared Error 

(NMSE), Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) have been performed to specify the 

error rate of FPGA-based design constructed for ANN-based 

Sprott 94 S system using IEEE-754-1985 32-bit single precision 

floating-point number standard. RK5-Butcher algorithm has been 

selected as a reference in the performed error analyses studies and 

the first 3x100 data set generated from ANN-based Sprott 94 S 

system on FPGA has been used. The results of the obtained 

analyses have been presented in Table 2. 

Furthermore, absolute error analysis results of ANN-based Sprott 

94 S system implemented on FPGA have been presented 

graphically in Figure 9. According to obtained results, the 

minimum error value of y 2.37623E-06 and maximum error value 

of y 1.98885E-03 have been observed for 3X100 data set 

generated by ANN-based Sprott 94 S system. 

Table 2. MSE, RMSE, NMSE, MAE and MAPE analysis of ANN-based Sprott 94 S system on FPGA 

Signals MSE RMSE NMSE MAE MAPE 

x 1.369E-07 3.699E-04 1.231E-07 3.416E-04 2.148E-03 

y 5.991E-07 7.740E-04 1.383E-06 6.253E-04 3.285E-03 

z 4.314E-07 6.568E-04 2.172E-06 6.191E-04 9.921E-04 
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Figure 9. The absolute error analysis results of ANN-based Sprott 94 S system implemented on FPGA 

5. Conclusion

In the presented work, nonlinear Sprott 94 S system has been 

modelled using the approximation of LogSig transfer function on 

FPGA. The performed modelling of ANN’s architecture has been 

developed using VHDL with IEEE-754-1985 32-bit single 

precision floating-point arithmetic. The design of ANN-based 

Sprott 94 S system has been synthesized using Xilinx ISE Design 

Tools and tested using 3X100 data set. The error analysis results 

related to obtained tests have been presented. The performed 

design has been implemented with the Place&Route process for 

Xilinx VIRTEX-6 family, XC6VHX255T-3FF1923 FPGA chip 

and chip utilization statistics have been given. The ANN-based 

Sprott 94 S system having pipeline processing scheme on FPGA 

can be used with a clock frequency up to 304.534 MHz and 

ANN-based system has produced 3X3.284 billion outputs in 1 s. 

As further work, different nonlinear systems can be modelled 

using FPGA-based ANNs.  Thus the performance and error 

analysis can be performed using obtained results. In future, 

embedded secure communication applications can be performed 

using the proposed ANN-based Sprott 94 S system on FPGA. 
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