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Abstract: In the digital era, a hectic lifestyle and a lack of sufficient nutrition need the analysis of disease-specific aspects for the early 

detection of diseases in the human body. To identify the presence of heart diseases, electrocardiogram (ECG) parameters are analysed, 

while for identification of mental issues, electroencephalogram (EEG. These parameters' interdependency must be analysed to identify 

their cross-effects on different organs. For instance, improper heart functioning directly affects the normal functioning of the lungs, kidneys 

& liver. Continuous dysfunction of an organ indirectly causes other organs to become dysfunctional, thereby causing premature multiple-

organ failure. To overcome this problem, anample diversity of algorithmic models has been defined by researchers over the years. These 

models need improved disease progression analysis and scalability. Inefficient system design causes clinical mistakes and reduces multi-

organ analysis efficacy. This study presents an enhanced temporal analysis approach to determine illness development utilizing 

multiparametric analysis for a high-efficiency multi-organ analytical model. The machine learning algorithm is trained with temporal ECG, 

EEG, and blood records data. This data is used for building an augmented deep learning stack, which assists in evaluating the patient's 

current health condition and estimating progressive diseases that might affect other organs. The novelty & critical idea of the proposed 

model is that it utilizes an augmented combination of VGGNet-19, InceptionNet, and XceptionNet models to evaluate different diseases. 

Depending upon their disease-specific accuracy, these models are trained using other datasets for maximum performance. For instance, 

VGGNet-19 & models showcase the highest accuracy for EEG datasets. On the contrary, it has been shown that InceptionNet models 

exhibit superior performance when applied to electrocardiogram (ECG) signals, whereas XceptionNet is commonly employed for the 

classification of blood reports owing to its great efficacy in analysing one-dimensional data. These models are integrated to assess illnesses 

by utilizing immediate readings with a high level of efficiency. Upon collection of successively estimated readings, the model can predict 

disease progression with over 90% accuracy. This consistent performance across different disease types makes the system applicable for 

clinical usage. Furthermore, the proposed model is tested on few another dataset, and its performance and efficiency were compared with 

recent deep learning models, with an average 14% improvement in accuracy, 16% improvement in precision, 12% improvement in recall, 

and a 6% increase in computational delay was observed. While the model requires a significant training delay, the evaluation delay is 

moderate due to the disease-specific model design, making the system applicable for real-time clinical usage. 

Keywords: Progressive, Disease, VGGNet, InceptionNet, XceptionNet, Augmentation Learning 

1. Introduction 

The utilization and advancement of diverse data mining 

techniques in various practical domains, including industry, 

healthcare, and bioscience, have prompted their adoption in 

machine learning environments. These approaches are 

employed to extract significant insights from specific 

datasets within healthcare communities, biomedical 

categories, and related fields. The correct analysis of 

medical databases provides advantages in the early 

prediction of illness, the treatment of patients, and the 

provision of community services. The methodologies of 

machine learning have been effectively used in a wide 

variety of applications, one of which is the prediction of 

diseases. When a disease manifests within an individual, the 

human body will initiate a response by exhibiting various 

indicators such as pain, alterations in physiological 

parameters, deviations in behavior, and a diverse range of 

other modifications. The assessment of these qualities is 

commonly employed to delineate a particular type of 

sickness. For instance, the detection of diabetes relies on the 

analysis of fluctuations in blood glucose levels, while the 

identification of heart-related conditions is facilitated by the 

examination of alterations in electrocardiogram (ECG) 

signals. Both of these procedures are employed to 

diagnose medical diseases. However, it is important to note 

that various conditions often exhibit a strong association, 

and the development of a cross-parametric model might 

potentially enhance the accuracy of diagnoses. Due to the 

detrimental impact of prolonged glucose consumption on 

bodily functions and immune response, there is potential for 

the integration of cancer detection methods with glucose 

analysis to examine the influence of fluctuations in blood 

sugar levels. The body's susceptibility to cancer is 

heightened due to a reduction in red blood cells and 
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compromised immune function. Numerous instances of 

cross-parameter illness detection have been investigated 

throughout the course of time. The present study presents a 

methodology for doing a comprehensive cross-analysis on 

diabetes, cardiovascular disease, and cancer. The initial step 

involves examining a range of interrelated parameter 

correlations across various situations. Subsequently, by 

using these interconnections of cross-body parameters, the 

effectiveness of a network of neural networks in the 

classification of diseases is evaluated. In order to ascertain 

the presence of illnesses within the human body, that is 

important to assess evidence that is pertinent to the given 

circumstances. 

The detection of diseases through the analysis of scans, test 

results, and other data sources is a complex work that 

encompasses several domains. This task necessitates the 

development of effective architectures for signal processing 

and image processing. These architectural designs 

incorporate several components such as signal pre-

processing, segmentation, selection, and extraction of 

features, classification, and also post-processing. 

Furthermore, the feature extraction, selection, and 

classification performance of convolutional neural 

networks (CNN) architectures is notably high, owing to 

their intricate design. However, the result of the model is 

constrained to the training and validation data that were 

utilized for its development. Moreover, post-processing 

models encompass a wide range of studies due to the 

numerous potentialities and inferences that may be derived 

from inter-parameter correlation. Temporal investigation of 

electrocardiogram (ECG) data can be utilized to estimate 

the progression of cardiac disorders such as myopathy. The 

extended duration of this condition has a direct effect on 

pulmonary function, leading to the development of 

disorders such as chronic obstructive pulmonary disease 

(COPD) as a result of inflammatory processes. Hence, there 

exists a necessity for doing temporal cross-disease analysis, 

as it may contribute to the enhancement of diagnostic 

accuracy for various medical disorders through the 

development of deep-inference model designs.  

Researchers have built a diverse range of models to serve 

this objective [1,2,3,4]. The subsequent portion of this work 

presents an examination of these models, encompassing 

their intricacies, benefits, constraints, and potential avenues 

for further research. The survey findings indicate a need for 

further study in the area of inferred progressive illness 

categorization. This limitation hinders the practicality of 

present methods for immediate clinical use. Section 3 of this 

study suggests the development of an enhanced temporal 

analysis model for the purpose of identifying illness 

progression via the use of multi-parametric analysis. The 

motivation for this proposal is from the aforementioned 

finding. This section presents a novel approach to designing 

an improved technique for analysing materials in order to 

assess the course of diseases. The proposed method utilizes 

multi-parametric analysis and employs a high-efficiency 

multi-organ evaluation model. The model is trained 

utilizing temporal data from many sources, including the 

patient undergoing electrocardiogram (ECG), blood reports, 

electroencephalogram (EEG), and social media updates. 

The provided data is used to develop an advanced deep-

learning framework that assists in evaluating the present 

health condition of the patient and predicting the 

advancement of illnesses that may impact further bodily 

organs. The originality of the suggested model is in its 

evaluation of diverse situations through the utilization of 

XceptionNet, VGGNet-19, and InceptionNet architectures. 

To achieve optimal performance, these models undergo 

training using several datasets that are selected depending 

on their specific to disease accuracy. The VGGNet-19 

model has been seen to exhibit the best level of accuracy 

when applied to electroencephalogram (EEG) datasets. In 

contrast, InceptionNet models demonstrate superior 

performance in evaluation of electrocardiogram (ECG), 

whereas XceptionNet is employed for the classification of 

blood reports owing to its exceptional performance in 

handling single-dimensional data. These algorithms are 

integrated to effectively estimate illnesses based on real-

time readings. The proposed model employs many 

indicators, including electrocardiogram (ECG), 

electroencephalogram (EEG), blood reports, and social 

media activity,  predict the health status and progression in 

diseases of patients. Additionally, this model has the 

capability to forecast future diseases based on the course of 

existing diseases. The assessment of this model is 

conducted in section 4, where a comparison is made 

between different situations and the performance of 

progression evaluation using diverse methodologies. In 

conclusion, this paper presents noteworthy insights into the 

suggested model and offers recommendations for 

expanding its scalability and enhancing its performance. 

2. Related Work 

Researchers suggest numerous methodologies for multiple 

parametric studies of human health. For example, [5-6] 

proposes Optimal Wavelet Transform for 

electroencephalogram (EEG) and Ballistic-Cardiogram 

Artifact Reduction (BAR) , electrocardiogram (ECG), and 

other signal categorization with denoising. Similarly, in [7], 

deep learning models are used to assess the prediction of 

sleep bruxism utilising electromyography (EMG), power 

spectrum density (PSD), electrocardiogram (ECG), 

electroencephalogram (EEG). This model is used for sleep 

analysis; however, it may be expanded to analyse numerous 

parameters using dataset augmentation. Deep learning 

models explained in [8, 9, 10], the papers explains fuzzy 

feature with, multiple view CNN (MVCNN) and data 

decomposition, implemented for diabetes prediction from 
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EEG signals. Such models also gives advantage for 

enhancing classification efficiency. The research based on 

transfer learning improves the performance of CNN models, 

as reported in [11-13], where electroencephalogram (EEG) 

signals is implemented for various purposes. The model 

such bidirectional Gated recurrent units (BiGRU) [14] the 

approaches  for implementation of CNN model also shown 

to be more accurate as compared to linear classification 

models thus to be employed in clinical investigation. The 

research with wavelet transform using various CNN 

architectures (MTCNN) [15], fuzzy classification 

techniques [16] along with other models are implemented 

with multilevel weighted feature fusion using CNN [17], 

along with quality-aware classification methods [18] for 

disease predictions. To improve  the efficiency of 

classification process, models can be used to remove 

redundant feature extraction steps. Other description and 

classification methods, such as those presented in [19-21], 

which employ GRU-based RNN, Hjorth descriptors, 

MobileNet, Inception-v3, Xception, and NasNetLarge, 

might be used to further improve its efficiency. This would 

be a step in the right direction. Due to a single kind of illness 

detection and intensity identification, a combination of 

these models is responsible for high-efficiency 

classifications while preserving minimal latency. [22-24] 

describe similar deep learning models for numerous human 

body characteristics, including LSTM, deep transfer 

learning, and lightweight deep neural network architectures. 

Such model have capability to reduce error rate and enhance 

accuracy during illness prediction by lowering feature 

variance during classification. 

Researchers describe models of deep learning such as 

ensemble classifier used for implementation of 

electrocardiogram (ECG) signals [25], also the efficient 

model such as LSTM model have quantized architecture  

which is be used to detect numerous organ issues [26], 

Thalassemia identification is done with the RBC levels by 

using ensemble classification [27], and for classification of 

the blood cell CNN with transfer learning is implemented 

[28]. But such models are accurate for single kind of blood 

report but does not perform efficiently when applied to 

analysis several blood issues. As a result, clinical uses for 

these models are restricted when tried to detect several 

issues at a time in model. Similarly, [29-31]'s work is very 

valuable for RBC-based illness diagnosis, blood pressure-

based disease categorization, and postural behavior 

analysis. It is proposed to integrate these models to measure 

their performance for combined illness categorization and 

progression detection. Another area of investigation is the 

categorization of health conditions based on eating habits. 

This aids in assessing patients' eating patterns in order to 

diagnose problems such as obesity, lethargy, and so on. In 

the research referred to [32-34], the authors offer many 

models for the analysis of egocentric photo streams, an 

online learning neural network (OLNN) in the detection of 

human eating activities (HEAR), and an assessment of the 

healthy eating index through the aggregation of mobile-

based data. Similar models are explored in [35-37], where 

deep learning models are proposed to be used to analyze 

various illness kinds. To evaluate the influence of further 

measurements on the complete human body, a mixture of 

these models must be used. In response to this fact, the 

section that follows offers an expanded temporal analysis 

model for diagnosing illness development utilizing multi-

parametric analysis. 

Several models exist for detecting human body disorders 

from various data sources, as was discovered in the review 

employing multi-parametric analysis to identify disease 

development. Results from a comparison of these models 

show that convolutional neural network (CNN) based 

approaches perform the best. These methods included gated 

recurrent unit (GRU) based long-short-term-memory 

(LSTM),  recurrent neural networks (RNN), and Q-learning 

models. Further work has to be done to make these models 

scalable so that they can analyze illness progression 

accurately. As a consequence, clinical mistakes arise and 

the efficacy of multi-organ analysis suffers due to 

inefficient system design. Models such as GoogLeNet, 

VGGNet-16, Binary RNN, AlexNet, continuous non-linear 

RNN, ResNet-50, short-term-memory (STM), 

InceptionNet,  Yolo,  XceptionNet are constructed utilizing 

common CNN architectures. Nevertheless, enhanced CNN-

based architectures stand out as the most efficient of these 

models due to their ability to aid in the interpolation of input 

datasets in order to improve classification performance. 

Given these findings, this section proposes a 

multiparametric analysis-based augmented temporal 

analysis method for tracking the development of a disease. 

Input datasets such as electrocardiogram (ECG), 

electroencephalogram (EEG), and blood reports data are 

shown in Figure 1 as part of a model for the proposed 

system. The model as a whole is broken down into its 

constituent parts, which are each addressed in turn below. 

These sections as a guide while deploying the model in your 

system, either in part or in whole.
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Fig 1. Model for the proposed system 

3. Results and Discussions 

3.1. Database 

The evaluation of the proposed model encompasses various 

datasets, including the electroencephalogram (EEG) dataset 

sourced using the Siena Scalp electroencephalogram 

(EEG), electrocardiogram (ECG) dataset retrieved from the 

BIDMC Congestive Heart Failure database, and the blood 

report dataset derived from the NHANES Laboratory. The 

databases encompass a total of 11,200 items, each 

about distinct patient categories exhibiting diverse health 

problems. 

3.2. Pre-Processing layer 

Converting data from several sources into a standard format 

facilitates processing. When working with 2D data, CNN 

models perform better in terms of categorization. Hence, the 

model makes use of 2D representations of both the 

electrocardiogram (ECG) and electroencephalogram (EEG) 

data. But first, an equation 1–based quantization technique 

is applied to every data sample. 

𝑄𝑑𝑎𝑡𝑎𝑖
= 𝑟𝑜𝑢𝑛𝑑 [255 ×

(𝐷𝑎𝑡𝑎𝑖 − min(𝐷𝑎𝑡𝑎))

max(𝐷𝑎𝑡𝑎) − min(𝐷𝑎𝑡𝑎)
] … (1) 

Where 𝑄𝑑𝑎𝑡𝑎𝑖
 represents 𝑡ℎ𝑒 𝑖𝑡ℎ is an instance of 

quantization input data. The use of the number 255 is 

employed to transform the data frame into an 8-bit scale, 

hence enhancing the performance of categorization. 

Following the algorithm 1 process of quantization, the 

datasets of the electroencephalogram, or EEG, and 

electrocardiogram (ECG) are transformed into two-

dimensional vectors.

ASET ECG EEG  BR 

Pre-Processing 

Heart  Brain 

Diseases 
Cancer Healthy 

DATASET VGG19 InceptionNet XceptionNet 

Maximum 

Identification of Diseases 
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This approach yields several 2D vectors corresponding to 

every electrocardiogram (ECG) and electroencephalogram 

(EEG) data. In a similar manner, one-dimensional signals 

are obtained for the datasets pertaining to blood reports and 

dietary habits. Blood reports often include measurements of 

many parameters such as haemoglobin levels and blood 

pressure, levels of glucose, vitamin B12 levels, vitamin D3 

levels, kidney function test results, liver function test results, 

blood gas levels, and other relevant indicators. Further pre-

processing of the data may involve filtering, normalization, 

and feature extraction, depending on the problem's specific 

requirements and the data's characteristics. 

3.3. Identification of Diseases 

Algorithms 2, 3, and 4 illustrate the three classifiers we 

suggest merging: VGG19, InceptionNet, and XceptionNet. 

With a total of 19 layers, VGG19 is indeed a deep neural 

network with 16 convolutional layers as well as 3 fully 

connected layers. Frequently utilized in image classification 

problems, the model accepts as input a 224x224 picture with 

three colour channels (RGB), and produces a probability 

distribution more than a thousand classes. Deep 

convolutional layers define VGG19's architecture, and they 

are reinforced by max pooling layers that down sampled the 

feature maps. To do this, the input picture is passed through 

a series of convolutional layers, each of which is made up of 

a series of 3x3 filters with such a stride of 1 with padding of 

1. The network's final, fully linked layers are responsible for 

mapping the input characteristics to the desired classes. Our 

raw data is then sent into VGG19  the general steps of 

VGG19 is as shown in algorithm 2, Exception, and inception 

for further processing. In the tensorflow2 code snippet 

example shown below, VGG19 is employed. Combining the 

findings from three different CNNs—VGG19, 

InceptionNet, and XceptionNet—improves accuracy and 

reduces variation in electroencephalogram (EEG) signals, 

electrocardiogram (ECG) signals, but only one (1D) blood 

report data, respectively. Using equation 2, the two models' 

output classes are merged based on the results of the tests 

performed on each model. 

𝐶𝑜𝑢𝑡𝐸𝐸𝐺
= [𝐴𝑡𝑒𝑠𝑡𝑉𝐺𝐺

× 𝐶𝑜𝑢𝑡𝑉𝐺𝐺
] … (2) 

𝐴𝑡𝑒𝑠𝑡𝑉𝐺𝐺
represents the testing accuracy of VGGNet 19, 

while 𝐶𝑜𝑢𝑡𝑉𝐺𝐺
 represents VGGNet output classes. ECG and 

blood records are classified using conventional Inception-

Net and Xception-Net models. Equations 3 and 4 manage 

classifier outputs using similar fusion techniques. 

XceptionNet's operation is explained in the code below.  

A distinct classification layer is assigned to each temporal 

group cluster. The selection of these layers is determined by 

the efficiency of individual CNN models, as measured by 

data-based input. During the assessment, it was noted that 

VGGNet-19 models demonstrate high accuracy in the 

context of InceptionNet, which is a well-

recognized architecture of deep neural networks utilized for 

image classification applications. Here is a sample code 

using Keras library in Python to implement nceptionNet. 

This code defines an inception_module function that creates 

one block of the InceptionNet architecture.

 

 
 

Algorithm-2: VGG19 Model 

The VGG19 architecture is composed of a total of 19 layers, which encompass 16 layers of convolution, 3 

layers that are fully connected, and a max pooling operation.  

1. To mathematically model VGG19. Let's call this function f.    f(input) = output_vector 

2. The function f consists of several layers that perform different operations on the input image. 

3. The initial layer of the VGG19 architecture consists of a convolutional layer, which employs a 

collection of filters to process the input picture and extract relevant characteristics, say as layer 

L1. The output of L1 is a set of feature maps.   f(input) = L1(input) 

4. The subsequent layer in VGG19 consists of  max pooling layer, which serves to decrease  spatial 

dimension of  feature maps. Let's call this layer L2.  f(input) = L2(L1(input)) 

5. Fully connected layer VGG19 take outcome of the convolutional layers and produce a probability 

vector for each class. Let's call these layers L3.  f(input) = L3(L2(L1(input))) 

Algorithm-1:Convert the dataset into a 2D vector 

1. State 2D empty vector with size 256x256, define col=0, row=0. 

2. In all input signal, save the input signal in a row, col position 

3. For columns, col=col+1 

4. if col=128, then row=row+1, col=0 

5. if row=128, then store 2D vector in  dataset, name it value of detected disease, continue the 

process for the next signal 

6. For blood reports, convert the data into 1D data. 
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The create_inception_net function then uses this block to 

create a full InceptionNet model with the specified number 

of classes also shown in equation3. 

C_(out_BR )=[A_(test_Inception )×C_(out_Inception ) 

]…(3) 

𝐶𝑜𝑢𝑡𝐸𝐶𝐺
= [𝐴𝑡𝑒𝑠𝑡𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛

× 𝐶𝑜𝑢𝑡𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛
] … (4) 

The XceptionNet architecture is comprised of 36 

convolutional layers including 3 fully linked layers, 

resulting in a total of more than 20 million parameters. 

Experimental research has demonstrated that this approach 

attains exemplary performance on many computer vision 

research, encompassing picture categorisation, object 

identification, and also semantic segmentation. The output  

the XceptionNet using ECG can be shown in equation4. 

The electroencephalogram (EEG) classification yields 

results about certain categories of brain disorders, 

encompassing diseases such as Parkinson’s, Alzheimer's, 

epilepsy, and Parkinson's. The categorization of 

electrocardiogram (ECG) findings in heart disease 

categories, such as cardiac arrhythmia coronary artery 

disease (CAD), as well as deep vein thrombosis, is 

accompanied by a categorization of blood reports, which 

yields outputs related to cancer illnesses. Convolutional 

neural networks (CNNs) are advantageous in the 

categorization of electrocardiogram (ECG), 

electroencephalographic (EEG), and blood report data due 

to their ability to process a substantial volume of input 

samples. This characteristic enables these networks to 

effectively analyze extensive characteristics, hence 

facilitating accurate classification. The 

electroencephalogram (EEG), and electrocardiogram 

(ECG), with blood reports were provided to the progressive 

analysis and correlation engine for further examination. The 

subsequent part describes the design of the engine, which 

facilitates the temporal evaluation of the specified user 

health classes. 

3.4. Progressive Evaluation & Correlation Mechanism 

As mentioned in section 3.2, in the health category 

classification process execution occurs for each individual 

data cluster. As a result, an assessment is conducted to 

determine the illness type and severity for each user. This 

aids in the assessment of temporal health issues for every 

individual user. The assessment of illness development is 

contingent upon the temporal conditions associated with 

each specific disease type. Such progression (𝑃𝐷𝑝
) is 

calculated for each patient as shown in equation 5. 

𝑃𝐷𝑝
=

(∑ 𝑆𝐷𝑖
− 𝑆𝐷𝑖+1

𝑁−1
𝑖=1 )

𝑁 − 1
+ 𝑆𝐷𝑁

… (5) 

𝑆𝐷 represents the severity of disease 𝐷, while 𝑁 represents 

temporal assessments conducted for the specific disease. 

Progression value denotes the rate at which the illness 

exhibits growth or advancement over a certain period. The 

previously mentioned value is assessed for each 

neurological disorder, cardiovascular condition, and 

malignant neoplasm. Following the assessment of these 

disorders, they are subjected to analysis by a correlation 

engine, wherein the course of each condition is evaluated 

against established clinical guidelines. The guidelines 

encompass the influence of the advancement of heart disease 

and kidney disease on pulmonary function, as well as the 

effects of brain disease and heart diseases on blood pressure 

regulation, among other factors. In order to assess the link 

between the standard clinical recommendations and the 

progression level of each illness, equation 6 is employed for 

comparison purposes. 

𝐶𝑜𝑟𝑟𝐷𝐵
=

∑ 𝑃𝐷𝑖
− 𝐶𝑅𝐷𝐵

𝑁
𝑖=1

√∑ (𝑃𝐷𝑖
− 𝐶𝑅𝐷𝐵

𝑁
𝑖=1 )2

… (6) 

𝐶𝑅𝐷𝐵
 indicate clinical reference for disease 𝐷 on the body 

structure 𝐵, while 𝐶𝑜𝑟𝑟𝐷𝐵
 signifies the current patient's 

correlation among disease D and body part B. This 

correlation value estimates the chance of illness D occurring 

on the individual's body part B can be utilized to make a 

further clinical diagnosis. Therefore, this method may be 

employed by medical professionals to assess the impact of 

various illnesses on individual organs and their subsequent 

development. The outcomes of this progression 

identification are seen across a diverse range of patients and 

assessed on the basis of accuracy, precision, memory, and 

computational latency.
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4. Result 

The model proposed is assessed using various datasets, 

including the electroencephalogram (EEG) dataset obtained 

from the Siena Scalp EEG database, which is accessible on 

Kaggle. Additionally, the electrocardiogram (ECG) dataset 

from the BIDMC heart failure congestive database and the 

blood report dataset from the NHANES Laboratory are also 

utilized for evaluation purposes. The databases encompass a 

total of 11,200 entries, each representing distinct patient 

types exhibiting diverse health problems. The data is 

partitioned in 70:30 ratio for training and testing. The testing 

set is subjected to parametric analysis, wherein the accuracy 

(A), recall (R), precision (P), and delay values are 

calculated. This analysis is conducted subsequent to training 

the model using the provided training sets. The Figure2 

indicate the loss and accuracy of the model, for few epoch 

such as 3-4 epoch, as the epoch increases the accuracy can 

be stabilize for the model. MVCNN [10], PSD [7], MTCNN 

[15], as well as the proposed model are all calculated for the  

above-mentioned variables of accuracy, recall, precision, 

and latency. The parameters are tested in a variety of 

scenarios to help estimate how they would behave in real-

world situations. Table2 displays, for example, the 

accuracies (A) for a variety of test set sizes (TSS). 

According to Figure 3, we evaluated the model by raising 

the tss, and the model's accuracy remained steady and 

Algorithm-3: InceptionNet 

 

Consider input image with x and the output each layer as h(i), where i is the layer number. Output of this layer can be represented as: 

h(1) = f(W(1)*x + b(1)) where f is the activation function, W(1) is the set of convolutional filters, and b(1) is the bias term. 

 

The second layer of InceptionNet consists of numerous filters with diverse sizes (1x1, 3x3, 5x5). The output of each filter can be 

represented as: h(2,1) = f(W(2,1)*x + b(2,1)), h(2,2) = f(W(2,2)*x + b(2,2)), h(2,3) = f(W(2,3)*x + b(2,3)) where W(2,i) and b(2,i) are 

the filters and bias terms for the i-th filter, correspondingly. The outcome of the second layer is obtained by concatenating the outputs of 

each filter: h(2) = concatenate(h(2,1), h(2,2), h(2,3)). 

 

The third layer of InceptionNet is another set of filters with different sizes, followed by a concatenation operation, comparable to the 

second layer. The outcome of this can be represented as: 

h(3,1) = f(W(3,1)*h(2) + b(3,1)), h(3,2) = f(W(3,2)*h(2) + b(3,2)) 

h(3,3) = f(W(3,3)*h(2) + b(3,3)), h(3) = concatenate(h(3,1), h(3,2), h(3,3)) 

 

The fourth layer is a pooling layer that decreases the size of the output by taking the maximum value within a small window of the output. 

The output of the fourth layer  represented in: h(4) = maxpool(h(3)) 

 

The fifth layer is a fully connected layer that takes the outcome of the previous layer and produces a set of features for classification. The 

outcome of the fifth layer indicated as:  h(5) = f(W(5)*h(4) + b(5)) 

Finally, the last layer is another fully connected layer which produces the final result. The output of last layer indicated as:  h(6) = 

softmax(W(6)*h(5) + b(6)) where softmax is the activation function used for multi-class classification tasks 

Algorithm-4: XceptionNet 

XceptionNet model can be represented as a series of depthwise separable convolutional layers sequence by a set of fully connected layers 

for classification. Input image indicated as x and output of each layer as h(i), where i is the layer number. 

The initial layer of XceptionNet is standard convolutional layer with a set of filters with size 3x3. The output of this layer can be represented 

as: h (1) = f(W (1)*x + b(1)), where f is the activation function, W(1) is the set of convolutional filters, and b(1) is the bias term. 

The second layer XceptionNet is a depthwise separable convolutional layer  

h (2) = f(W(2,2) *f(W(2,1)*x) + b(2)), where W(2,1) and W(2,2) are the sets of filters for the depthwise and pointwise convolutions, 

respectively, and b(2) is the bias term. 

The 3rd layer in XceptionNet is a depthwise differentiated convolutional layer like the second. Layer output can be represented as: h(3) = 

f(W(3,2)*f(W(3,1)*h(2)) + b(3)) 

The fourth layer output of each residual module can be represented as: 

h(4,i) = f(W(4,i,2)f(W(4,i,1)(h(4,i-1) + h(4,i-2))) + b(4,i)), where W(4,i,1) and W(4,i,2) are the sets of filters for the depthwise and pointwise 

convolutions, respectively, and b(4,i) is the bias term. 

The final layer of XceptionNet is a set of fully connected layers that take the output of the previous layer and produce a set of features for 

classification, h(5) = f(W(5)*h(4,N) + b(5)), where N is number of residual modules in model, W(5) is the set of weights for the fully 

connected layers, and b(5) is the bias term. 

Finally, the last layer is another fully connected layer that produces the final classification result. The output of the last layer is indicated as: 

h (6) = softmax(W(6)*h(5) + b(6)), where softmax is the activation function used for multi-class classification tasks. 
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improved upon relative to that predicted by the baseline 

model.

 

  

Fig 2: Loss and Accuracy for the proposed model 

Table 2: Accuracy Comparison 

TSS PSD [7] MV [10] MT [15] Proposed Model. 

100 77.84 61.29 63.27 96.23 

200 78.57 61.86 63.86 97.12 

300 78.72 61.98 63.99 97.32 

400 79.05 62.24 64.25 97.71 

500 79.21 62.36 64.38 97.91 

750 79.30 62.43 64.45 98.02 

1000 79.30 62.43 64.45 98.02 

1200 79.31 62.44 64.46 98.03 

1400 79.31 62.45 64.47 98.04 

1600 79.31 62.45 64.47 98.04 

1800 79.32 62.45 64.47 98.05 

2000 79.32 62.45 64.47 98.05 

2200 79.32 62.45 64.47 98.05 

2400 79.33 62.46 64.48 98.06 

2600 79.33 62.46 64.48 98.06 

2800 79.66 62.72 64.74 98.46 

3000 79.72 62.77 64.80 98.55 

3100 79.79 62.83 64.86 98.64 

3200 79.86 62.88 64.91 98.72 

3300 79.93 62.93 64.97 98.81 
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Fig 3: Accuracy Comparison Graph 

Figure4 displays the accuracy results, which reveal that the 

proposed system is 26% more accurate in its progression 

prediction than MVCNN [10], and 19% more accurate than 

MTCNN [15]. Table3 below shows similar findings for 

precision (P) values. 

Table 3.  Precision Comparison 

TSS PSD [7] MV[10]  MT[15]  Proposed Model  

100 52.39 48.44 40.62 64.76 

200 52.88 48.89 41.00 65.36 

300 52.98 48.99 41.09 65.50 

400 53.20 49.19 41.25 65.76 

500 53.31 49.29 41.33 65.89 

750 53.37 49.34 41.38 65.96 

1000 53.37 49.34 41.38 65.96 

1200 53.37 49.35 41.38 65.97 

1400 53.38 49.35 41.38 65.98 

1600 53.38 49.35 41.38 65.98 

1800 53.38 49.36 41.39 65.98 

2000 53.38 49.36 41.39 65.98 

2200 53.38 49.36 41.39 65.98 

2400 53.39 49.36 41.39 65.99 

2600 53.39 49.36 41.39 65.99 

2800 53.61 49.57 41.56 66.27 

3000 53.66 49.61 41.60 66.32 

3100 53.70 49.65 41.64 66.38 
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3200 53.75 49.70 41.67 66.44 

3300 53.80 49.74 41.71 66.50 

 

Fig 4: Precision Comparison Graph 

As can be shown in Figure 4, the suggested model has a 

precision that is 12 percentage points higher than PSD [7], 

16 percentage points higher than MVCNN [10], and 25 

percentage points higher than MTCNN [15]. This makes it 

suitable for high-precision clinical applications. You may 

see the same patterns in Table 4, which displays recall (R) 

values. 

Figure 5 shows that the suggested model is 14% more 

effective than PSD [7], 16% more effective than MVCNN 

[10], and 24% more effective than MTCNN [15] in terms of 

recall, making it suitable for high recall clinical applications. 

Delay in examination results in similar conclusions, as seen 

in Table 5.

Table 4. Recall Comparison 

TSS PSD [7]  MV[10]  MT[15] Proposed Model 

100 51.73 47.85 40.12 63.96 

200 52.23 48.27 40.47 64.57 

300 52.33 48.37 40.58 64.66 

400 52.54 48.56 40.75 64.95 

500 52.65 48.66 40.83 65.09 

750 52.71 48.75 40.86 65.15 

1000 52.71 48.74 40.86 65.15 

1200 52.72 48.75 40.86 65.16 

1400 52.72 48.75 40.86 65.17 

1600 52.72 48.75 40.86 65.17 

1800 52.73 48.76 40.89 65.17 

2000 52.74 48.76 40.89 65.17 

2200 52.73 48.76 40.89 65.17 

2400 52.74 48.76 40.89 65.18 
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2600 52.73 48.76 40.89 65.18 

2800 52.94 48.95 41.04 65.45 

3000 52.99 48.99 41.09 65.51 

3100 53.04 49.04 41.13 65.56 

3200 53.08 49.08 41.15 65.61 

3300 53.13 49.12 41.19 65.67 

 

Fig 5: Recall Comparison Graph 

Table 5. Delay Comparison 

TSS PSD [7] MV [10] MT [15] Proposed Model 

100 0.50 0.48 0.41 0.52 

200 0.50 0.49 0.41 0.52 

300 0.50 0.49 0.41 0.52 

400 0.50 0.49 0.41 0.52 

500 0.50 0.49 0.41 0.52 

750 0.50 0.49 0.41 0.52 

1000 0.51 0.50 0.42 0.52 

1200 0.51 0.50 0.42 0.52 

1400 0.51 0.50 0.42 0.52 

1600 0.51 0.50 0.42 0.52 

1800 0.51 0.50 0.42 0.52 

2000 0.51 0.50 0.42 0.52 

2200 0.51 0.50 0.42 0.52 
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2400 0.51 0.50 0.42 0.52 

2600 0.52 0.51 0.43 0.53 

2800 0.52 0.51 0.43 0.53 

3000 0.52 0.51 0.43 0.53 

3100 0.52 0.51 0.43 0.53 

3200 0.52 0.51 0.43 0.53 

3300 0.52 0.51 0.43 0.53 

 

Fig 6: Delay Comparison 

It is shown in Figure 6 that the suggested model is 10% 

slower than MVCNN [10], and 15% slower than MTCNN 

[15], due to model's usage of numerous training and 

evaluation phases, but it achieves the same performance as 

PSD [7] on the presented datasets. Due to the fact that the 

suggested model only requires a little additional amount of 

time for computation, it has been found useful in the medical 

field. It may be employed in situations requiring high 

precision, high accuracy, and high recall in real-time illness 

progression diagnosis. 

5. Conclusion  

Our proposed approach of augmented temporal analysis in 

illness progression identification utilizes a variety of 

characteristics to conduct the study. The parameters 

encompass many types of data, including the results of 

electroencephalogram (EEG) data, electrocardiogram 

(ECG) data, blood report facts, including diet information, 

all pertaining to individuals within the same category. 

Several different kinds of convolutional neural networks 

including linear classification models are utilized to classify 

each parameter. In terms of progression detection, Since 

classifiers are chosen based on their performance for 

different data sets, the recommended model is 19% more 

effective than PSD [7], 26% more accurate than MVCNN 

[10], but 24% more accurate than MTCNN [15]. Due to the 

delay in validation and training of this collection of 

classifiers, the proposed model is 10% slower than MVCNN 

[10] as well as 15% slow than MTCNN [15] but performs 

similarly to PSD [7] on the presented datasets. The 

suggested approach is still widely useful for a variety of 

clinical application situations, even after the delay has been 

increased. Q-learning, reinforcement learning, and enhanced 

deep-learning methods will allow researchers to gradually 

boost the anticipated model's performance in the future. 
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Additionally, redundancy elimination during categorisation 

and progression prediction using efficient feature selection 

techniques and their implementation on bigger dataset is 

required to lessen the suggested model's lag time. 
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