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Abstract: Methane gas is the Earth’s atmospheric second most significant greenhouse gas, so to reduce these emissions effective deep 

learning methods adopted. Methane source points and dimensions can be determined using airborne remote sensing AVIRIS-NG. The 

existing manual approaches, small pixel-footprint signal of the plumes causes them liable to human error and poorly scalable. The 

proposed Convolutional Neural Network (CNN) adapted from MATLAB toolbox to produce outcome of linear combinatorial pixel 

segmentation with accounting time. The target of the innovative is to segment the methane gas accurately considering minimization of 

the misclassification of plumes among terrain HSI raster data. Employing off-the-shelf CNN with available filters, the recursive filters 

applied to achieve long impulse response without having the reflectance to perform a long convolution. The SSIM metric evaluated the 

accuracy and the proposed approach produced outcome with the effectiveness of 98.21% precision, Recall of 96.89%, IOU of 93.93% 

and 98.36% F1-Score. 
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1. Introduction 

The methane gas is a significant component of the planet's 

atmosphere and is one of the main causes for worldwide 

environmental degradation, known to be Greenhouse gas, 

it is about 86 times that is as of carbon dioxide [1]. As 

survey paper approached ch4 accounts about 20% among 

the other gases in the Global Warming [2]. JPL data set 

using AVIRIS-NG to collect, monitor such methane plume 

emissions.  AVIRIS-NG [19] collects and record the 

information regarding the spectral wavelength range from 

visible to the spectral short Infra ranges available among 

the atmospheric levels. In the present work produced 

regarding the algorithms [5] that detected the methane 

plume signals from the AVIRIS-NG images which are 

about collected data of ch4 is almost about in the small 

signal range that is 2100nm to 2400nm.  However the 

segmentation outcome from the algorithms can still be 

with the noisy signals within the retrieved outcome data.  

 This work made to consider about combining the hybrid 

techniques which is about conventional and machine 

learning processing systems together.  

The existing and present methods addresses the limitations 

about the system complexity and speed and Manual 

processing to be taken into the constellation because of day 

bottle line at retrieving the special information specially to 

detect and segment the plumes data over terrain data. 

Aerial images are commonly used to detect the sources of 

the plumes of the gases [4,5,6,7] and here it is methane and 

specifying its region and quantifying its area among the 

distributed terrain data.  AVIRIS-NG are not meant or 

designed for detecting the gases but made to capture 

everyday spectral ranges in the atmospheric layers. 

Methaneand its plumes are identified and segmented using 

the wavelength range between 2215nm and 2410nm. The 

centric matching filter algorithm [7] found the presence of 

Methane Gas and its quantification which is commonly 

gathered by the average injections which are produced 

with the noising outcome along the false positive of the 

plumes present.  

A significant impediment to the advancement of CH4 

detection strategies is the restricted accessibility of public 

training data. A fresh dataset called Methane Hot Spots 

(MHS) has been released for machine vision. A unique 

one-step end-to-end method for hyperspectral transformer-

based methane plume detection. In combination, both 

modules—spectral refiner[SFGQR]—enable localization 

of possible CH4 plumes in the hyperspectral images using a 

Spectral-known linear extractor and enhance the query 

depiction for more effective decoding. This is an 

improvement over the conventional transformer design [3]. 

By carefully selecting associated pixels in the spectrum 

domain, a novel spectrum Linear Filter (SLF) enhances the 

performance of conventional linear filters by improving 

background distribution and enhancing methane signal. 

Neighboring signal units or image pixels show a certain 

amount of similarity since their physical sources are 

uniform. Instead of using the conventional brute force 

methods, which grow exponentially with the number of 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

  1  Visvesvaraya Technological University, India  

ORCID ID :  0009-0000-0822-2706  
2 Visvesvaraya Technological University, India   

ORCID ID :  0000-0001-5152-0952  

* Corresponding Author Email: snehavenkateshalu@gmail.com 

https://orcid.org/0009-0000-0822-2706


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 635–643 |  636 

data, we can instead use contextual information in the form 

of features that characterize the studied signals or images. 

Our objective then shifts to find for certain confined 

characteristics in the data. Working in the feature space as 

opposed to the raw pixels has the additional benefit of 

solving the significant issue of pattern location changes in 

the data resulting from translation. Specifically, a feature-

wise technique searches for particular forms anywhere in 

the signal, but a pixel-wise approach assumes a complete 

shift in pixels whenever a particular data feature changes 

its position.  

In particular, the convolution window also known as the 

convolution filter or convolution kernel used in CNNs may 

identify just one feature that matches its shape. To achieve 

this, we apply feature matching across the entire signal, 

acting as if it were an analytical filter looking for particular 

shapes.  Hyperspectral image can still be directly examine 

in terms of reality as indicated by the Einstein's berg colour 

notion. In another way, the reflecting properties of the 

context will be connected to the reduced image of 

dimensional pixels. Additionally, a built around off-the-

shelf CNN may effectively minimise distortion from 

hyperspectral imaging with complement filter.  

2. Related Work: 

All printed material, the morphological patterns (MPs) 

suggested classifying data from remote sensing more 

accurately. MPs are created utilizing attributes that hold 

most of the data's information, including the PCA-derived 

elements. A new unsupervised approach called 

unpredictable PCA (NLPCA) auto-associative neural 

network was developed to condense the semantic depth of 

hyperspectral data with a small number of elements. 

Enhanced MPs constructed using NPCA characteristics to 

achieve precise classification. Linear correlations between 

spectral bands can be found using linear approaches. 

However, NLPCA finds combined linear as well as 

nonlinear relationships. The information content is spread 

proportionally throughout each element of NLPCA [25]. 

A statistical approach for discriminating between signals 

called Independent part discriminant Analysis (ICDA) 

used to satellite imagery categorization is centred on the 

adaptation of a Bayesian categorization rule to a signal 

made up of Independent Components (ICs). The converted 

elements are independently attributed to the Independent 

component analysis (ICA) transform array when 

information is transferred onto a separate space, making 

computation of the multimodal volume value as the sum of 

the unitary values simpler. After computing the weighting 

values for every independent element using a 

nonparametric kernel density estimator, the categorization 

allocation was made using the Bayes rule. Multiple 

hyperspectral pictures were subjected to the ICDA 

approach evaluation using support vector machines to 

examine multiple data set parameters, including 

urban/rural area, amount of the learning set, and kind [26]. 

With actual information in the structure of labelled data is 

often scarce, statistical categorization hyperspectral data is 

large in dimensionality, and reflect multiple categories of 

data that are occasionally extremely mixed together. The 

classification algorithms that are produced have a low 

generalization. Whenever analysing hyperspectral data, 

random forest types of filters inside a binary hierarchical 

multi-classifier framework enhance classifier 

generalization, particularly if the amount of learning data is 

constrained. Using spectral patterns that are spatially 

unstable to reflect random feature subset selection 

techniques' effectiveness concerning generalisation might 

be useful [27]. The kernels of the methods described for 

pattern analysis are computationally effective, robust, and 

reliable. For the classification of remotely sensed data, 

kernel-based classifiers have been developed and applied. 

Nonparametric ranked feature extraction (NWFE), which 

is based on a linear transformation, is employed to derive 

hyperspectral imagery attributes. The kernel approach is 

utilized to broaden the nonlinear and linear transformation 

of the NWFE to the kernel-based NWFE in the case of 

linear and nonlinear transformation. KNWFE will carry 

out Generalised Discriminant Analysis, Independent Factor 

Assessment, Core Based Primary Factor Analysis, and 

Resolution limits Feature Retrieval. This strategy lessens 

the impact of the kernel matrix's singularity on the 

resolution of eigenvalues [28]. 

The present machine learning analysis or algorithm 

methods are completely focus don't classify with the small 

portion targeted to detect among HSI imaging [12]. For 

such Logistic regressions are basically applied to retrieve 

the land covered among the raster HSI data employing 

point feature wise segmentation [11]. Multi labelling 

logistic regressions [13] are approaches which are directly 

focused on the class distributions this may cause to false 

positives [14]. Even built-in SVM kind decision for 

analysing but decision boundary with hard margins where 

may causethe miss classification, further effect the 

maximum margin classification among the classes [15, 

16].  This method of hard margin classification causes the 

miss classification in large number which has its 

limitations at the underlining background distribution. 

Gaussian models produce the density of the data points 

with addition of its density is along with its mean and 

standard deviations this clustering kind of mixture model 

connect the components to classify the HSI raster data to 

varied terrain areas [17]. 

Hidden linear transforms performed to find the hidden 

data. One of the common analysis for HSI imaging is PCA. 

PCA gathers classes into set of axis that are uncorrelated. 
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This is largely used as one of the fast pre-processing step 

considered in the analysis [8, 9, 10]. One among the 

supervised learning technique is known to be ensemble 

learning for merging the multiple classifier predictors to 

get exactness in the outcome. Convolving PCA to reduce 

the curse of dimensionality which is followed in the depth 

learning data point methods made a solution to the chose 

decided area recognition. Further authors [29] in 

approached a 3D CNN connected end to end, get the 

predicted outcome among varied classes from the raster 

HSI data. 

3. Proposed Approach 

An off-the-shelf CNN approach 

CNN picks up its weights on its own. In order to construct 

a neural network, the process of convolution can always 

add more than one convolution layer. The initial layer is in 

charge of acquiring gradients, while the subsequent layer is 

in charge of acquiring edges. The number of layers added 

dependent upon the parameter details of an image. 

Maintaining the initial dimensions of an object while using 

padding whose values rely on filters visual. The process of 

convolution layers, composed of a number of filters known 

as convolutional kernels, are a kind of neural network used 

by CNNs. Usually, convolutional filtering methods are 

employed over multiple levels, with the goal of identifying 

distinct features within an image. Convolutional networks 

enable fast and effective analysis and classification of 

impulses and images by acquiring many forms of the 

spectrum of features. 

3.1 Component filter 

Component filter is the linear filter chosen from MATLAB 

toolbox which produces the output values of linear 

combination pixels using convolution with time t. These 

filters said to be optimal filter as of their design based on 

optimization hypothesis required to minimize the error 

between a measured signal and an output signal. This is the 

linear time-unvarying hypothesis applied in image 

classification to preserve the signals / pixels of the input to 

refine the incoming data in the existence of supplement 

imaginary noise. The filter constituted employing the 

equation 1as shown in Fig.1 

x(t) = s(t) + w(t)                                    (1)     where    0 <= 

t<= T   

  

Fig.1. Component filter 

The filter input x(t) include a transient signal s(t) altered by 

supplement mode noise w(t) with T as unpredictable 

observation interim. Transient signal s(t) representing as a 

1/0 binary token. The mapping of w(t) is a noise operation 

with zero mean and spectral power density No/2. The 

changing signal s(t) detected optimally by the input signal  

x(t) by mapping with receiver. Since the hypothesis is 

linear, the resulting output o(t) may as below in eq.2 

o(t) = s0(t) + n(t)                                                          (2)   

The noise components of the input x(t) produces s0(t) and 

n(t) signals. In particular, the convolution window also 

known as a convolution filter or convolution kernel used in 

CNNs is able to identify approximately one feature that 

corresponds to its form. To achieve this, the component 

matching technique across the entire signal, acting as if it 

were analytical filters looking for methane shapes. For 

convolution kernel layer the equation represented as in 

eq.3 

y(t) = (s*w) t                                                              (3) 

3.2 CNN approach for efficient classification 

Conventional neural networks are the result of simplifying 

the CNN's input-output relationship as in Fig.2 with 

considering the element-wise form of the producing 

outcome layer offered by 

y(t) =                                             (4) 

Taking into account of component filter o(t) from eq.2 

combining with convolutional kernel layers, where   

classify the input to the neuron ‘k’ in a time instant ‘t’ 

produces as  

y(t) =  

In the CNN one signal w(t) is considered as the input, 

when T samples of a signal appear at T input neurons 

simultaneously, it is referred to as w(t), and these are 

regarded as a single training datum. In the first 

convolutional layer, this data is linked to K outcome 

neurons, resulting in the input-output relationship inside 

the CNN architecture becoming 

yk =     (6) 
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Applying element wise operation accounting ‘n’ input size 

with ‘m’ filter considering in kernel layer, the constant bias 

term appended to generate 

 (7) 

The overall amount of variables in each iteration is 

subsequently boosted by one to produce the following 

vector kind, which is the CNN outcome. 

                             (8) 

The size of the feature matching (convolutional) filter is 

the only factor that determines how many weights 

(parameters) a CNN has with K convolution layer and M 

convolution filter. 

The aggregate amount of weights for time-domain data, 

including the bias term, is K(M + 1). The total number of 

weights for a single image is K(M2 + 1). In certain 

instances, the convergence phase outcome ought to match 

the dimensions of the input signal (picture), rather than the 

combination's minimum of (N − M + 1).If the input signal 

(picture) is padded 0.5 containing the right range of 0.5, 

this can be accomplished. For instance, we could add a 0.5 

at for M = 3 and any value of N. 

 

Fig.2. Off-the-shelf CNN 

To compute the convergence product y(n), take x(−1) = 0.5 

and add a zero at x(N) = 0.5 with component filter as 

represented in eq.9 

 * o(t1)+  

* o(t2) +   o(t3)           (9) 

Although convolution, or correlation, is a continuous 

functioning, signals and images are not at all like that. To 

do this, a convolutional layer's product is subjected to a 

non-linear behavior. A rectified linear unit (ReLU), 

defined by, is one of the most often used nonlinear 

activation function for CNNs. 

f(x) = max{0, x}                                                           (10) 

Gradients ultimately stops training, with cause of a 

unstable weights that gets saturate of data points in neural 

network. Effecting ReLU completely in dead state of 

neurons in a built model. To overcome  function drawback, 

PReLU taken into picture that solve the problem of 

saturating andstopping the learning model when there is 

not their to learn for the model further, this is the 

generalized function of ReLU activation function. PReLU 

function learns the parameters adaptively of the rectifiers 

and improves accuracy [30].  

 

 

Optimization [30] is achieved with PReLU while learning, 

employing the back propagation to optimize at the same 

time as well with other layers of network. The   updating 

as been done with applying chain rule, for one layer the 

gradient of  is: 

 

 

 

Where   is the optimization factor.  The  gradient is 

of the depth layer in neural network. The activation 

function gradient is as followed 

 

 

 

3.3 Methane gas segmentation from HSI raster data 
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The CNN approach allows labelling of the spectrum bands 

which is similar to the notion of Einstein's berg color. P is 

the array of pixels, A and B are the depth of terrain and gas 

spectrum data. Hn is originally a HSI raster data with 

subspace array of bands including ‘i’ gas spectrum length 

as represented in eq.14. Considering the curse of 

dimensionality, compressing of bands is required for the 

further processing of feature extraction of bands with 

respective to the reflecting properties of gas and as well the 

terrain data properties. At beginning the component filter 

applied for minimizing distortion from hyper spectral 

imaging of raster data as in eq.1,2. 

 

The misclassification of gas spectrum among the terrain 

data is specified using the feature variable Vi and data 

considered to be incorrectly classified when Vi > 1, added 

feature variable to the layer when Vi = 0 as  represented 

below  

                 (15) 

To estimate the density of the data set H at point x is 

defined as followed 

 

 

The value of the density  differs from  

because of the difference in distributions of the kind 

classes. Equivalently, the accuracy of the density 

  for the class Ci defined as followed 

 

4. Experimental Outcomes and Analysis 

4.1 Dataset description 

The data is pre-processed on a machine with Processor 

Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz   3.59 GHz  

(2 processors),  installed 64.0 GB RAM. The size of each 

image in H dataset is around 1.2 GB, and it takes time 

about 45 min to process each of the 46 data points in the 

dataset. The CNN used Component filters, Recursive 

filters with transposed convolution and Gaussian to get 

advanced evaluation computations of spectroscopic raster 

data.  

 

Fig.3 Segmentation of methane CH4 

An experienced analyst examines every CH4 flightline, 

manually outlines plumes, and isolates features from any 

non-plume finds to create the ground truth data file. The 

manual method works well but is not scalable since it has 

major performance limitations related to computing time 

and human work hours. Further, the methane i.e., CH4 gas 

have been identified from the dataset collected from [6]. 

Table 1. Comparative Study with Outcome 

Method Precision Recall IOU F1-

score 

Segment 

everything 

[4] 

80 55 48 65 

H-MRCNN 

[5] 

96 91 87 94 

Proposed  98.21 96.89 93.93 98.36 

 

Evaluating gas localization: 

Intersection over union: size of gas(plume data) / size of 

terrain data 

4.2 Experimental Setup, Design and Results 

The size of the convolution kernel is 128×1×40×40 with 

other convolution filter layers is 128×64×40×40.  Applying 

softmax function with hyperparameters: Batch-size: 128, 

Dropout rate: 0.5, Learning rate: 1e-3, Batch 

normalization: 1e-5, Soft-max loss: 1e-6 and train Method 

= 'average'. 

Recursive filter 

Read N 

N = number of iterations; 

F = I_Par1; 
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sigma_H = sigma_s; 

for i = 0:num_iterations – 1 

sigma_H_i = sigma_H * sqrt(3) * 2^(N - (i + 1)) / sqrt(4^N 

- 1); 

F = Transformed 

_Domain_Recursive_Filter_Horizontal(F, dHdx, 

sigma_H_i); 

F = image_transpose(F);     

F = Transformed_Domain_Recursive_Filter_Horizontal(F, 

dVdy, sigma_H_i); 

F = image_transpose(F); 

end 

F = cast(F, class(img)); 

end 

GNRs Detector 

Snippet Functions of the Detector 

% Read raw data 

[D,info]=enviread([datapath],[datapath '.hdr']); 

wl = sscanf(info.wavelength(2:end-1),'%f,'); 

 

% Vignetting correction, used for display and for adaptive 

thresholding 

DfixVignett = vignettCorrection(D,info, dVignetting); 

 

% Create mean intensity image, for display 

meanI = repmat(mean(DfixVignett,3),[1 1 3]); 

if scaleSeparate 

    meanIScaled = equalizeRGBandUint3(meanI,0.01,0.02); 

else % scale all channels together 

    meanIScaled = equalizeRGBandUint(meanI,0.01,0.02); 

end 

% Create hyperspectral color image, for display 

imgRGB = 

equalizeRGBandUint3(convert2RGB(DfixVignett,adjustab

le_bands,[80 80 80]),0.01,0.02); 

figure; imshow(imgRGB); 

% imwrite(uint8(imgRGB),[datapath '_hsi.png']) 

 

% Pre processing 

[Dp, location, aboveGnrThr] = prepData(D, info, cutoff, 

normEnable, gnrThr, noiseThr, smoothParams); 

pixAboveNoise = length(aboveGnrThr); 

pixAboveGnrThr = sum(aboveGnrThr); 

locationAboveGnrThr = location(aboveGnrThr==1,:); 

 

% Classification of each pixel above the threshold 

% and show segmentation map 

clusterNum = size(C,1); 

label = zeros(length(Dp),1); 

segmentationMap = zeros(size(D,1),size(D,2)); 

for ind = 1:length(location) 

    if aboveGnrThr(ind) 

 

% find nearest cluster center 

        [~, I] = min(diag((repmat(Dp(ind,:),[clusterNum,1]) - 

C)*(repmat(Dp(ind,:),[clusterNum,1]) - C)')); 

        label(ind) = I; 

        if I == indCluster      

segmentationMap(location(ind,1),location(ind,2)) = 3; % 

nanoparticle 

        elsesegmentationMap(location(ind,1),location(ind,2)) 

= 2; % tissue (high intensity) 

        end 

    else 

segmentationMap(location(ind,1),location(ind,2)) = 1; % 

tissue (lower intensity) 

    end 

% 0 - background, the cover glass 

end 

figure; imagesc(segmentationMap); axis image; 

title('Threshold and detection map'); colormap jet;  caxis([0 

3]); 

% saveas(gca,[datapath '_map.png']) 

 pixGnr = sum(label==indCluster);  

% number of detected pixels 

imgOverlay = 

double(meanIScaled).*repmat((segmentationMap~=3),[1 1 

3]) + 

repmat(permute(255*overlayColor,[3,1,2]),[size(meanISca

led,1) size(meanIScaled,2) 

1]).*repmat(segmentationMap==3,[1 1 3]); 
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figure; imshow(uint8(imgOverlay)); 

title(['Pixels with label=' num2str(indCluster) ', mask']) 

% imwrite(uint8(imgOverlay),[datapath 

'_detection_noiseThr=' num2str(noiseThr) '_gnrThr=' 

num2str(gnrThr) '.png']) 

 

4.3 Estimation of SSIM for methane gas plumes 

segmentation analysis 

Calculation of PSNRSSIM where Gaussian to carry out 

sophisticated spectroscopic data calculations: 

psnr_cur=10*log10(255^2/mse); 

mse_cur = mse/100; 

window = fspecial('gaussian', 11, 1.5); 

 K(1) = 0.01;                                           

 K(2) = 0.03;                                      

 L = 255; 

window = window/sum(sum(window)); 

sigma12 = filter2(window, img1.*img2, 'valid') - 

mu1_mu2; 

ssim_map(index)=(numerator1(index).*numerator2(index)

)./(denominator1(index).*denominator2(index)); 

 

 

 

Fig.4: Methane plumes classification models among 

terrain HSI raster data 

5. Conclusion 

The available approaches couldn’t provide effective 

outcome in shorter period. The off-the-shelf CNN based 

GNRs detectors to segment plumes effectively among the 

terrain HSI data, with tuning the hyperparameters in best 

possible manner to obtain the less misclassification of 

methane plumes over terrain data. Further for improving 

the classification feature variable is adopted to produce 

regularized outcome. The improved detector and optimized 

CNN gradients with component filter processed large 

hyperspectral imaging raster data. The processed data 

produced accurate outcome using the softmax loss 

aggregation of the convolutional filters, detectors and the 

features trained by varied layer stages, employment of 

transposed convolution over convolution increased the 

plumes spatial resolution of feature mapping. The max 

pooling applied for classifing the features specified to learn 

required class vectors, in faster prediction and classifying 

the labeled features utilize the PReLU activation function 

for further depth classification. Finally obtained the 

optimal convergence product, the off-the-shelf CNN using 

feature variable could improve the accuracy of segmenting 

plumes over terrain HSI raster data.  
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