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Abstract: Our study introduces a cutting-edge framework employing imaging technology to identify nutrient deficiencies in rice plants, 

focusing on nitrogen (N), phosphorus (P), and potassium (K). We utilize various image datasets of rice plant leaves showing symptoms of 

these deficiencies to train a Convolutional Neural Network (CNN). The CNN's capacity for learning from diverse data inputs makes it ideal 

for this complex task. A crucial aspect of our methodology is the use of a pre-trained CNN. The early layers of this network are particularly 

adept at extracting distinct features from the images of paddy leaves, enabling precise identification of specific nutrient deficiencies. When 

introduced to the trained CNN model, a new test image can accurately determine whether the leaf is deficient in nitrogen, phosphorus, or 

potassium. Implementing this image-based nutrient deficiency detection method has significant implications for agriculture. It provides 

farmers a non-invasive and efficient tool to identify crop nutrient imbalances. This empowerment enables better-informed fertilization 

decisions, potentially leading to improved crop yields and more sustainable farming practices. Our approach achieves an impressive 

accuracy of 96.67%, demonstrating its effectiveness. Therefore, our method marks a substantial advancement in agricultural technology, 

offering a valuable solution for enhancing plant health and agricultural productivity. 

Keywords: Nitrogen, Phosphorus, Potassium,(NPK), Convolution Neural Network (CNN), Plant Nutrition, Crop Yields, Rice Plant Leaves, 

Paddy Fields. 

1. Introduction 

Agriculture plays a crucial role in the economies of 

developing countries, and enhancing micro-level 

agricultural practices is key to boosting economic growth. 

Nutrient deficiencies in plants are a common issue that can 

significantly hamper agricultural productivity. Therefore, 

early identification and correction of these deficiencies are 

essential for improving crop yields. Our research focuses on 

developing a framework for detecting NPK (Nitrogen, 

phosphorus, and Potassium) deficiencies in paddy plants, a 

staple crop worldwide. Addressing these deficiencies is vital 

for reducing crop losses and enhancing agricultural output. 

Nitrogen is fundamental for the growth of green, lush 

foliage in plants. A deficiency leads to yellowing leaves and 

stunted growth, particularly in spring. Potassium, on the 

other hand, is crucial for water regulation and energy 

utilization in photosynthesis, affecting flowering, fruiting, 

and overall plant robustness. Phosphorus is key in overall 

plant growth and developing strong, healthy roots. An 

adequate balance of these nutrients is essential for the 

effective growth of plants. 

The success of agriculture as a profession and a primary 

revenue source for a country hinge on the quality of the 

produce, which in turn depends on the health of the plants. 

Leaves, being the site of photosynthesis, are critical for 

assessing the nutritional status of plants. Our research 

contributes to this field by establishing a method for 

detecting plant nutrient deficits, enabling farmers to apply 

the appropriate fertilizers and foster healthier plant growth. 

This approach enhances the quality of the agricultural 

produce and supports agricultural practices' overall success 

and sustainability.  

Various studies have explored innovative methods to detect 

plant nutrient deficiencies, each employing unique 

techniques and tools. Study [1] focused on cotton plants, 

where the leaf part of the plant was analyzed using enhanced 

photographic techniques. A statistical region merging 

method was employed to differentiate the images further, 

along with a colour histogram approach for detecting 

nutrient deficits, specifically in cotton plants. 

Study [2] took a more mathematical approach, using linear 

and nonlinear frameworks to identify nutritional 

deficiencies. This method involved splitting and gathering 

images for feature extraction, which then informed the 

development of agricultural models. Study [3] delved into 

the realm of fuzzy classifiers for identifying nutritional 

insufficiency. This approach captured, pre-processed, and 

segmented images, with features related to nutritional 

deficiencies extracted using a fuzzy classifier. These feature 

vectors were then categorized for analysis. 

A study [4] used a random forest classifier to diagnose 
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nutrient deficiencies. This method involved collecting and 

preprocessing images, followed by feature extraction. The 

random forest classifier was then trained to categorize the 

images based on the extracted features. Study [5] 

investigated the use of artificial vision tools to detect 

nutritional insufficiency, particularly focusing on nitrogen 

levels in rice plants, but also capable of detecting phosphate 

and potassium levels. 

Study [6] adopted a spectral approach to evaluate the 

nutritional status of citrus plants. Similarly, a study Study 

[7] outlined a method for assessing leaf nitrogen 

concentration and chlorophyll content in rice plants using a 

digital still colour camera under natural lighting conditions. 

Meanwhile, research [8] explored the process of capturing 

rice sample images through static scanning technology. This 

study further utilized MATLAB's region properties function 

to extract both spectral and shape characteristic features 

from these images. 

The study's authors [9] focused on determining the levels of 

nitrogen and chlorophyll in bean plant leaves, 

experimenting with various spectral bands and vegetation 

indices. Study [10] explored feature categorization in 

determining nutrient deficiencies. These studies show that 

various methods, from image processing techniques to 

advanced machine learning models like CNNs, can 

effectively determine NPK deficiencies in plants at various 

growth stages. This breadth of research highlights the 

diverse and evolving approaches to managing plant health 

and optimizing agricultural output.   

This paper makes several key contributions to the field of 

agricultural technology and plant health monitoring: 

1. Utilization of a Pre-Trained CNN: To minimize the 

manual labour involved in feature extraction, we employ a 

pre-trained Convolutional Neural Network [11]. This 

approach leverages the power of deep learning to process 

and analyse complex image data efficiently. 2. Focused 

Training of CNN’s Last Layer: We strategically train only 

the last layer of the CNN. This targeted training approach is 

designed to harness bottleneck values, enhancing CNN's 

ability to identify plant nutrient deficiencies accurately. 

The structure of the paper is organized as follows: 

Section 2 outlines the proposed framework, providing a 

comprehensive overview of the system's design and 

functionalities—section 3 delves into the proposed 

methodology, detailing the steps and processes involved in 

implementing the framework. Section 4 presents the results 

and discussions, where we analyze the findings and insights 

gleaned from applying the framework. Section 5 concludes 

the results, summarizing the key outcomes and their 

implications. Section 6 discusses the future scope of the 

framework, exploring potential enhancements and 

applications in broader contexts. Overall, this paper aims to 

advance the understanding and application of machine 

learning in agriculture, particularly in nutrient deficiency 

detection, for improved crop management and productivity.  

2.  Proposed Framework 

Our proposed framework employs a Convolutional Neural 

Network (CNN) model specifically designed to identify 

nutrient deficiencies in rice plants. The training dataset for 

this model comprises images of rice leaves deficient in key 

nutrients - nitrogen, phosphorous, and potassium. This 

dataset is inputted into the CNN to create a well-trained 

model, as illustrated in Fig. 1. 

When a new test image of a paddy leaf is introduced to this 

trained model, the model's capability is showcased as it can 

accurately recognize the type of nutrient deficiency 

affecting the rice plant. The appearance of the plant leaves 

serves as the initial indicator of such nutritional deficiencies, 

and our CNN model is adept at detecting these subtle yet 

critical changes in the leaves. This ability to discern nutrient 

deficits from leaf imagery is a significant step forward in 

precision agriculture, enabling more targeted and effective 

crop management strategies.   

 

Fig. 1. Flowchart Illustrating the Detection of Nitrogen, 

Phosphorus, and Potassium Deficiencies in Paddy Plants 

Our framework has integrated a Convolutional Neural 

Network (CNN) model to identify nutrient deficiencies in 

rice plants. The training dataset for the CNN comprises 

images depicting rice leaves with nitrogen, phosphorous, 

and potassium deficiencies. This dataset is input into the 

CNN, creating a trained model, as depicted in Fig. 1. 

When a test image of a paddy leaf is introduced into this 

trained CNN model, the model's effectiveness is 

demonstrated through its ability to identify the specific type 

of nutrient deficiency present accurately. The presence and 

condition of the plant leaves serve as the primary indicators 

of nutritional insufficiency. This approach enables the 

trained CNN model to recognize and diagnose nutrient 

deficits in rice plants efficiently, providing valuable insights 

for optimal crop management. 

 

Fig. 2. Fundamental Structure of the CNN Employed for 

Detecting Deficiencies in Paddy Plants 
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The convolutional layer is a fundamental component of the 

Convolutional Neural Network (CNN) model. It consists of 

a set of learnable filters or kernels, each with a small 

receptive field extending through the entire depth of the 

input volume. During the forward pass, the dot product of 

the filter's values and the input results in a 2D activation map 

for that filter. This map indicates where and to what extent 

a particular feature is detected in the input. The filters 

activate when the network identifies specific features at 

certain spatial locations in the input. 

Following the convolutional layer is the pooling layer, 

which performs non-linear downsampling. Max pooling is a 

common approach in this layer. It works by partitioning the 

input image into non-overlapping rectangles and extracting 

the maximum value from each sub-region. This process 

focuses more on the rough location rather than the exact 

position of a feature, reducing the spatial size of the 

representation and preserving important features. 

The Rectified Linear Unit (ReLU) layer is another crucial 

part of a CNN. ReLU uses a non-saturating activation 

function to increase the nonlinear properties of the decision 

function and is preferred over other functions due to its 

ability to accelerate the training of neural networks. 

After these layers is the fully connected layer, where 

neurons are connected to all activations from the previous 

layer, this connection is typically established through matrix 

multiplication, and the activations are computed 

accordingly. 

The final layer in a CNN is the loss layer, which plays a vital 

role in training by measuring the discrepancy between 

predicted and actual labels. Several loss functions can be 

used, depending on the task. For instance, Softmax loss is 

often used for classifying a single class out of K mutually 

exclusive classes. In contrast, Sigmoid cross-entropy loss is 

used to predict K-independent probability values. 

Collectively, these layers enable CNNs to detect and 

classify objects effectively, making them highly efficient for 

tasks like image recognition and classification.  

3. Proposed Methodology 

A trained model is created when the training dataset is fed 

through Convolutional Neural Network (CNN) layers [11]. 

This model is adept at learning colour properties, an 

essential aspect of detecting plant nutrient deficiencies. 

Once the training is complete, the model is ready to be tested 

with a new image, such as a paddy leaf. The trained model 

applies its learned attributes to identify nutrient deficits in 

the test image of the rice leaf. It can recognize signs of 

nitrogen, phosphorus, and potassium shortages, as it has 

been trained with images of rice leaves deficient in these 

nutrients. Fig 3 shows the proposed methodology for 

nutritional deficiency detection. 

 

Fig. 3. Methodology Outlined for the Detection of Nutrient 

Deficiencies 

The CNN architecture used in our study, developed by the 

Google Brain Team, incorporates transfer learning, as 

depicted in Figure 4. Transfer learning is a technique in 

machine learning where a model designed for one task is 

repurposed as the foundation for a model on another task. 

This approach centers on retaining knowledge acquired 

from solving one problem and applying it to a distinct yet 

related problem, a key focus area in machine learning 

research. 

Convolution Operation:  

 𝑍𝑖,𝑗  =  (𝐼 ∗  𝐾)𝑖,𝑗

=  ∑ ∑ 𝐼𝑖+𝑚,𝑗+𝑛
𝑛𝑚

∗  𝐾𝑚,𝑛 

   - 𝑍𝑖,𝑗: Output feature map value. 

   - 𝐼: Input image. 

   - 𝐾 : Convolution kernel. 

Activation Function: 

𝐴𝑖,𝑗  =  𝑅𝑒𝐿𝑈(𝑍𝑖,𝑗) 

Pooling (Downsampling): 

𝑃𝑖,𝑗 =  𝑚𝑎𝑥𝑚,𝑛(𝐴𝑖+𝑚,𝑗+𝑛) 

Fully Connected Layer: 

𝑂 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 . 𝑋 +  𝑏) 

Loss Function: 

𝐿(𝑦, 𝑂) =  − ∑ 𝑦𝑖
𝑖

. 𝑙𝑜𝑔(𝑂𝑖) 

The CNN operation is divided into two main phases. The 

first phase is feature extraction, where the CNN's initial pre-

trained layers, as shown in Figure 4, use convolutions and 

filters to extract features from the input images. The second 

phase is classification, which involves fully connected and 

softmax layers, as depicted in Fig. 6. This structure enables 

the CNN to identify key features in the images and classify 

these features accurately, determining the specific type of 

nutrient deficiency present in the test image.   
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Fig 4 (a) Layer Structure 

 

Fig 4 (b) Activations and Learnable 

Fig. 4. The CNN architecture, employs transfer learning to streamline the feature extraction process. 

 

Fig. 5. Feature extraction through a series of convolutions 

by using a variety of filters 

Figure 6 demonstrates the use of Softmax Regression in 

training the final layer of the inception model, where it 

generates probabilities based on evidence from nutrient-

deficient images. This evidence is derived by multiplying 

weight values, calculated using pixel intensity, and 

incorporating bias values. In Figure 6, various weights such 

as W1,1, W2,2, W3,3, etc., and biases b1, b2, and b3 are 

highlighted. The pixel intensity is determined by the sum of 

these weights and biases. 

 

 

Fig. 6. Softmax Regression is employed to train the final 

layer of the CNN for nutrient deficiency classification. 

4. Results and Discussions 

We utilized a convolutional neural network approach to 

detect Alzheimer's disease. Our computational framework 

was built and tested on a system featuring the Intel Core i7 

10th generation processor, known for its powerful multi-

core processing ideal for deep learning tasks. The system 

operated on Windows 10, a 64-bit version, lauded for its 

user-friendly interface and broad software and hardware 

compatibility. Graphics computations were handled by an 

NVIDIA GTX card equipped with 2GB dedicated memory. 

Optimized for parallel processing, this card is invaluable for 
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deep learning algorithms demanding extensive matrix 

operations. Our system was equipped with 8GB RAM, 

providing ample data storage and processing memory 

during the model development stages. All simulations and 

computations were executed using MATLAB 2019B. 

Figure 7 provides a detailed visual representation of the 

Healthy and NPK Deficiency Dataset. It showcases the 

diversity within the dataset, which comprises 448 images of 

healthy plants and 616 images of plants with NPK 

deficiency, as in Table 1. This figure likely illustrates the 

original and augmented images, offering insights into the 

various conditions under which these plants are presented. 

The depiction is a valuable tool for understanding the 

dataset's complexity and the challenges in distinguishing 

between healthy and nutrient-deficient plants, highlighting 

the importance of a robust and diverse dataset for effective 

machine learning model training. 

Table 1: Corresponding NPK Deficiency and Healthy 

Dataset. 

Corresponding Mental 

State 

No. of Image Samples 

Healthy 448 

NPK Deficiency 616 

 

 

Fig 7: A visual representation of a dataset contrasting 

healthy NPK deficiencies. 

Data augmentation is key to enhancing the dataset's 

diversity and reliability in the revised NPK dataset, which 

consists of 448 images of healthy plants and 616 images 

depicting NPK deficiency. Techniques such as rotation, 

color jittering, cropping, and flipping are used to mimic a 

range of environmental conditions. The success of these 

augmentation strategies is illustrated in Figure 8, where 

augmented images for each category - healthy and NPK 

deficient - are presented. This display in Figure 8 

demonstrates the augmented data's variety and 

comprehensiveness, crucial for training a model capable of 

accurately identifying healthy and nutrient-deficient plants 

in varied scenarios. 

 

 

Fig 8: Augmented and Enhanced Data Representation for 

Each Class 

The training accuracy indicates the percentage of nutrient-

deficient pictures correctly recognized in the appropriate 

training set. During training, validation accuracy refers to 

the precision of a randomly chosen sample of nutrient-

deficient images drawn from various sets. When compared 

to training accuracy, validation accuracy is more precise. 

CNN divides the training data into three parts: the training 

set accounts for 80% of the data, the validation set accounts 

for 10%, and the remaining 10% is utilized as a testing set 

during training. Overfitting may, therefore, be prevented, 
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and bottleneck values can be correctly controlled.   

Figure 9 shows the advancement of the model during the 

training phase. It achieves a 97.65% accuracy rate on the 

training data, successfully identifying all training samples. 

This high level of accuracy in training demonstrates that the 

model has proficiently adapted to the training data. 

 

Fig 9: CNN Training Progression Visualization 

Once the bottleneck values are generated and the last layer 

of CNN is trained, a trained model is established. Given the 

provided input test photo of paddy leaf, the trained model 

correctly classifies nutrient deficiencies as nitrogen, 

phosphorous, or potassium, as shown in Figs: 7th, 8th, and 

9th grades. When the trained model is given the test image, 

the features are retrieved, and the kind of nutritional deficit 

is assessed using bottleneck values. The number of training 

steps and images in the dataset influence performance.   

 

Fig. 10. Test Image Identified as Exhibiting Nitrogen 

Deficiency. 

The test image is determined to be nitrogen deficient by 

comparing prediction scores using CNN. Due to the high 

deficiency prediction score for nitrogen, the paddy leaf is 

classified as lacking in nitrogen.  

In Figure 10, the nitrogen deficiency is visible in the rice leaf. 

Instances of nitrogen insufficiency surpass those of phosphorus 

and potassium deficiencies. The array predicting nitrogen 

deficiency holds greater significance. As a result, the paddy leaf 

in the input test image is identified as nitrogen deficient.   

 

Table 2 . Table showing variation in % accuracy with 

the number of trainings steps. 

Epoch Validation Accuracy % 

5 96.71 

10 97.65 

15 98.12 

20 97.65 

Table 2 presents the changes in percent accuracy across various 

epochs. Figure 11 shows a graph plotting percent accuracy 

against numerous epochs. This graph indicates an increase in 

percent accuracy with the rising number of training epochs. 

More epochs mean the network undergoes more extensive 

training. Thus, there's a direct correlation between the number 

of training epochs and the percent accuracy. The network 

progressively learns finer details of paddy leaf characteristics 

such as color, shape, midrib, and texture. With this 

comprehensive learning of paddy leaf features, CNN is better 

equipped to accurately identify nutritional deficiencies in rice 

leaves in its final layer.   

 

Fig. 11. The percentage accuracy versus t h e  number of 

training steps 
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Fig 12: Confusion Matrix from the Testing Phase. 

Our tailored approach was thoroughly trained and tested for 

binary and complex Alzheimer's disease classification tasks. 

The results of these classifications are visually illustrated in 

Figure 12. To meticulously adjust parameters like learning 

rate, epoch count, and factors affecting learning rate and 

bias, we applied the Monte Carlo method across 100 

simulations. This method allowed us to showcase the 

algorithm's precision across different parameter settings, 

ensuring optimal values are utilized. The assessment of 

classification performance, based on the CNN architecture, 

involves various evaluation metrics as outlined in reference 

[11]. The subsequent section will explain each metric 

concisely and the equations used for evaluating 

performance. 

Accuracy = TP + TN/TP+TN+FP+ FN 

Specificity = TN/TN+FP 

Sensitivity(Recall)=TP/TP+FN 

Precision = TP/TP+FP 

F1-score=2(Precision*Sensitivity/Precision + Sensitivity) 

In the equations we're discussing, FP stands for false 

positives, indicating instances where the model incorrectly 

predicts a positive outcome. FN denotes false negatives, 

where the model fails to identify a positive case. TP, or true 

positives, refers to accurately identified positive cases; TN 

signifies true negatives, correctly identified negative cases. 

The analysis of these metrics, derived from confusion 

matrices, enhances our understanding of the CNN model's 

effectiveness in classifying images using transfer learning. 

This applies to both binary and multi-class tasks. The 

specific evaluation metrics, with their respective values, are 

as follows: Specificity at 95.15%, Accuracy at 96.67%, 

Precision at 88.27%, Recall at 92.63%, and F1-score at 

84.28%. These figures indicate the model's performance in 

the nuanced task of image classification, showcasing its 

strengths and areas for improvement in binary and multi-

class classification scenarios, as presented in Table 3. 

Table 3. Performance Parameter Measures 

Measurement 

Parameters 
Binar 

Specificity 95.15% 

Accuracy 96.67% 

Precision 88.27% 

Recall 92.63% 

F1-score 84.28% 

 

Table 4 presents a state-of-the-art comparison of various 

methods in terms of their accuracy percentages. Chen et al. 

achieved a notable accuracy of 93.27%, indicating a strong 

performance in their respective field. Following closely, 

Yao et al. recorded an accuracy of 92.53%, showcasing their 

method's efficacy. Islam et al. improved upon these results, 

reaching an accuracy of 94.16%, which reflects a significant 

advancement in the methodology. However, the proposed 

approach in our study surpasses these figures, achieving the 

highest accuracy of 96.67%. This comparison highlights the 

advancements in the field and underscores the superiority of 

the proposed approach, setting a new benchmark in 

accuracy for the respective area of research. 

Table 4. State-of-Art Comparison. 

Methods Accuracy (%) 

Chen et al. [12] 93.27 

Yao et al. [13] 92.53 

Islam et al. [14] 94.16 

Proposed 

Approach 
96.67 

5. Conclusion 

Reflecting on the framework discussed, we have developed 

a technical solution that significantly boosts agricultural 

production by enabling the early detection of nutrient 

deficiencies in plant leaves. This method allows for the 

prompt addressing of such issues, helping to prevent 

potential negative impacts on crop health and yield. The 

approach employs a pre-trained CNN model to extract key 

features from the lower layers. Following this, bottleneck 

values are calculated and input into the CNN's final layer, 

marking the stage of classifier training. 

After this training phase, the model is fully equipped for 

application. When tested with an image of a paddy leaf, the 

model proficiently identifies nutrient deficiencies in the rice 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 665–673 |  672 

leaves. Notably, as illustrated in Figure 9, the model 

achieves an impressive accuracy of 96.67% after 520 

training steps. This high level of accuracy underscores the 

success of our approach as a non-invasive and highly 

effective method for detecting nutrient deficits in rice plants, 

marking a significant advancement in precision agriculture.   

6. Future Scope 

After recognizing the nutrient shortage, the framework may 

be expanded to provide an estimate for treating the 

nutritional shortfall. This may be performed using 

supervised learning with a dataset that includes nutrient 

deficiency and fertilizer data. 
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