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Abstract :This research concentrates on Artificial Neural Networks (ANN) application in identifying and categorizing faults within 

Extra High Voltage (EHV) networks. The process entails employing backpropagation algorithms and feedforward networks for 

individual phases. Diverse ANNs are suggested to handle different types of fault, encompassing LG, LL, LLG, and 3-phase faults. The 

paper conducts an analysis of networks with diverse configurations, involving varying numbers of layers which are hidden and neurons 

in it, to guide the selection of NN for each phase. The simulated outcomes illustrate the efficacy of the ANN-based approach in 

recognizing transmission line issues, producing favorable outcomes. 

Keywords: ANN, EHV, Fault classification, Fault detection, Backpropagation 

1. Introduction 

In the preceding few years, there has been a significant global 

expansion of the power grid, characterized by the widespread 

installation of numerous transmission and distribution lines. This 

growth has been further accelerated by the adoption of innovative 

marketing concepts like deregulation, highlighting the growing 

demand for a dependable and continual electric supply to 

consumers [1]. A crucial impediment to the consistent delivery of 

electricity is a power system (PS) fault [2]. An unusual current 

drift within the components of a PS is referred to as a fault. These 

faults, partly arising from natural causes beyond human control, 

necessitate a well-coordinated protection system. This system 

should not only identify abnormal current flows but also 

determine the fault type and quite trace its position within the PS. 

Devices responsible for managing faults detect their occurrence 

and detach the faulty segment from the remaining PS. Therefore, 

the primary tasks in ensuring continuous power supply revolve 

around detecting, classifying, and localizing faults [3]. Faults 

manifest in various types such as transient, persistent, symmetric, 

or asymmetric, each requiring a specific detection process. For 

these many types of defects, there isn't a single fault location 

method that works for all of them. HV Transmission Lines are 

extra susceptible to faults than local distribution lines. This 

vulnerability arises because cables lack insulation, disparate 

distribution lines. Research in protective relaying in PS primarily 

focuses on fault protection due to the length and varied 

geography of transmission lines (TL), making physical inspection 

time-consuming [4]. 

The automated location of faults significantly enhances system 

reliability, as swiftly restoring power translates to cost and time 

savings. Consequently, several efficacies are incorporating fault 

locating campaigns with Global Information Systems into their 

power quality monitoring systems for efficient fault location [2]. 

There are several types of fault position techniques that may be 

distinguished, such as methods based on impedance 

measurement, methods based on traveling wave phenomena, 

methods based on  I and V which have high frequency, created by 

faults, and intelligence based methods [5]. 

In recent years, intelligent-based methods, particularly Artificial 

Neural Networks (ANN), have played a crucial role in fault 

recognition and position. In the realm of power and automation, 

three prominent artificial intelligence techniques—Expert System 

Techniques, ANNs, and Fuzzy Logic Systems—have been 

widely applied [6]. Among these, ANN-based methods, as 

highlighted for fault location on TL, stand out for not requiring a 

knowledge base compared to other artificial intelligence methods 

[7]. 

2. Methodology  

While the foundational principles governing relays remain 

constant, the advent of digital technology has substantially altered 

their functioning, offering several enhancements compared to 

traditional electromechanical relays [8]. The primary goal is to 

formulate, cultivate, evaluate, and appliance a comprehensive 

approach for fault analysis, as explained in Figure 1. Primarily, 

the collected data is segregated into training and testing datasets. 

The initial phase involves fault detection. Once the identification 

of a fault on the TL is established, the subsequent stage is to 

categorize the fault into distinct phases [9]. The third step is to 

precisely determine the fault's location on TL. This aims to 

recommend cohesive technique that employs artificial neural 

networks to perform each of these tasks. For fault detection, a 

backpropagation based NN is utilized, and a similar one is 

employed for fault classification. Separate neural networks for 

fault location are employed for each type of fault. The flowchart 

in Figure 1 outlines each of these sequential steps [10]. 
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Fig. 1 Fault diagnosis strategy 

3. Modeling the Power Transmission Line System 

The proposed approach, which employs ANN, has been 

implemented and tested on a 500 kV TL system. Simulations of 

this power system were conducted, and Figure 2 shows a 

simulation model which creates datasets. On both sides of model, 

generator impedances ZP and ZQ are shown in figure. In order to 

record V and I samples at terminal A, a V-I measuring block is 

utilized. The TL, consisting of line-1 and line-2, spans 300km, 

and fault-simulator introduces various fault types at different 

positions alongside the line, each with distinct fault resistances. 

The three-phase V and I are restrained, adjusted as needed, and 

then input into the NN. Faults are broadly categorized into 

symmetrical and unsymmetrical faults. 

For fault detection, 1100 unique fault conditions were replicated, 

and an equivalent number of cases were generated for fault 

classification. The fault location simulation involves varying case 

numbers based on the specific fault type under consideration. 

4. Result Interpretation 

4.1 Fault Detection 

Several Multi-Layer Perceptron configurations have been 

examined for fault detection purposes. Critical factors, including 

system extent, learning policy, and training dataset size, play a 

crucial part in defining the optimal topology. Following a 

thorough investigation, the backpropagation process has been 

identified as the preferred choice. Even though it is inherently 

sluggish because of small erudition rates, there are ways to make 

it work much better, including using the Levenberg-Marquardt 

optimization approach. Choosing an appropriate network size is 

crucial, not only for reducing training time but also for enhancing 

the NN's ability to effectively characterize the given problem. 

Regrettably, there is no universal rule specifying the perfect 

number of layers which are hidden and hidden-layer neurons for 

this. 

4.1.1 Neural Network Training for the Detection of Fault 

In initial phase, dedicated to fault discovery, the system 

processes six-inputs concurrently. These inputs correspond to 

scaled V and I of all phases concerning pre-defect values, 

encompassing ten diverse faults and a normal scenario. 

Consequently, the training set comprises approximately 1100 

input-output pairs, distributed among ten faults (each with 100 

instances) and the normal case, with each pair containing six-

inputs and one-output. The NN's output is binary, representing a 

"yes" or "no" (1 or 0) based on fault detection. Following 

extensive simulations, it was determined that the optimal system 

structure consists of a 1 hidden-layer with 10 neurons. To 

illustrate, various neural networks with diverse hidden layer 
configurations achieving satisfactory performance are 
presented. The most effective neural network is detailed further, 

depicted in Figure 9, with error performance plots showcased in 

Figures 5 – 9. 

Figure 3 displays performance graph of the 6-10-1 NN 

configuration, which comprises 6, 10, 1 neurons in the input, 

hidden and the output layer respectively. The graph indicates that 

the network fell short of reaching the targeted Mean Square Error 

(MSE) outcome of the training progression. 

 

Fig. 2 Simulation Model of Transmission Line 
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Fig. 3 (6-10-1)NN MSE performance  

Figure 4 demonstrates the preparation enactment graph of the NN 

configured as 6-10-5-1. The neuron in the input, two hidden, and 

output layer are 6, 10 and 5, 1 respectively. It's important to 

highlight that the NN fell short of attaining the targeted Mean 

Square Error of 0.0001 by the conclusion of the training. 

 
Fig. 4 (6-10-5-1)NN MSE performance  

Figure 5 illustrates the training progression of the NN configured 

as 6-10-5-3-1, featuring neurons in input, three hidden and output 

layers respectively. 

 
Fig. 5 (6-10-5-3-1)NN MSE performance  

 

Based on the performance graphs above, it is important to 

highlight the exceptionally satisfactory results obtained by NN 

configured as 6-10-5-3-1. This particular configuration, 

characterized by neurons in input, 3 hidden and output layers 

respectively, achieved whole Mean Square Error significantly 

below the specified threshold of 0.0001. Specifically, the MSE at 

the conclusion of the training process is 6.9776e-5. This 

configuration has been selected as the optimal ANN for purposes 

in detection of fault. 

4.1.2 Neural Network Testing for the Detection of Fault 

After training the NN, its outcome is assessed through three 

distinct factors. The initial evaluation involves plotting the most 

effective linear regression, depicting the relationship between the 

outputs and targets, as exemplified in Figure 6. 

The correlation-coefficient (r) serves as a metric for assessing in 

what way effectively the NN's targets align with deviations in the 

outputs, ranging from 0 (indicating no correlation) to 1 

(representing complete correlation). In this instance, the r is 

determined to be 0.99967, signifying an outstanding level of 

correlation. 

 

Fig. 6 (6-10-5-3-1)NN outputs vs. targets 

 

Fig. 7 Various Phases Confusion Matrices 

Second step employed to evaluate the neural network's 

performance involves plotting confusion matrices to depict 

different error types that occurred during training, testing, and 

validation. Figure 7 explains the confusion-matrix for these 

3phases. Green diagonal cells represent instances correctly 

classified by the NN, while red off-diagonal cells indicate 
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misclassifications. The blue cell in each matrix denotes the 

overall percentage of correctly classified cases in green-color and 

vice versa in red-color. Notably, the selected NN demonstrates 

100% fault detection accuracy. 

The next testing phase procedure involves generating a distinct 

dataset known as test-set. This assesses enactment of the trained-

NN. 300 diverse test-cases were simulated, encompassing 200 

related to various fault types. For every fault, there are around 

twenty instances (each with a different fault resistance and 

position). The remaining 100 cases represent scenarios without 

faults. After analyzing the NN’s results, it was observed that it 

achieves 100 percent efficiency in detecting the occurrence of a 

fault. Accordingly, the NN can accurately discriminate between a 

normal state and a fault state on a TL. 

 

Fig. 8 Snapshot of (6-10-5-3-1)NN 

Figure 8 provides a trained ANN configured as 6-10-5-3-1, 

indicating Fifty-five iterations. Notably, there were no validation 

check failures at the end of the training procedure, and the 

attained MSE in defect detection was 9.43e-5. 

The layers which are in input, hidden and output of the NN that 

was chosen for defect detection are shown in Figure 9.  

 

Fig.9 Chosen (6-10-5-3-1)ANN for Fault Detection  

4.2 Sorting of Fault 

  Upon detecting a burden on the TL, the subsequent phase 

involves identifying the specific fault type. It begins with a 

assessment of various NN that underwent examination, followed 

by the selection of a specific network. In the realm of fault 

classification, NN have been widely proposed. The majority of 

these classifiers leverage multilayer perceptron networks and 

adopt the backpropagation strategy. Despite the inherent slowness 

and challenges in determining the optimal network size 

associated with this strategy, it remains the preferred approach 

when dealing with extensive training sets. This is because the 

suggested algorithm excels in providing a concise distributed 

representation for intricate datasets. 

4.2.1 Neural Network Training for the Fault Classifier 

Six sets of inputs are sent to the planned network, which are the 

3phase V and I scaled to match their respective pre-fault values. 

The outputs are binary (0 or 1) and indicate whether a fault is 

present or absent on line (A, B, and C represent the 3phases P1, 

P2 and P3 respectively of TL and G i.e. Gnd denotes the ground).  

Consequently, the several conceivable arrangements are used to 

accurately represent each of the ten distinct fault categories. The 

offered NN aims to effectively separate between these categories. 

Table 1 clarifies the truth-table depicting the faults and the 

corresponding ultimate fault output. 

Table 1 Fault classifier ANN outputs for several faults 

Type of 

Fault 

Network Outputs 

P1 P2 P3 Gnd 

P1-Gnd 1 0 0 1 

P2-Gnd 0 1 0 1 

P3-Gnd 0 0 1 1 

P1-P2 1 1 0 0 

P2-P3 0 1 1 0 

P3-P1 1 0 1 0 

P1-P2-Gnd 1 1 0 1 

P2-P3-Gnd 0 1 1 1 

P3-P1-Gnd 1 0 1 1 

P1-P2-P3 1 1 1 0 

 

The training set consisted of about 1100 IO pairs, with 100 pairs 

for each defect and 100 pairs for the normal situation. Each set 

included 6 inputs and 1 output. An exploration of back-

propagation networks involved analyzing various combinations 

of layers which are hidden and neurons in it. Among these, 

networks demonstrating suitable recital are offered, followed by 

an in-depth description of the most effective neural network. 

Figures 10 to 15 display error performance plots for NN with 

various layers which are hidden. The selected network is 

exemplified in Figure 19, with its error presentation plots shown 

in Figures 15 to 19. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 779–786 |  783 

 
Fig. 10 (6-5-5-31-4)NN MSE performance 

The training performances plot of NN 6-5-5-31-4 in Figure 10 

shows the best MSE performance, which is noted as 0.01289. The 

NN has neurons six, five, five, 31 neurons and four in the input, 3 

hidden and output layers respectively. 

 

Fig. 11 (6-5-31-4)NN MSE performance 

A NN plot with the configuration 6-5-31-4 is shown in Fig. 11. 

The MSE at the end phase indicates that 0.019773 is the finest 

authentication enactment. The training enactment plot of NN with 

the 6-5-4 configuration is presented in Figure 12. After the 

training procedure, the best validation performance for this 

scenario is 0.029578 in terms of MSE.   

 

Fig. 12 (6-5-4)NN MSE performance 

The NN set up as 6-10-4 is shown in Figure 13's training 

performance plot. The MSE of 0.0077 at the training phase 

indicates the ideal justification enactment. 

 

Fig. 13 (6-10-4)NN MSE performance 

The NN set up as 6-20-4 (with 6 neurons in the input-layer, 1 

hidden-layer with 20 neurons, and 4 neurons in the output-layer) 

is shown in Figure 14's training presentation plot. The MSE at the 

end of the training procedure indicates the best validation 

performance, which is 0.0093975. 

 

Fig. 14 (6-20-4)NN MSE performance 

The NN set up as 6-35-4 (six neurons in the input-layer, one 

hidden-layer with thirty-five neurons, and four neurons in the 

output-layer) is shown in Figure 15's plot. At the end of the 

training procedure, the MSE indicates the ideal validation 

performance, which comes out to be 0.00359.  

 

Fig. 15 (6-35-4)NN MSE performance 

Based on the performance plots above, it is evident that the NN 

with the 6-35-4 has achieved satisfactory training performance. 

The MSE is 0.0035986, and the similar characteristics observed 

in the testing and validation curves, as depicted in Fig. 15, 

indicate efficient training. Therefore, this configuration has been 
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selected as the optimal Artificial Neural Network for 

classification of faults. 

4.2.2 Neural Network Testing for the Fault Classifier  

After training the NN, its performance has been assessed by 

considering three distinct factors. The initial evaluation involves 

plotting the most effective linear regression, demonstrating the 

relationship among the targets and outputs, as depicted in Figure 

16. In this instance, the correlation coefficient was determined to 

be 0.98108, indicating suitable relationship between the targets 

and outputs. The figure includes a dotted line representing the 

perfect regression fit. In NN a solid-red line depicting the actual 

fit. Notably, both lines closely follow each other, signifying 

excellent performance by the NN. 

Making the Receiver Operating Characteristics curve (ROC) is 

the second step in the testing procedure. Figure 17 illustrated 

ROC of several stages. The connection between NN classifier's 

accurate positive classification rate and the rate of wrong 

classification is effectively represented by these graphs. 

Consequently, a perfect ROC would only include upper-left 

corner points, denoting a classification with 100% genuine 

positive and 0% false positivity. Notably, all of the lines in Figure 

17's ROC curves are located in the upper-left corner, making 

them almost perfect. 

In order to assess how well the trained NN performs, a unique 

collection of data known as the test set is created during the third 

testing phase. Three hundred different test cases in all were 

simulated, with five hundred instances corresponding to different 

kinds of faults (about fifty examples for every ten faults, differing 

in fault resistance and position for every case). The remaining 50 

cases represent scenarios without any faults. After analyzing the 

results, it was observed that the efficiency of the NN, particularly 

in accurately identifying the fault type, reached 100%. The NN 

can separate among the fault types on a TL with utmost accuracy. 

Figure 18 shows a simulated training window. It is 

noteworthy that the training progression met in approximately 

144 iterations, and the recital, as measured by MSE, attained a 

value of 6.26e-3 by the conclusion of the training.  

Fig. 16 (6-35-4)NN Outputs vs. Targets   

 

Fig. 17 (6-35-4)ANN Gradient and Validation performance 
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Fig. 18 Chosen (6-35-4)ANN fault-classifier 

Figure 19 shows the ANN fault classification architecture. Each 

neuron in layer which is output represents the burden state for the 

3phases (P1, P2 and P3), and the 4th neuron is dedicated to 

ground fault identification. A value 0 in the output indicates no 

fault, while a value of 1 signifies a fault in the respective phase.  

 

Fig. 19 Chosen (6-35-4)ANN for Fault Classification  

5. Conclusion  

In this study, an alternate method for identifying and categorizing 

TL faults, based on ANN, is presented. The simulation results 

obtained demonstrate that the proposed neural networks have 

achieved satisfactory overall performance. The paper emphasizes 

the importance of selecting the most suitable neural network 

configuration to optimize network performance. Interestingly, 

this method uses 720 Hz as a very low sampling frequency to 

sample the V and I waveforms, in contrast to the higher 

frequencies commonly used in the literature (typically 2 kHz – 5 

kHz). 

Neural networks emerge as a trustworthy and appealing solution 

for an effective TL fault detection system, particularly given the 

growing intricacy of modern power systems. Before applying 

certain neural network topologies and learning algorithms, it is 

important to carefully research and evaluate their benefits since 

training features and performance aspects must be balanced. Back 

Propagation NN proves to be highly effectual when adequately 

more training dataset is offered in all stages. 

In comparison to numeric relays and traditional layouts, such as 

Taurus fault detection and Event Sequence Recorders, the 

proposed technique excels in fault recognition. This innovative, 

straightforward, cost-effective, precise, efficient, and economical 

approach outperforms conventional methods. Adjusting the 

training dataset size, varying the layer numbers which are hidden, 

and modifying the neurons number in each of them can result in 

enhancements to the performance of the proposed approach. 
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