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Abstract: We propose a simple and efficient deep convolutional neural network (CNN) model using EfficientNet-V2 S for Blind Image 

Quality Assessment (BIQA) that works for the distorted images from the TID2013 dataset consisting of images subjected to different 

varieties and levels of distortion.  The ability of the EfficientNet-V2 S over its base model is effectively used for faster training and lower 

computational and time complexity. For quality assessment, the image is resized and normalized in such a manner as to retain the 

information content. The pre-trained model is used to evaluate weights using transfer learning over 80% of the TID2013 datasets while 

the model is tested on the remaining 20% of the distorted images. The actual scores and the predicted scores are compared based on two 

correlation coefficients namely Spearman’s Rank Order Correlation Coefficient (SROCC) and Pearson Linear Correlation Coefficient (PLCC) 

with state-of-the-art techniques used for BIQA. We fine-tuned the model by modifying the structure of the network especially the last layers for 

the target dataset and achieved remarkable performance for sixteen cases from 24 varied distortion cases.   

Keywords: Deep convolutional neural network, EfficientNet-V2 S, Blind Image Quality Assessment, TID2013 dataset, transfer learning, 

SROCC, and PLCC. 

1. Introduction 

Modern image acquisition systems are highly enhanced 

to acquire quality images whether they are stationary or 

mobile however problem persists in storing, 

compressing, and transmitting the images.  Perceptual 

loss and unwanted distortions are introduced in any of 

the stages of the image acquisition system. Therefore, 

image quality assessment (IQA) becomes an increasingly 

important aspect to assure the reliability of the system. 

Perceptual assessment is the matter better concerned with 

the human visual system, subjective IQA is complex and 

expensive being the most reliable. The foremost task is 

to design an efficient and accurate IQA to evaluate the 

quality of a distorted image.  

Depending upon the reference information, traditionally 

objective IQA are categorized as no-reference, reduced, 

and full-reference IQA. Different from the NR-IQA 

algorithms, which can only work with a distorted digital 

image, the FR-IQA [1-9] methods can use the full 

reference image in their analysis. To evaluate an image’s 

quality, reduced-reference (RR)-IQA algorithms only 

have access to a subset of the whole reference image and 

therefore must rely on a pool of extracted features 

instead. IQA computation techniques that seem to be 

objective are evaluated using benchmark databases that 

contain images that have been purposefully altered, 

along with the correlating mean opinion scores (MOSs) 

that were acquired through subjective user testing. Such 

MOSs are employed to compare the accuracy of various 

objective IQA techniques.To reiterate, researchers can 

use freely accessible IQA databases to create and analyze 

IQA algorithmic structures. There exists an abundance of 

algorithms for No-Reference IQA (NR-IQA) that have 

been devised over the years, they can be broadly 

categorized as either distortion-specific or universal. 

Such algorithms can determine an image’s quality by 

identifying and analyzing one or more distortions 

present, including but not limited to blur, blocking, 

ringing, and noise. 

In most of the real-world cases, reference information 

does not exist or is unavailable, in such cases, BIQA has 

attracted significant researchers in this area. Earlier 

research carried out using the BIQA approach included 

traditional handcrafted features or the learned features 

which covered the low and high-level features from the 

image. Nowadays, semantic deep blind features are 

extracted using deep convolutional neural networks.  A 

MEON model for quality prediction was suggested in 

[10]. It was based on multitask learning for distortion 

detection and regression. The features were extracted 

using the CNN while the distortion detection network 

was learned on image descriptors. Lastly, the output of 

network and quality features were collectively used to 

predict the visual quality of the image. As an alternative 

to handcrafted features of a single scale, local features 

were extracted from the distorted image [11]. CNN was 
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used with local weights and local quality jointly as a 

weight-based quality metric. This improved the overall 

performance which considered features on multiscale. 

HyperNet [12] was able to extract deep local and global 

features at different levels. Integrating features at 

different levels is an issue and requires extensive 

research and collaborative discussion. Although much 

research can be seen in deep learned IQA techniques and 

has made remarkable contributions in synthetic and 

authentic distortions (SAD), still there is a large scope 

for improvement.       

The paper focused on the following aspects: 

1. An efficient preprocessing stage to resize and 

normalize the images while retaining the details of the 

image and minimizing the computational complexity 

through experimental analysis. 

2. The use of EfficientNet V2-S [13] pre-trained CNN 

model as a backbone for extracting deep semantic 

features from the image. 

3. Fine tuning of model parameters to achieve improved 

quality prediction. 

4. The correlation coefficient values SROCC and PLCC 

are preferable to the competing methodologies on the 

TID2013 [14] data set. 

Further, this paper has been organized as follows: In the 

next section, we express a brief review of the recent 

state-of-the-art research relevant to the topic discussed in 

this paper. In the third section, the suggested methods for 

NR-IQA based on deep neural networks (DNN) are 

explained. In these methods, the source image is pre-

processed before being sent to the DNN model for 

feature extraction and quality prediction. In the fourth 

section, experimental work is explored. In the fifth 

section, the outcomes are discussed, recent approaches 

are compared, and state-of-the-art quality predictions. 

Further, in the last part, conclusions are drawn. 

2. Literature Review 

The authors in [15] modelled SAD as independent 

variations and further pooled bilinearly the two pre-

trained descriptors as a collective representation resulting 

in a deep bilinear network for quality predictions called 

DB-CNN. They evaluated their model on five IQA 

datasets and represented the performance of DB-CNN 

for both distortions. For synthetic distortions, they used 

21,869 images from two well-known datasets including 

the Waterloo Exploration [16] and the PASCAL VOC 

2012 [17] datasets, and introduced an additional five 

distortions along with the four common distortions 

excluding distortions caused due to under-and over-

exposures. To pre-train the network, 852,891 distorted 

images were used. Whereas, VGG-16 [18] was used to 

extract the relevant features in the authentic distortion 

stage considering the hypothesis that the network adapts 

to authentic distortions as a natural consequence of the 

ImageNet [19] dataset to improve the classification 

accuracy. They limited their model to a few distortions 

and the VGG-16 network while other distortions and 

networks such as ResNet [20] could be used considering 

other bilinear pooling variants. Also, the proposed DB-

CNN model can be extended for feature extraction for a 

more unified quality assessment.  

Multilevel deep semantic features using deep learning 

were acquired from a strong vision-transformer structure 

[21]. The authors focused on extracting features at 

different levels instead of traditional handcrafted features 

using a fusion module for effective hierarchical features. 

The fusion module was followed by an attention module 

for eliminating the redundant features and successively 

different granularity distortions were represented using 

the low and high level features. The resultant image 

quality score (IQS) was represented as a map using the 

local and global features. The features were obtained 

using local average and max pooling for the local 

features whereas global features were gained using the 

global average and max pooling after the convolutional 

layer (CNL). They used CSIQ [22] and TID2013 [14] 

datasets for the synthetic distortions while BID [23], 

LIVEC [24], and the KONIQ-10k [25] were part of 

authentic images. Although their proposed framework 

achieved good performance over 18 other state-of-the-art 

works, they failed to detect the type and area of the 

distortion. Their model suffered from time complexity.  

The problem of overfitting due to scarce dataset images 

was tackled in [26]. The images were subjected to 

different levels and types of distortion and various 

strategies were adopted for augmenting the images. A 

No-reference IQA technique was used for training and 

Full-reference IQA was used for measuring distorted 

image score. The augmented images were trained using 

the Resnet-50 Network to obtain more robust weights 

and the weights were used for predicting the final image 

score on the target IQA images from the fine-tuning 

stage. The performance of the NR-IQA framework based 

on quality-aware features was carried out on authentic 

and synthetic distortion images from LIVE, CSIQ, 

TID2013, LIVEC, and KonIQ-10K datasets. They 

limited their work to some distortions while augmenting 

the dataset images. Further, both the authentic and the 

synthetic datasets were handled independently and not in 

a unified manner which would improve the 

generalization capability of their framework. More deep 

semantic features can be used instead of just considering 

the output from the last CNL.  
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Resnet-50 was the backbone of semantically oriented and 

perceptual quality-oriented features in [27]. One of the 

parallel models is fixed and the other is learnable with 

the removed last CNL and the average pooling layer. A 

global average pooling was used to flatten the features, 

and 3-fully connected layers (FCL) with ReLu and 

sigmoid were used for quality regression. Cross-domain 

features were extracted using a 3-stacked CNL, a GAP 

layer, and 3-FCL. Experimental analyses were carried 

out on KonIQ-10k, LIVEC datasets, and the TID2013 to 

validate the performance of the cross-domain feature 

similarity-guided network. The proposed framework 

indicated higher generalization ability concerning the 

other four competing IQA techniques.  

The work proposed in [28] focused on monitoring the 

objects of interest during BQIA (Blind Quality Image 

Assessment).  They used an end-to-end detection 

transformer cum IQA model (DETR-IQA) by adding 

simple multilayer perceptrons at the decoder. Using the 

KonIQ-10k dataset, they considered five objects to detect 

in the images and used a fusion of distortion degree 

comprising of the region of interest (ROI belonging to 

object region) and other remaining part of the image. 

They found that the predicted IQS of ROI was higher 

than the score of the remaining region. The input image 

was fed to a feature extractor module like ResNet-50 to 

acquire multi-scale features and the flattened sequence 

was then provided to the transformer encoder. The 

decoder transformer containing cross and self-attention 

modules processes 100 object queries along with the 

encoder output. The feed-forward network governs the 

bounding boxes while the classification is obtained 

through the linear projections. Their proposed framework 

can assess image quality with and without objects with a 

small amount of computational complexity.  

The authors in [29] concentrated on distortion diversity 

and image variations. They suggested a model for 

improving the BIQA adaptability schemes for 

distinguished image contents and a variety of distortions. 

They introduced two content-aware networks (ResNet-50 

and ResNet-18) for capturing the quality characteristics 

of the image from different perspectives for QA. The 

HyperIQA network was evaluated on authentic and 

synthetic image datasets which possessed remarkable 

generalization ability still leaving room for effectively 

handling diverse image contents and distortions. The 

research by [30] suggested distortion awareness, 

distortion fusion, and quality prediction modules. It 

captures synthetic and real distortions in distorted images 

using synthetic and real distortion-aware networks, but 

for TID2013 distortion-wise correlation is not 

considered. Although each patch’s quality differs 

according to its content and actual spatial differences, 

allocating the MOS to the patches that are sampled from 

the respective original image remains a common 

practice. 

For BIQA, work suggested in [31] the dual-branch vision 

transformer (ViT). It concurrently takes into account 

both global semantic information and multiscale local 

distortions. Pre-trained CNN ResNet-50 is used to obtain 

two scale features which are input to the ViT with two 

branches, and then to attain global image semantics, 

content-aware-IQA is employed. Finally, to accurately 

anticipate the IQS, numerous FFBs integrate the results 

of the vision transformer which is a dual branch. The 

researchers conducted a Neural Architecture Search 

(NAS) to develop a novel network. This network was 

then scaled up to create a range of models known as 

EfficientNet. The results of this study demonstrate that 

the EfficientNet achieves greater precision and efficiency 

than any prior neural network design. Unlike, prior 

works this model uses EfficientNetV2-S for feature 

extraction to give a better IQA. 

3. Methods and Materials 

The experiments are performed on the synthetic IQA 

datasets provided by TID2013. The TID2013 dataset 

consists of a collection of 3000 images that have been 

proned to various forms of distortion. These distortions are 

sourced from twenty-five references and consist of a total of 

twenty-four different distortions with five degradation 

levels. The various types of distortion involve a broad 

spectrum, ranging from additive Gaussian noise, and 

compression distortions like JPEG, and JPEG2000 to more 

unconventional forms of distortion such as local block-wise 

noise, and non-eccentricity pattern noise. The TID2013 

database can be considered a more demanding IQA dataset. 

The TID2013 database is collection of images, each of 

which is assigned a mean opinion score (MOS) within the 

numerical range of [0, 9]. In contrast to the DMOS, higher 

MOS indicates higher quality. Within this database, we 

select 80% of the images that have been distorted at random 

for training purposes, and 20% to test our system. These 

train and test sets are completely distinct in terms of the 

contents of the images they contain. 

The proposed work uses a pre-trained EfficientnetV2-S 

network for feature extraction of the input image which is 

faster as compared to its base model EfficientNet when 

training is considered. To mitigate the computational 

overhead and time complexity, the input image from the 

TID2013 dataset is resized to 384x384 from 512x312. The 

resize operation reduces the input image size in only one 

dimension which ensures minimum information loss. The 

pixel values are then normalized in the range [0 1] for fast 

processing and eliminate overfitting using the preprocessing 

block shown in Figure 1.  
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The final layers of EfficientnetV2-S are removed and the 

vector from the last CNL as depicted in Figure 1 is 

flattened. The flattened output is passed through a layer 

consisting of 1024 neurons which serves as a bottleneck to 

substantially decrease the dimension of the features while 

preserving the information content. Lastly, the 1024 features 

of the image are processed by a dense layer holding a 

solitary neuron to create a conclusive prediction. The 

framework of the model that has been proposed is illustrated 

in Figure 1. 

 

 

Fig. 1: The proposed model for BIQA  

The algorithm for the proposed BIQA system is presented below: 

Algorithm 1: BIQA System 

 

Input: Image from the TID2013 dataset 

Output: Quality predicted metric 

 

1. Resize the input image [384x384] 

2. Normalize the pixel values in the range [0 1] 

3. Model Training: Suppose for Initial image size 𝐼0 and 

regularization 𝑅0
𝑘 and resultant image size 𝐼𝑒  and regularization 𝑅𝑒

𝑘. 

Epoch 𝑇 and 𝑆 stages. Progressive learning with adaptive 

regularization [32] is applied. 

Input to the pre-trained CNN: 

Several steps in training 𝑇 and levels 𝑆. 

for 𝑖 = 0 to 𝑆 − 1 : 

Image size: 𝐼𝑖 ← 𝐼0 + (𝐼𝑒 − 𝐼0) ⋅
𝑖

𝑆−1
 

Regularization: 𝑅𝑖 ← {𝑅𝑘
𝑖 = 𝑅𝑘

0 + (𝑅𝑘
𝑒 − 𝑅𝑘

0) ⋅
𝑖

𝑆−1
} 

The model is trained for 
𝑇

𝑆
 steps with 𝐼𝑖  and 𝑅𝑖. 

end for 

4. Dense Layer Setup: 1024 neurons and the final neuron gives a 

quality prediction. 

 

The Feature Extraction-Prediction Set Up 

The proposed method makes use of the pre-trained CNN 

EfficientnetV2- S [14] model for feature extraction trained 

on Imagenet-1k (ILSVRC-2012-CLS) and Imagenet-21k 

databases [33], which is the least complex model and has 

equivalent precision in making forecasts to that of another 

variation. EfficientNet systematically studies model scaling 

in 3 ways i.e. width, the number of layers, or depth and 

resolution of input to learn fine grain features of the input. 

To balance the precision of prediction and the complexity of 

networks, regression is performed using the EfficientNetV2-

S structure as a feature extractor. The pre-trained weights of 

the model can be used to extract high-quality features from 

images, which can subsequently be used as classifier inputs. 
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Adjustable parameters include convolution kernel size, filter 

count, and MBConv module number, which vary across 

these eight variations. The architectural difference between 

EfficientNetV2 & EfficientNetV2-S is shown in Table 1. 

 

Table 1. Architecture of EfficientNetV2 & EfficientNetV2-S (*These layers (MBConv with Fused-MBConv) were modified in 

EfficientNetV2 & EfficientNetV2-S architectures) 

 

The TID2013 dataset’s distorted images are used for 

experimentation first by splitting the “train” and “target” 

arrays with the train-test-split function (sklearn library), that 

is used to split arrays into train and test sets. In this instance, 

the data is divided into 80:20 training: evaluation sets. The 

split will always be the same because the random state 

option is set to 42. Then the training data is trained on the 

Efficient-Net V2 S architecture. The model has already been 

taught to identify salient details in pictures. It takes an 

image as input with shape (384, 384, 3) and returns a feature 

vector representation of the image. The feature extractor can 

be used as a part of a larger model, allowing the use of the 

pre-trained weights of the EfficientNet-V2 model and fine-

tuning them on a new dataset. In this case, setting the 

trainable attribute of a layer to False prevents the layer’s 

weights from being altered during training; this is helpful 

when employing a pre-trained model as a feature map 

without updating the learned features. By keeping the pre-

trained model’s weights fixed, we can reduce the likelihood 

of overfitting, as the model will be able to devote its full 

attention to mastering the new task rather than trying to fit 

itself into the new data. Because of this, the pre-trained 

model may be used as a feature extractor with a fixed set of 

features, and only the top-level layers of the model need to 

be trained. The first dense layer, the FC layer with 1024 

neurons, is a bottleneck layer that reduces the feature vector 

output by the feature extractor layer. This layer will learn to 

incorporate pre-trained model characteristics for the current 

task. The count of parameters in this stage is equal to the 

sum of the 1280 neurons in the previous layer plus any 

biases added (1024). So in this case, the number of 

parameters is (1024 * 1280) + 1024 = 1311744. The dense 

layer is fully connected to a neural network. The input to the 

layer is a 2D tensor with shape (None, 1280), where the first 

dimension is the batch size, and the feature count constitutes 

the second dimension (1280). The output of the layer is 

another 2D tensor with shape (None, 1024), for which the 

second dimension represents the total neurons in this layer. 

The second dense layer has the same properties, but the 

number of neurons is only 1. This is called the output layer, 

and it is used for the final prediction.  

For the model’s compilation, we employ Adam 

optimization. The loss function governs the model’s 

efficiency for training. For regression issues, the usual loss 

function is a mean squared error which calculates the 

expected-actual average squared difference. The model 

learns with 200 epochs with single image as the batch, so 

the model updates the weights after every training data 

sample. Table 2 below shows the parameters used for the 

proposed model. 

Table 2. Parameters and respective values for the BIQA transfer learning with EfficientNet 

Parameter Value 

Input Image size 384x384x3 

Input Normalization range [0 1] 

Epoch for training 200 

Batch size 1 

Loss function MSE (Mean Squared Error) 

Optimizer Adam 

Train: Test Ratio 80: 20% 
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4. Results and Discussion 

The EfficientVNet2-S model is trained on this 80% training 

data which has the right combination of MBconv and fused 

MBconvnet in its architecture improving the training speed. 

In EfficientVNet2-S progressive learning with adaptive 

regularization is used where the network is trained with 

images of small size and low regularization factor so that 

the model can understand basic representations quite 

quickly with little effort. Further, higher regularization 

factors are adopted by gradually increasing the image 

dimension. So, this regularization is adjusted adaptively, 

leading to good values of correlation coefficients.  

For the task of determining the quality of the IQA measures, 

SROCC and PLCC [34] are utilized. The performance of 

NR-IQA algorithms can be evaluated for their effectiveness 

on the measured degree to which the ground mean opinion 

scores closely match the scores predicted in a standard 

comparison database.  

SROCC is defined using expression (1), Considering P and 

Q as two datasets 

 

SROCC =
∑  𝑚
𝑖=1  (𝑃𝑖−�̂�)(𝑄𝑖−�̂�)

√∑  𝑚
𝑖=1  (𝑃𝑖−�̂�)

2
√∑  𝑚

𝑖=1  (𝑄𝑖−�̂�)
2
            (1) 

Where �̂� and �̂� represents the middle ranks. Now, PLCC 

is defined by expression (2), 

PLCC =
∑𝑖=1
𝑚  (𝑃𝑖−𝑃‾)(𝑄𝑖−𝑄‾)

√∑𝑖=1
𝑚  (𝑃𝑖−𝑃‾)

2√∑𝑖=1
𝑚  (𝑄𝑖−𝑄‾)

2
                (2) 

Where 𝑃‾  and 𝑄‾  represent the average of P and Q and 𝑃𝑖  

and 𝑄𝑖  represent the 𝑖𝑡ℎ elements of P and Q 

respectively. 

Table 3 presents the distortion-wise SROCC and PLCC 

scores of various distortions in the TID2013 dataset. These 

scores indicate the correlation between the subjective IQSs 

assigned by human observers and the objective quality 

measures computed for each distortion type. Higher 

correlation coefficients indicate a stronger relationship 

between subjective IQSs and objective IQSs, suggesting that 

the objective measures are able to evaluate the perceptual 

quality effectively of the distorted images. 

Table 3. Distortion-wise SROCC and PLCC score of TID2013 

Type of Distortion SROCC PLCC Type of Distortion SROCC PLCC 

 Masked noise 0.939 0.969  Local block-wise distortions 0.445 0.416 

 Additive noise in color components 0.939 0.964  Non-eccentricity pattern noise 0.609 0.849 

 Additive Gaussian noise 0.928 0.947  Mean shift 0.567 0.681 

 Spatially correlated noise 0.917 0.960  Change of color saturation 0.884 0.899 

 High-frequency noise 0.978 0.980  Contrast change 0.923 0.975 

 Impulse noise 0.972 0.968  Comfort noise 0.934 0.988 

 Quantization noise 0.917 0.905  Lossy compression of noisy images 0.846 0.931 

 Gaussian blur 0.967 0.970  Multiplicative Gaussian noise 0.967 0.989 

 Image denoising 0.928 0.975  Chromatic aberrations 0.890 0.981 

 JPEG compression 0.824 0.961  Color quantization with dither 0.851 0.938 

 JPEG2000 Compression 0.961 0.978  Sparse sampling and reconstruction 0.989 0.967 

 JPEG2000 transmission errors 0.895 0.927  All  0.938 0.945 

 JPEG transmission errors 0.923 0.952    

 

To delve deeper into the nuances of our suggested method, 

we present the results of various kinds of distortion and 

compare them to other NR-IQA models. Table 4 displays 

the outcomes of tests conducted on the TID2013 database. It 

clearly shows that our technique is the most accurate across 

16 distortions (66% subsets) out of 24 different kinds of 

distortions. In contrast, for certain kinds of distortions, like 

Mean Shift and Local Block-Wise Distortions, smaller 

SROCC values are obtained. It is noteworthy that our 

methodology demonstrates substantial enhancements in 

performance for certain distortion types that are relevant to 

noise e.g., Sparse Sampling and Reconstruction, High-

frequency noise, gaussian blur) and compression-related 

distortion types (e.g. JPEG 2000 compression, JPEG 

transmission errors). The SROCC and PLCC scores provide 

an understanding of the performance achieved in objective 

quality measures for individual types of image distortions in 

the TID2013 dataset.  
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The plot of the actual image scores and the predicted score 

is shown in Figure 2. It is observed that the mean value of 

actual values coincides with the mean value of predicted 

metrics. The proposed BIQA scheme using the EfficientNet-

V2 S fails to follow the actual metrics when the quality 

metrics are higher. For low-quality metric scores, the 

predicted scores nearly approach the actual scores.  Figure 3 

shows some of the images from the TID2013 Dataset with 

the actual score and the predicted score using the proposed 

BIQA scheme. It can be observed that the prediction 

accuracy is a function of image details. The image with 

more objects shows a large deviation in the decimal part of 

the predicted score while images with lower objects are 

predicted with minimum loss. Also, the system is affected 

by color variations in the input image. More color changes 

deviate the predicted value from the actual score.  

Table 4: Comparison: Distortion-wise SROCC of methods so far using TID2013 with proposed BIQA Scheme 

 

 

Fig. 2 .  Plot of Image Actual metr ics and the metr ics Predicted using the Proposed Approach. 
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Fig. 3.  Images with their Actual and Predicted IQS 

Table 5 shows the comparison of the proposed BIQA 

scheme concerning correlation coefficient metrics (SROCC 

and PLCC) with distinguished state-of-the-art works found 

in the literature for the TID2013 dataset. As seen from 

Table 5, the proposed BIQA scheme achieved a stronger 

relationship between subjective and objective IQSs 

obtaining higher values (0.938 and 0.945) of correlation 

coefficient metrics as compared to other methods. Thus, it 

shows that the objective measures possess the ability to 

evaluate the perceptual quality effectively for the distorted 

images. 

Table 5 .  Quantitative Results of various BIQA schemes on TID2013 Dataset 

Method SROCC PLCC 

 HyperIQA [12] 0.846 0.873 

 DACNN [30] 0.871 0.889 

 Se-Ho Lee and Kim [31] 0.877 0.894 

 DIIVINE [35] 0.654 0.549 

 BRISQUE [36] 0.604 0.694 

 CORNIA [37] 0.549 0.613 

 IL-NIQE [38] 0.523 0.673 

 HOSA [39] 0.688 0.764 

 DIQaM-NR [40] 0.835 0.855 

 TS-CNN [41] 0.783 0.824 

 CaHDC [42] 0.862 0.878 

 DB-CNN [43] 0.816 0.865 

 Proposed 0.938 0.945 

 

5. Conclusion 

We propose a simple but effective deep pre-trained 

convolutional neural network-based BIQA model using 

EfficientNet-V2 S for the TID2013 dataset. The network is 

evaluated with 80: 20 ratio concerning training: testing 

samples of the dataset distorted images for predicting the 

IQSs. EffcientNet-V2 S network is selected due to its ability 

to extract semantic relevant features from an source image 

to a much higher depth. The proposed BIQA scheme 

demonstrates state-of-the-art performance in through the 

SROCC and PLCC metrics. Out of 24 distortions, the 

proposed BIQA model is superior to other methods in 16 

cases. The EfficientNet V2 S network is properly tuned by 

properly resizing and normalizing the input images. The last 

two-FCL are efficiently used to preserve the details of the 

image and the scores are predicted nearer to the actual 

scores as provided with the dataset.  We achieved a stronger 

relationship between subjective IQSs and objective IQSs 
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while the objective measures are found to be effective in 

evaluating the perceptual quality of distorted images. The 

proposed scheme offers low time complexity and 

computational complexity. Further, the correlation between 

the predicted scores and the mean opinion scores of test 

images can be improved by increasing the iterations during 

training and fine-tuning other parameters such as batch size, 

kernel size, etc.  

Other authentic and synthetic datasets can be evaluated 

using the proposed model. Also, a robust BIQA system can 

be constructed to mitigate the error between the actual score 

and the predicted score and improve the generalization 

ability of the network.   
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