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Abstract: In contemporary industries, quality control in semiconductor manufacturing is crucial. Recent years have seen the 

effective development and use of intelligent data-driven condition-monitoring techniques in industrial applications. The current 

approaches generally assume that the testing and training data are drawn from the same distribution, despite the condition 

monitoring performance being quite promising. The acquired data are typically prone to varied distributions in different 

operating situations in practice due to the difference in the process of manufacturing, which considerably degrades the 

performance of the data-driven approaches. This research presents a domain adaption approach for fault diagnosis in 

semiconductor production that is deep learning-based in order to address this problem. The deep neural network’s learned 

high-level data representation is optimized for the maximum mean discrepancy measure. The implemented method appears to 

offer an efficient and generalized fault diagnosis methodology for quality inspection, according to experimental results using 

a dataset from a real-world semiconductor manufacturing facility. When compared with existing methods such as VAE-IDF, 

FDC, SCSDAE, and KABSL, the implemented Deep learning-based domain adaption (DL-DA) achieves 99.56% accuracy in 

fault diagnosis detection in semiconductors. 

Keywords: Deep learning, domain adaption, fault diagnosis, semiconductor manufacturing.  

1. Introduction 

The intermediate stages of accurate quality 

inspection are becoming increasingly crucial in 

recent years due to the quick development in 

technologies of manufacturing semiconductors to 

ensure efficient process control [1]. The wafer 

fabrication techniques used in the production of 

semiconductors are a series of labor-intensive, 

highly complex, and lengthy products that require 

numerous equipment, process steps, and recipes [2]. 

Prior to process control, proper equipment control 

should be done to ensure the necessary wafer quality 

in semiconductor manufacture [3]. Ensuring that all 

standards are followed is essential to minimizing the 

likelihood of system problems (for instance, the 

locations of wires for wireless power supplies in the 

rail) [4]. In the production of semiconductors, Fault 

Detection, and Classification (FDC) is a crucial 

component of Advanced Process Control (APC). 

Monitoring and analyzing process data variations 

are the primary goal of FDC to spot abnormalities 

and pinpoint potential underlying causes [5]. The 

FDC model may perform poorly in terms of 

generalization for data from a new recipe if it was 

trained on data from existing recipes. Every time a 

recipe change takes place, the FDC model must be 

retrained using the new recipe data. However, this 

process takes a long time because it takes countless 

efforts to collect enough labeled training data [6]. 

For quality enhancement in the semiconductor 

manufacturing sector, statistical process control 

(SPC) has received widespread recognition. The 

general assumption in SPC applications is that 

product quality can be accurately evaluated using 

linear to nonlinear models for univariant or 

multivariate quality criteria [7]. The class imbalance 

dataset is not the only algorithmic model that has a 

challenging task when dealing with problems with 

early defect identification semiconductor devices 

[8]. 

Deep learning approaches have been 

widely used in the process sector to support 
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decision-making and knowledge discovery utilizing 

sensor data [9]. Various sensors that monitor process 

and tool conditions are also included in modern 

semiconductor fabrication tools [10]. In general, 

supervised and unsupervised classifiers in ML for 

wafer map defect pattern identification (WMDPI) 

fall into these two groups. When class labels for 

wafers are accessible, supervised learning models 

are utilized to categorize the given unknown data 

into several known classes using the information 

gained from the previously available training data 

set. When the class labels are unknown, however, 

unsupervised learning models are utilized to 

categorize the wafer data [11]. This study’s main 

goal is to reduce overfitting and time consumption 

tasks so that they can operate in harmony to improve 

bad wafer identification [12]. Two methods can be 

used to recognize patterns on wafer maps: 

recognition of Model-based patterns and feature 

extraction-based pattern recognition are: A 

predetermined function of a probability distribution 

is utilized for every pattern in the model-based 

pattern recognition, and the optimal model is chosen 

by analyzing models using the information criterion. 

Unique faulty pattern characteristics are first 

extracted for feature extraction-based pattern 

identification, and then various pattern 

categorization methods are used to categorize these 

patterns. Different techniques, such as the closet 

neighbor method, correlogram, Radon 

transformations, etc., can be used to extract the 

features [13]. When a fault is diagnosed, erroneous 

sensor signal patterns are seen at the excursion time 

that the model has predicted, and these patterns 

match the results of manual identification performed 

by subject-matter experts [14]. The following list 

summarizes this work’s main contributions,    

1. For decision-making, information from many 

sources (controllers and sensors) is used. 

2. Framework of ‘Data modeling’ is created for:  

a. Segmenting the data gathered from various sources 

according to the operational circumstances. For 

example, various steps in the process of etching have 

various properties, hence a set of criteria is needed 

to properly segregate the data from various steps.  

b. Data synchronism between many sources is done to 

account for network delay, inconsistent time stamps, 

various sample rates, etc.  

c. Data fusion done effectively, where 1. The analytical 

procedure requires less computation, 2. Different 

sensors no longer depend on one another, and 3. The 

model can be trained using fewer samples.  

3. A real-world dataset collected from a semiconductor 

etching process that has induced a domain shift is 

used to test the implemented methodology. 

The remainder of this paper is outlined in the section 

that follows, the literature review is described in 

Section 2, the implemented method of fault 

diagnosis is presented in Section 3, the result and 

comparative analysis are described in Section 4, and 

the paper concludes with the conclusion in Section 

5.0 

Literature Survey 

Moslem Azamfar et al [15] implemented a deep 

learning-domain adaption method for fault diagnosis 

in semiconductor manufacturing. The classification 

of health conditions and feature extraction were 

done using deep convolutional neural networks. The 

implemented domain adaption method increases the 

model generalization by transferring knowledge 

from the training and testing domain, and it reduces 

overfitting. However, the availability of high-quality 

labeled data in the source domain remains a crucial 

requirement for effective domain adaption and time 

consumption. 

Youngju Kim et al. [16] implemented an FD model 

that was resistant to drift by using a variational 

autoencoder (VAE) to simulate process drift. The 

implemented model encrypts certain time-varying 

information across distinct hidden layers as process 

drift was characterized by time-varying information. 

In a manufacturing context where different process 

drifts occurred, the FD model increased prediction 

performance in terms of accuracy and decreased 

false alarms. However, the performance of defect 

detection is negatively impacted by VAE’s inability 

to adjust to process drifts in semiconductor 

fabrication, leading to substantial differences in data 

distribution. 

Dong Hwan Kim & Sang Jeen Hong [17] 

implemented Fault Detection Classification (or 

control) (FDC), a new multifunction integrated 

algorithm by the ensemble algorithm. To determine 

the origin of the abnormality in the process 

parameters, classification, and fault detection were 

examined using the information of plasma state and 

optical emission spectroscopy (OES) data. Batch 

normalization was performed prior to the activation 

function because it had the advantages of preventing 

overfitting, resolving gradient vanishing issues, and 

accelerating learning.  However, there is a restriction 
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to the implemented FDC that was it did not 

accurately depict the process condition. 

Jianbo Yu et al. [18] implemented a stacked 

convolutional sparse denoising auto-encoder 

(SCSDAE) was a novel feature learning method to 

recognize wafer map patterns (WMPR) in processes 

of semiconductor manufacturing, which the features 

directly derived from images. SCSDAE achieves a 

high accuracy rate, produces greater results on the 

simulation, and exhibits extremely good 

performance for WMPR. However, insufficient or 

biased training results in inferior performance or 

generalization problems, although SCSDAE 

required big labeled data for optimal performance. 

Tobias Schlosser et al. [19] implemented an SH-DN-

based hybrid multistage system as a denoise 

autoencoder (DAE)-based anomaly detection 

technique. The DAE learns a primary representation 

of typical wafers from equipment sensor inputs and 

uses that information as the basis for a one-class 

classification model. Higher accuracy in fault 

detection was achieved by the SH-DN method 

because of their capacity to learn intricate patterns 

and features from large datasets. However, 

denoising the autoencoder of SH-DN required large, 

diverse labeled datasets, but manufacturing of 

semiconductors faces difficulties in defect rates, data 

collection, and privacy concerns.  

Yi Zhang et al. [20] implemented sequential 

oversampling discrimination (SOSD) to address the 

imbalance issue of fault detection for batch 

processes essentially time-varying dynamics and 

with strong nonlinearity. The technique of padding 

and masking outperformed the better last-point 

copying technique in performance by effectively 

handling batch durations with shorter sequences. 

However, the sequential oversampling method 

caused a delay in the detection of faults, causing 

perhaps compromising product quality, prolonged 

exposure, and increased manufacturing costs.   

Junliang Wang et al. [21] implemented a knowledge 

augmented broad system (KABLS), which offers a 

selective sampling network of multichannel to 

decouple the mixed-type faults, with a broad 

selective sampling module, and knowledge module. 

The benefit of KABLS appears from the result, 

which shows that it still has the highest detection 

accuracy of mixed-type defects and improved 

classification accuracy. However, the KABLS was 

difficult to structure complicated domain-specific 

knowledge, resulting in a knowledge representation 

that was insufficient or incomplete. 

There are some limitations in semiconductor fault 

diagnosis using deep learning, that are mentioned 

above such as due to insufficient training data, 

autoencoders were overfitted, which causes poor 

generalization and performance degradation on 

unobserved data in industrial processes, insufficient 

or biased training results in inferior performance or 

generalization problems, although SCSDAE 

required big labeled data for optimal performance.  

3. Methodology 

 The implemented method consists of main 

five steps, which are data partition, data modeling, 

designing a CNN architecture, training the 

implemented CNN model with weight-decay, and 

testing the model. Overcoming the limitations of 

insufficient training data leads to overfitting in 

autoencoders, resulting in poor generalization and 

performance degradation in industrial processes, so 

the CNN architecture was implemented. The 

implemented method of fault diagnosis flowchart is 

represented in Figure 1.  
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Fig 1. The implemented method of fault diagnosis flowchart 

3.1. Data partitioning 

 The initial stage of the method involves 

splitting the raw time-domain sensor data into two 

steps are, unlabeled data (target domain data) and 

labeled data (source domain data). Additionally, 

training and testing are the two sets divided from the 

target dataset, the CNN model is trained using one 

subset, and the trained model is tested using the 

other set.  

3.2. Data modeling 

  Before training the diagnosis model, there 

are three main processes for modeling the data, as 

follows: 

1. Regime separation: Because of changes in 

operational circumstances during the etching 

process, the properties of the signal’s measurement 

may significantly change. Therefore, before training 

the fault diagnosis model, it is crucial to carry out a 

process of regime separation and data 

reconstruction.   

2. Signal alignment: The length of the signal 

measurement from the process of etching on a wafer 

may differ from the length of the signal 

measurement from other wafers. To adjust every 

sensor across various experiments and wafers, a 

signal alignment is necessary. For signal alignment 

in this study, the Cross-Correlation method has been 

applied.  
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Fig 2. Generating 1D data arrays for each wafer and from all sensors. 

3. Sensor Fusion: The implementation of a multi-

channel architecture of 1D CNN is possible, but it 

requires more samples for training and is statistically 

expensive to determine the dependence and 

relationship between the various channels. Thus, a 

basic stacking procedure is implemented to enable 

the usage of a 1D CNN architecture for sensor fusion 

with just one channel. In this procedure, the 

influence of a contact point between two successive 

sensor data as well as the impact of sensor order are 

minimized by using the proper stride and padding 

settings. Figure 2 shows the stacking procedure 

across numerous wafers.  

3.3. Constructing a CNN model 

 In this stage, the source and target domain 

data are used to build an architecture of CNN to 

remove the representation high-level feature. Figure 

3 depicts the implemented CNN network’s 

organizational structure for wafer failure diagnosis. 

Four layered 1D convolutional layers make up the 

feature extraction architecture. The batch size, filter 

number, filter length, and kernel size employed in 

this study are actually estimated to be 32,15, 5, and 

15 accordingly.  

 

Fig 3. The network architecture of implemented deep neural network in the phase of training  
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In the FC layer, a function dropout with a rate of 0.5 

was applied to avoid overfitting. Every 

convolutional layer is followed by a max-pooling 

layer, which reduces the data dimension while 

retaining important spatial information. To predict 

each wafer’s health state, a softmax layer is used in 

the final stage. Rectified linear unit (ReLU) 

activation functions were used in this deep 

architectural design to address the issues caused by 

disappearing gradients during training. First, 

attention is given to the convolutional deep learning 

pattern, which aims to minimize the error of 

empirical classification on the supervised source-

domain data. The popular cross-entropy loss 

function Lc is utilized in this study and is described 

as Equation (1),  

Lc = −
1

ns
∑ ∑ 1{yi = j}log

exi
S,j

∑ e
xi

S,m2
m=1

2
j=1

ns
i=1                                                           

(1) 

Where the training samples number represents ns, 

yiis the label of the i-th source sample, taking as 

input the i-th labeled sample in the source domain, 

and exi
S,j is the j-th element of the output vector.  

Additionally, the domain distribution discrepancy 

loss Ld, is indicated in this study using the MMD 

metric and is defined in Equation (2), 

Ld = MMDk(FS, FT)                                                                                               

(2) 

Where the distributions in the fully-connected layer 

of the high-level representations of the source data 

and the target domain denoted FS and FT , 

respectively. 

As a result of integrating the objectives in 

Equations (1) and (2), and problem in general 

optimization can be written in Equation (3),  

minLopt = Lc + Ld                              

             (3) 

Each epoch during training can include updating 

the network parameters as follows in Equation (4), 

θ ← θ − δ(
∂Lc

∂θ
+ α

∂Ld

∂θ
)    

             (4) 

Where ∂ represents the learning rate, and θ 

represents the network models parameters.  

3.4. Train the model using weight-decay 

Over-fitting and time consumption is an 

essential problem with CNN’s classification 

methods. The implemented CNN architecture was 

therefore trained using weight-decay to minimize 

these issues. Weight decay can have an impact on the 

speed the network converges and how many training 

iterations are needed for it to perform at an adequate 

level. Weight decay may help with convergence by 

promoting smaller weights, which would prevent the 

network from overfitting. This might perhaps result 

in fewer training iterations, which would speed up 

training. However, in comparison to other elements 

like the network architecture, dataset size, and 

available computational resources, the impact of 

weight decay on training time is typically negligible. 

Since the strength of gradients varies exponentially 

over layers in a deep model, this is not immediately 

applicable to the current situation. In order to take 

into account, the relative importance of the local 

parameters inside the layer, normalize the gradient 

norm |gj
t| to have mean 0 and standard deviation 

(std) 1 within each layer at each iterationtion. The 

normalized gradient-norm gj
~t is given by Equations 

(5) and (6), 

gj
t =

∂ρ(wt)

∂wj
                                             

     (5) 

ρ denoted data fidelity with respect to the parameter 

wj at iteration t. 

gj
~t =

 |gj
t|−μl

t

σl
t                    

     (6) 

Where σl
t represents the deviation of standard and 

mean of all the gradient norms for the parameters 

within layer l at iteration t, and l represents the layer 

that includes the parameters μl
t and wj. The 

following data-driven regularity results from the 

assumption that the degree of regularity θj
t for each 

parameter wj at iteration t follows a distribution of 

the residual in Equation (7), 

θj
t  ∝  gj

~t                  

     

 (7) 

Where each parameter’s degree of regularization is 

inversely proportional to the gradient’s norm. 

S(x; ∝) = 2 1 + exp(−∝ x)⁄ , Where ∝ ∈  ℝ is a 

control parameter for the steepness of the function 

value transition, is the scaled sigmoid function that 

we utilize to determine the adaptive regularization. 

The scaled sigmoid function S of the normalized 

gradient norm gj
~t then determines the relative level 
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of regularization θj
t for each parameter wj at 

iteration t as follows in Equation (8): 

θj
t =  S(gj

~t; ∝) =
2

1+exp(−∝gj
~t)

   

                               (8) 

Where according to the gradient norm, the slope of 

the decay rate transition denotes ∝, and gj
~t is 

normalized to have standard deviation 1 and mean 0 

and since θj
t ranges from 0 to 2 and its average is 1. 

3.5. Testing the model 

 The trained CNN model is given the partial 

target domain data at this stage for model testing, 

and the fault detect diagnostic model’s performance 

is analyzed to that of competing approaches. 

4. Experimental Setup and Results 

In this experiment, the PC used for all trials 

has a Core i5 processor, 16 GB of RAM, and an 

NIVIDIA GeFoce TX 2080 Ti graphics card. The 

model training time is shortened by using GPU 

computing Tensorflow programming. The 

implemented DL-DA (Deep-Learning-based 

Domain Adaption) method is compared with the 

RNN (Recurrent Neural Network), CNN 

(Convolutional Neural Network), LSTM (Long 

Short-Term Memory), and GAN (Generative 

Adversarial Network), the effectiveness of the 

implemented method is examined here in terms of 

accuracy, precision, sensitivity, specificity, recall, 

and f-measure. 

4.1. Evaluation parameters 

For the assessment of fault diagnosis, the following 

three factors are utilized, as follows in Equations (9), 

(10), (11), (12), (13), and (14), 

• Accuracy = It is the proportion of accurate 

predictions to all input samples and it is calculated 

using the below equation, 

Accuracy = 
TP+TN

(P+N)
× 100                                                       

(9) 

• Specificity = It is the proportion of actual negatives 

to all other negative effects. 

Specificity = 
TN

(FP+TN)
                                                                

(10) 

• Sensitivity = The measure of a model’s sensitivity 

measures its ability to it predicts true positives in 

each of the categories that are accessible. 

Sensitivity = 
TP

(TP+FN)
 (11) 

• Precision: Positive prediction’s accuracy is gauged 

by a static called precision. It is equated to the total 

number of accurate forecasts divided by the sum of 

accurate predictions and false positive predictions.  

Precision = 
TP

(TP+FP)
                           (12) 

• Recall: The wide range of positive predictions is 

measured by the recall. It is equated to the number 

of true positive predictions divided by the amount of 

false negative predictions plus true positive 

predictions.  

Recall = 
TP

(TP+FN)
                                          (13) 

• F-measure: It is a single metric that captures both 

features by combining precision and recall. 

F-measure = 
(2∗Precision∗Recall)

(Precisioon+Recall)
                    

(14) 

where the number of fault instance denote P, the 

number of correctly predicted fault instances denote 

TP, the incorrectly predicted fault samples denote 

FP, the number of normal instances denote N, and 

the number of correctly predicted normal instances 

denote FN.   

4.2. Result 

Table 1.  Performance of the implemented method’s accuracy 

Methods Accuracy (%) 

LSTM 89.21 

CNN 91.04 

RNN 90.82 

GAN 95.67 

DL-DA 99.56 
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The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of accuracy. 

Performance of the implemented method’s accuracy 

shown in Table 1. The graphical representation of 

the performance of the implemented method’s 

accuracy is shown in Figure 4. In comparison with 

the other methods of LSTM, CNN, RNN, and GAN 

with values of 89.21%, 91.04%, 90.82%, and 

95.67%, the accuracy obtained reveal that the 

implemented DL-DA method attains greatest value 

with 99.56 %.   

 

Fig 4. The graphical representation of the performance of the implemented method’s accuracy 

Table 2. Performance of the implemented method’s precision  

Methods Precision (%) 

LSTM 90.12 

CNN 87.60 

RNN 94.43 

GAN 91.74 

DL-DA 98.73 

 

The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of precision. 

Performance of the implemented method’s precision 

shown in Table 2. The graphical representation of 

the performance of the implemented method’s 

precision is shown in Figure 5. In comparison with 

the other methods of LSTM, CNN, RNN, and GAN 

with values of 90.12%, 87.60%, 94.43%, and 

91.74%, the precision obtained reveal that the 

implemented DL-DA method attains greatest value 

with 98.73 %.   
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Fig 5. The graphical representation of the performance of the implemented method’s precision 

Table 3. Performance of the implemented method’s sensitivity 

Methods Sensitivity (%) 

LSTM 92.29 

CNN 91.00 

RNN 90.47 

GAN 90.85 

DL-DA 97.31 

 

The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of Sensitivity. 

Performance of the implemented method’s 

sensitivity shown in Table 3. The graphical 

representation of the performance of the 

implemented method’s sensitivity is shown in Figure 

6. In comparison with the other methods of LSTM, 

CNN, RNN, and GAN with values of 92.29%, 

91.00%, 90.47%, and 90.85%, the sensitivity 

obtained reveal that the implemented DL-DA 

method attains greatest value with 97.31 %.   

 

Fig 6. The graphical representation of the performance of the implemented method’s sensitivity 
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Table 4. Performance of the implemented method’s specificity 

Methods Specificity (%) 

LSTM 91.64 

CNN 90.82 

RNN 92.46 

GAN 88.72 

DL-DA 95.35 

 

The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of specificity. 

Performance of the implemented method’s 

specificity shown in Table 4. The graphical 

representation of the performance of the 

implemented method’s specificity is shown in 

Figure 7. In comparison with the other methods of 

LSTM, CNN, RNN, and GAN with values of 

91.64%, 90.82%, 92.46%, and 88.72%, the 

specificity obtained reveal that the implemented DL-

DA method attains greatest value with 95.35 %.   

 

Fig 7. The graphical representation of the performance of the implemented method’s specificity 

Table 5. Performance of the implemented method’s recall 

Methods Recall (%) 

LSTM 92.03 

CNN 95.69 

RNN 96.41 

GAN 93.85 

DL-DA 99.05 

 

The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of recall. 

Performance of the implemented method’s recall 

shown in Table 5. The graphical representation of 

the performance of the implemented method’s recall 

is shown in Figure 8. In comparison with the other 

methods of LSTM, CNN, RNN, and GAN with 

values of 92.30%, 95.69%, 96.41%, and 93.85%, the 

recall obtained reveal that the implemented DL-DA 

method attains greatest value with 99.05 %.   
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Fig 8. The graphical representation of the performance of the implemented method’s recall 

Table 6. Performance of the implemented method’s f-measure 

Methods F-measure (%) 

LSTM 94.18 

CNN 89.36 

RNN 97.54 

GAN 93.72 

DL-DA 98.90 

 

The implemented DL-DA method is compared to the 

RNN, CNN, LSTM, and GAN in term of f-measure. 

Performance of the implemented method’s f-

measure shown in Table 6. The graphical 

representation of the performance of the 

implemented method’s f-measure is shown in Figure 

9. In comparison with the other methods of LSTM, 

CNN, RNN, and GAN with values of 94.18%, 

89.36%, 97.54%, and 93.72%, the f-measure 

obtained reveal that the implemented DL-DA 

method attains greatest value with 98.90 %.   

 

Fig 9. The graphical representation of the performance of the implemented method’s f-measure 
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4.3. Comparative analysis 

Table 7. The comparative analysis of existing and implemented model 

Author Method Accuracy (%) 

Youngju Kim et al. [3] VAE-IDF 96.9 

Dong Hwan Kim & Sang Jeen 

Hong [4] 

FDC 93.6 

Jianbo Yu et al. [5] SCSDAE 94.81 

Junliang Wang et al. [16] KABSL 97.91 

Implemented method DL-DA 99.56 

 

 

Fig 10. Graphical representation of The comparative analysis of existing and implemented model 

In this section, the proposed model’s 

performance has been tested by using the parameter 

with accuracy. The existing and implemented 

models’ comparative analysis is shown in Table 7.  

The model is proposed to compare the current 

approaches that are available in the field in this 

comparison study. According to accuracy, a 

comparison study is displayed in Table 7 and the 

graphical representation in Figure 10 that the 

implemented method outperformed all other models, 

including VAE-IDF, SCSDAE, FDC, and KABSL. 

Due to weight-decay reduce the time consumption, 

the current model Deep learning-based domain 

adaption obtains the highest accuracy. Figure 10 

shows that when the Deep learning-based domain 

adaption is the implemented model to be compared 

with the prior model, the proposed performance 

model shows high accuracy because of the 

implemented CNN architecture was therefore 

trained using weight-decay to minimize the issues, 

and it gives better results of the effective detection 

of fault semiconductors. 

4.4. Discussion 

 This section provides the Semiconductor 

Fault Diagnosis using deep learning and compared 

those results with existing methods in comparative 

analysis section 4.1. The major goal of this study is 

to detect fault diagnosis of semiconductors and to 

reduce the time consumption with weigh-decay. 

Information from numerous sources (controllers and 

sensors) is used to make decisions. Segmenting the 

information obtained from multiple sources based 

on the circumstances of use. To appropriately 

separate the data from distinct processes, a set of 

criteria is required to consider, for instance, the 

etching process’s many steps have different features. 

To evaluate the adopted methodology, a dataset in 

real-world obtained from a domain-shifted 

semiconductor etching procedure is used. The 

0

20

40

60

80

100

Youngju Kim et

al. [3]

Dong Hwan

Kim & Sang

Jeen Hong [4]

Jianbo Yu et al.

[5]

Junliang Wang

et al. [16]

Implemented

method

A
cc

u
ra

cy
 (

%
)

Methods



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 391–404 |  403 

 

representation of high-level data that the deep neural 

networks learn is optimized for the maximum mean 

discrepancy metric. Experimental results using a 

dataset from an actual semiconductor manufacturing 

facility present that the implemented method 

appears to provide an effective and generalized 

defect diagnostic tool for quality inspection. When 

compared with existing methods VAE-IDF [3], FDC 

[4], SCSDAE [5], and KABSL [16], the 

implemented Deep learning-based domain adaption 

achieves 99.56% accuracy fault diagnosis detection 

in semiconductor.  

5. Conclusion 

To diagnosis throughout the semiconductor 

manufacturing process, this research implements a 

method of deep learning-based domain adaption. 

For feature extraction and classification of health 

conditions, deep convolutional neural networks are 

utilized. For optimising the data distributions of 

various tests, the maximum mean discrepancy 

measure is used. To demonstrate the usefulness and 

excellence of the implemented method, research is 

conducted on a dataset of real-world for monitoring 

health condition of semiconductor. The findings 

imply that the implemented method gives a new and 

suitable means of boosting the generalisation 

capacity of the fault diagnosis model under various 

conditions. When compared with existing methods 

VAE-IDF, FDC, SCSDAE, and KABSL, the 

implemented Deep learning-based domain adaption 

achieves 99.56% accuracy fault diagnosis detection 

in semiconductor. Future research will be done to 

find ways to make data-driven fault diagnosis 

algorithms less dependent on supervised data.    
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