

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 466

Multi-Objective of Load Balancing in Cloud Computing using Cuckoo

Search Optimization based Simulation Annealing

Manjula Hulagappa Nebagiri1, Latha Pillappa Hnumanthappa2

Submitted: 11/10/2023 Revised: 12/12/2023 Accepted: 19/12/2023

Abstract: Load balancing (LB) in Cloud computing (CC) is the most challenging and helpful research for distributing tasks between

Virtual Machines (VMs) at Data Centers (DC). In the CC environment, the tasks are allocated between VMs and have various frame

lengths, initial times as well and execution times. The LB is one of the most significant problems in CC and solving these problems leads

to reducing the response time, energy consumption, and cost. In this study, a hybrid method of Cuckoo Search Optimization (CSO) and

Simulation Annealing (SA) algorithm called CSSA is proposed for efficiently balancing the load in VMs. This approach updates the search

space of SA by using the CSO approach by considering the multi-objectives of cost, Resource Utilization (RU), response time and Degree

of Imbalance (DoI). The experimental outcomes show that the proposed CSSA delivers the performance metrics such as makespan, Degree

of Imbalance, Resource utilization and Response time and achieved values of about 150.09, 36.62, 0.45 and 2467 by using the no. of tasks

of 2000, which ensures better results compared with the existing methods named BSASSO, QMPSO and MMHHO.

Keywords: Cloud computing, Data center, Improved cuckoo search optimization, Load balancing, Simulation annealing, Virtual machine

1. Introduction

The Load Balancing (LB) is significant for enhanced

utilization of cloud resources and obtaining a greater VM

performance. The resources are allocated by VMs that are

hosted on Physical Machines (PM) [1][2]. The LB is a

procedure to provide requests among various systems by

task scheduling so that the jobs are executed with minimal

time as well as monitors the VM’s performance. The LB is

the effective and impartial task to determine the load

achievement of users and to enhance a resource

development rate. The major goal of the LB approach is to

minimize the makespan while enhancing resource usage

[3][4]. The gain of performing these LB approaches in the

cloud can obtain enhanced performance, security,

durability, cost reduction as well high throughput. An LB

approach enhances the performance and also enhances the

quality of service (QoS) parameters like makespan, resource

utilization, response time and Degree of Imbalance (DoI)

[5][6].

Recently, Cloud Computing (CC) has played an important

role in the internet-based transmission of knowledge. The

CC has inspired the establishment of number of researchers

due to the development of communication technology as

well as the enhancement of many Internet users [7][8]. LB

in CC is challenging and helpful research for providing the

tasks between VM at the DC. The CC is an effective

technology that contains three major parts Service

providers, cloud environments as well and cloud users

[9][10]. A focal point of CC is task scheduling for VMs and

the LB of VM. To minimize computational cost in cloud

computing, the server association and DC virtualization are

significant [11][12]. In this regard, the existing researchers

utilize different approaches to allocate resources for VM to

control the energy consumption in DC. Identifying the best

placement of VMs to PMs is one of the important challenges

in cloud management systems [13][14][15]. Even, though

virtualization plays a significant role in CC, problems still

frequently arise such as improper load balancing and

scheduling to VMs. To solve this problem, the scheduling

and load balancing between the nodes in CC is proposed to

optimize the resource allocation using a hybrid method of

CSO and SA. The primary contributions of this research are

described as follows;

• The hybrid method of Cuckoo Search Optimization

(CSO) and Simulation Annealing (SA) algorithm

called CSSA is proposed for balancing the load in the

VM. This method utilized the CSO process to get

exploration space whereas SA is assigned to find an

improved response.

• The proposed method significantly achieves the multi-

objective constraints such as Resource Utilization

(RU), Response Time (RT), Degree of Imbalance

(DoI), and cost. The proposed method is evaluated by

using the number of tasks and virtual machines.

The rest of the paper is arranged as follows: Section 2

discusses the recent research on load balancing problems.

Section 3 provides the proposed work of this paper. The

results and discussion are illustrated in Section 4 and the

1 Department of Computer Science, Sambhram Institute of Technology,

Bengaluru, India
2Department of Information Science and Engineering, Sambhram Institute

of Technology, Bengaluru, India

* Corresponding Author Email: n.manjula123@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 467

conclusion is provided in Section 5.

2. Literature Survey

Parida [16] implemented a binary variant of the self-

adaptive Salp Swarm optimization (BSASSO) approach for

LB. The BSASSO approach maintained not only the trade-

off between VM as well as mapped the tasks onto the

suitable VM. A single-objective fitness function according

to the LB issue was examined to estimate task fitness. A

self-adaptive method automatically analyzed a population

size for the provided issue. The BSASSO minimized the

computational cost and makespan as well as enhanced the

throughput but, this approach was considered only for the

dependent tasks.

Pradhan [17] presented Deep Reinforcement Learning with

Parallel Particle Swarm Optimization (DRLPPSO) for

solving a problem of LB. The DRL was used to train a

neural network to obtain the best reward and PPSO was used

to reduce the entire performance time of all the income load.

This approach was aimed to maximize the reward function

through the reduction of makespan time as well as

consumption of energy while achieving maximum accuracy.

The DRLPPSO approach efficiently minimized the overall

processing time. The suggested approach was easy to fall

into local optimum in high-dimensional space.

Kruekaew and Kimpan [18] introduced the multi-objective

task scheduling method with Artificial Bee Colony (ABC)

with a Q-learning (MOABCQ) approach for an independent

task scheduling approach in CC. The Reinforcement

Learning (RL) approach was utilized with the MOABCQ

algorithm to the faster performance of the approach. This

approach was also aimed to optimize the scheduling as well

as resource utilization, cost, makespan, and high throughput.

The suggested method achieved the minimum makespan

due to MOABCQ-LJF could allocate a task to suitable

resources. The MOABCQ-LIF is not optimal as well and

system performance cannot be optimized in each dataset.

Sefati [19] developed a Grey Wolf Optimization (GWO)

according to the capability of resource reliability to preserve

the suitable LB. Initially, the GWO tried to identify the idle

or busy nodes and then, the identified node was estimated

for every threshold node as well as the fitness function.

After identifying and evaluating a node, alpha and beta

wolves attacked a prey and chose it as a suitable node. The

suggested approach improved the usage of makespan while

load balancing as well as effectively reduced the response

time. However, the suggested approach has limited

functionality in reliability as well as service monitoring.

Kaur and Kaur [20] presented a hybrid approach-based

resource provisioning and load-balancing architecture for

the implementation of workflow to optimize VM utilization.

The two hybrid methods were developed for HDD-PLB

framework to Predict the Earliest Finish Time (PEFT)

Heuristic with the Ant Colony Optimization (ACO)

metaheuristic (HPA). The two developed methods for load

balancing had been determined which approach was

preferable for HDD-PLB. The suggested method minimized

computational time, cost, and effective usage of resources.

However, the suggested approach was executed by taking

dynamic VMs hosted on a single physical machine.

Jena [21] implemented a new method of Modified Particle

Swarm Optimization (MPSO) and an Improved Q-learning

algorithm called QMPSO for dynamic load balancing

between Virtual Machines (VMs). This approach was taken

out to modify the MPSO velocity by pbest and gbest based

on the best activity developed by improved Q-learning. This

approach was developed to enhance a machine's

performance through load balancing between VMs, improve

the VM throughput as well and control the balance among

task priorities through optimizing a task’s waiting time. The

QMPSO achieved the efficient LB by energy utilization

comparison. However, the server could design only the VM

if it had sufficient memory, due to all the requests being

approved by the servers and equivalent VMs comparison by

the central server.

Haris and Zubair [22] developed a hybrid optimization

approach of Manta Ray Modified Multi-objective Harris

Hawk Optimization (MMHHO) for dynamic load

balancing. A hybrid process revised a search space of HHO

through the Manta Ray Forging Optimization (MRFO)

approach by establishing cost, utilization of resources as

well and response time. The hybrid process in the developed

approach efficiently enhanced the system performance by

improving the throughput, and LB among VM, balancing

the task based on superiority. The suggested method

enhanced the operation efficiency as well as efficiently

balanced the VM load. However, the HHO and MRFO have

a low convergence rate due to the rapid development of user

dependence on the cloud.

Mirmohseni [23] developed a hybrid Fuzzy PSO and

Genetic Algorithm (FPSO-GA) for the optimal task

scheduling in DC management operations with the energy

method. The developed approach was completed through a

VM management-aware distribution approach for VM

control. This approach was also focused on enhancing the

quality of the service as well as minimizing the violation

number while the method performance. This approach

enhanced resource utilization and efficient load balance

performance. However, this approach has a low

convergence rate due to the rapid development of user

dependence on the cloud.

3. Proposed Methodology

In this research, a hybrid method of Cuckoo Search

Optimization (CSO) and Simulation Annealing (SA)

algorithm called (CSSA) is proposed to solve the LB

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 468

problem in CC. The LB technique is achieved by combining

the CSO into SA. This approach leads to discovering the

better-underloaded container which contains the multi-

objective function called the cost, response time, DoI as well

as RU to minimize the LB algorithm’s fitness function. The

process of CSSA discovers the load of every VM as well as

balances the load through the fitness function. Fig. 1 depicts

the block diagram of the CSSA-based Load Balancing.

Fig. 1. Block diagram of the proposed method

3.1. Load Balancing in Cloud Computing

The CC provides information on the cloud provisions to

cloud consumers where every procedure is implemented in

an environment. The cloud contains a large amount of DC

called PM and each DC contains the specific computing

resources to implement a consumer task [24]. The cloud

consumers contain the number of jobs to the execution of

the VM and the LB approach is to assign the number of jobs

of the user to the VM, which continually establishes VM

load in the CC background. A VM load based on the

execution time of each task fluctuated as the execution time

of one task differed from the alternative task.

The cloud services collect various sets of user requests,

demanding the growth of a dynamic environment for task

execution. The LB approaches are computed when the

balancer obtains user requests and then selects an essential

VM. Eventually, the jobs are routed to the load balancer,

which utilizes LB to allocate a job to a suitable VM. The

VMs obtains the request from the users and the request

should be distributed to the VM for processing. The

resource allocation CC is challenging when only VMs are

overwhelmed or there are some jobs to execute. As a result,

the users may be disappointed with their service as well as

move to various cloud providers. Therefore, a stable LB

approach is generated for an enhanced system performance.

The load-balancing process utilized the input as the output

of the optimization algorithm. Fig. 2 depicts the general

diagram of Load Balancing in Cloud Computing.

Fig. 2. General diagram of the Load Balancing in Cloud Computing

3.2. Multi-objective Constraints

In this study, the multi-objectives are examined and LB

aims to decrease cost, improve RU as well and minimize the

RT. By utilizing these objective functions, the system

performance can be improved.

3.2.1. Makespan

It is a helpful factor for multi-objective scheduling

approaches, which can minimize the execution time as well

as permit tasks to be completed in immature. The makespan

can be calculated by the (1) as follows;

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥(𝐸𝑥𝑡𝑇𝑖𝑚𝑒(𝑉𝑀𝑖)) (1)

3.2.2. Resource Utilization (RU)

It calculates the number of VM resources. In DC, the

utilization of resources is difficult for minimizing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 469

consumption of energy. CC utilizes the number of schemes

to generate suitable resource use. Using QoS, the proposed

method aims to enhance the utilization of the resource. The

RU can be calculated by the (2) as;

𝑅𝑈 =
∑ (𝑇𝑉𝑀𝑖

)𝑁
𝑖=1

𝑀𝑆×𝑁
 (2)

3.2.3. Response Time (RT)

The LB response time is described as the time to respond to

a user request by assigning VMs by minimum load limits. It

is inversely correlated to the efficiency of the system. The

RT equals the value of the best makespan. The RT can be

calculated by the (3) as;

𝑅𝑇 = 𝐹𝑖𝑛𝑡 − 𝐴𝑟𝑟𝑡 + 𝑇𝐷𝑒𝑙𝑎𝑦 (3)

3.2.4. Cost (C)

It varies based on the tasks and is calculated by the

following (4) as;

𝐶𝑜𝑠𝑡 = ∑ (𝑉𝑀𝑖
𝑡𝑖𝑚𝑒 × 𝑉𝑀𝑖

𝑐𝑜𝑠𝑡)𝑁
𝑖=1 (4)

3.2.5. Degree of Imbalance (DoI)

It is utilized to compute load imbalance between VMs,

which is decreased to make the system balanced. The DoI

can be calculated by the (5) as follows;

𝐷𝑜𝐼 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (5)

Where, N – number of tasks or resources; VMtime – time of

VM has executed a certain task; VMcost – cost of VM for a

task execution; TVMi
 – time consumed by VMj to completed

all the tasks; TDelay – delay in transmission; Fint and Arrt

– end time and arrival time of user demand; Tmax, Tmin and

Tavg – Maximum, minimum and Average execution time.

3.2.6. Fitness Function (F)

The proposed method’s fitness function is mathematically

evaluated by (6) as follows;

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐹) = 𝑤𝑒(𝑅𝑈) + 𝑤𝑒(𝑅𝑇)+𝑤𝑒(𝐶) (6)

Where, w and e – weight factor and exponential function of

each parameter; RU, RT and C are the objective functions.

Therefore, the proposed CSSA based LB process efficiently

balances a load in the cloud according to the previously

discussed fitness function.

3.3. Cuckoo Search Optimization

The CSA is a bio-inspired metaheuristic optimization

algorithm that is modeled based on mimicking

characteristics of cuckoo birds. This bird makes fantastic

sounds and has an excellent reproduction strategy. To

establish reproduction, the cuckoo laid their eggs in others'

nests by draining others' eggs from the nest. The CSA [25]

has three types of brood parasitism, which are collaborative

breeding, nest acquisition as well as intraspecific brood

parasitism. The CSA basic rules are explained as follows.

Every cuckoo bird brings one egg while selecting the nest

as well and the best nest is used for the next generation. The

nest has good eggs that are called the local solution which is

used for reproduction. Levy an air tips which is named as

flights and is processed for find the result to good globally.

The dimension of a matter to be optimized is decided

through the matter nature as N. The number of birds in the

nest is m; the current number of iterations is t; the maximum

number of iterations is T. A position vector Xi of the nest

(1 ≤ i ≤ m) is defined a Xi = {Xi1, Xi2 , … XiN}. In CSO, a

bird often looks at its path in m nest in N-dimensional space.

The optimizing procedure is to efficiently replace the

previous worst solution with a new solution as well as

depend upon the stochastic walks and Levy flight for seek.

As a result, the nesting path and location update of the CS is

expressed in (7) as follows;

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝜆) (7)

Where, Xi
t and Xi

t+1 represents the nest of the bird’s location

vectors i at t and t − 1 iterations; Xi represents the present

status and α represents the step or transition size. ⊕

represents point-point multiplication; Levy(λ) represents

the stochastic-looking path. The relationship with time t

follows the Levy dispensation is expressed in (8) as follows;

𝐿𝑒𝑣𝑦(𝜆)~𝜇 = 𝑡−𝜆(1−< 𝜆 ≤ 3) (8)

The step size data from the current optimal solution is used

and which is computed the step size factor is expressed in

(9) as follows;

𝛼 = 𝛼0(𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡) (9)

Where, α0 – stable and held as 0.01; Xbest – current optimal

solution. The stochastic numbers are estimated for the

appropriate computation, which is expressed in (10) as

follows;

𝐿𝑒𝑣𝑦(𝜆)~
𝜑𝜇

|𝑣|
1
𝛽

 (10)

Where, μ and v – standard normal distribution βϵ(0,2). By

integrating the (7) to (10), the CSO utilizes the Lagrange

range multiplier function to make a new solution while Levy

flight, which is expressed in (11) as follows;

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼0
𝜑𝜇

|𝑣|
1
𝛽

(𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡) (11)

After updating the position, the stochastic number

rand ϵ [0,1] is contrasted by identifying the probability pa.

If rand > pa, then Xi
t+1 is modified, or else it remains

unmodified. The desired stochastic walks are utilized to

modify the Xi
t+1 to develop a similar number of new

solutions. The arithmetic formula for the stochastic walk

desire is expressed in (12) as follows;

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟(𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) (12)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 470

Where, r – homogeneous scattered stochastic value in the

range between [0,1] interval and Xj
t and Xk

t – two stochastic

solutions of the t-th iteration. The output of the CSO is

utilized as input for the SA approach to effectively solve the

local optimal problem.

3.4. Simulation Annealing (SA)

The Simulated Annealing (SA) is a heuristic stochastic

search approach inspired by the annealing phenomenon in

nature. It integrates the Metropolis approach as well as

distinctly simulates an annealing procedure. In real world,

the firmness of molecules and atoms is nearly related to

energy level. If a solid is not in a minimum energy state in

an annealing process, the solid requires to be provided to

heating operation, which is followed by the cooling

operation. As the temperature drops steadily, atoms' energy

in the solid is slightly minimized, after a systematic crystal

is produced, that deviates from the global optimum solution

in an approach. Therefore, the speed of cooling can be

reduced by energy enhancement. Moreover, the Metropolis

approach was developed, which permits the new state to be

obtained by definite probability, even if the new solution is

poorer than the previous one. According to the Metropolis

approach, the acceptance probability P is described with

respect to (13) as follows;

𝑃 {
1

𝑒𝑥𝑝 (
𝑓(𝑋)−𝑓(𝑋𝑛𝑒𝑤)

𝑇
) (13)

Where, X and Xnew represents current and new solution

acquired while next iteration; T represents interrelated

temperature which is expressed in (14) as follows;

𝑇 = 𝛼 × 𝑇 (14)

Where, α – number less than 1. To ensure greater search

space, a value nearest to 1 is carried and α is assumed as

0.99. With respect to enhancing the SA search ability, this

local search approach according to a chaotic map is

generated into SA to support easily falling into local

optimum. Hence, the solution of the candidate X′c of SA

after the chaotic local search can be acquired by (15) as

follows;

𝑋′
𝑐 = (1 − 𝑠) × 𝑇 + 𝑠 × 𝐶′

𝑖 (15)

Where, T – maximum number of iterations; i = 1, 2, 3, …,

n. Moreover, a random walk behavior of levy flight also be

useful for an approach to enhance the capability of the

search as well as ignore getting captured in a local optimum.

Hence, levy flight is generated as an approach to explore the

new solutions and which is expressed in (16) as follows;

𝑋′
𝐿 = 𝑋𝑖 × (1 + 𝐿𝑒𝑣𝑦(𝛽)) (16)

Where, X′
L – new candidate solution; Levy(β) – random

number developed by the distribution of Levy. The best

performance between X′
c and X′

L is obtained as a solution

of the candidate by specific probability P.

3.5. Hybrid Cuckoo Search and Simulated

Annealing (CSSA)

The SA simulates an annealing procedure of metal which

needs the balancing among the heating and cooling

procedures of metal to design the metal as applicable shape.

The SA is utilized to proximate the global optimum solution

of an algorithm by iteratively developing the closest

solution over the current solution and after choosing to

retain the current solution or exchange it with the closest

solution. This meant that SA provided the probability for the

poor solution to be enhanced, which is adapted feasibility

utilizing a minimizing parameter known as temperature (T).

Initially, SA randomly develops a candidate solution (A)

and after randomly develops another solution (B).

Subsequently, it estimates the fitness value of A and B. If the

fitness value of B (f(B)), then SA accepts B. Or else, SA

accepts B based on minimizing probability (p(B)), which is

expressed in (17) and (18) as follows;

∆𝐸 = 𝑓(𝐵) − 𝑓(𝐴) (17)

𝑝(𝐵) = 𝑒𝑥𝑝∆𝐸/𝑇 (18)

Where, ∆E – difference among fitness values of A and B; T

represents the current temperature value as well and exp is

the exponential value.

The CS algorithm does not perform efficiently well as

endures from an immature convergence issue when it is

applied to resolve the optimization problems with the

greater dimensions. This is due to its evolutionary operators

such as Levy flight, abandoned approach as well and

random selection approach, these may not be capable of

efficiently exploring the search space of large optimization

problems. Moreover, the SA had effective evolutionary

operators that balanced among exploration and exploitation

of the solutions. The CS aimed to enhance the search

performance by applying the SA’s evolutionary operators.

The SA is utilized in CS to enhance the likelihood of

identifying a global optimum solution as well as eliminate

being trapped within a sub-optimal value. The optimized

solution and client-required tasks are provided to the load

balancer and then the load balancer can process the input

functions and provide the output to the VMs.

4. Experimental Results

The CSSA-based LB performance has been implemented

based on the simulation results. Cloud Sim is a simulation

software for testing the proposed method in the cloud

environment. It provides efficient modeling as well as

simulation over the CC services as well as application

testing. The proposed method is simulated on Cloud Sim4.0

software and system specification with Windows 10 OS,

Intel core i5 processor, 3.30 GHz CPU and 4GB RAM.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 471

4.1. Performance Analysis

This research estimated the performance of a proposed

CSSA based LB process compared with existing methods.

Initially, the proposed method performance is determined in

terms of performance metrics named makespan, resource

utilization, response time, degree of imbalance and cost.

Table 1. Performance Analysis in terms of Makespan

using No. of Virtual Machines

Methods No. of Virtual Machines

100 200 300 400

PSO 1590 1430 1450 1390

GWO 1550 1400 1330 1300

HHO 1420 1370 1260 1210

CSO 1400 1250 1200 1180

CSSA 1350 1200 1180 1150

Table 1 and Fig. 3 illustrate the performance of the

makespan during the no. of VMs from 100 to 400. The

proposed CSSA achieved the minimum makespan when

compared to the existing methods such as PSO, GWO, HHO

and CSO. The proposed method achieves the makespan of

1350, 1200, 1180 and 1150 with the no. of VM of 100, 200,

300 and 400 respectively.

Fig. 3. Graphical representation of Makespan vs. No. of

VMs

Table 2 and Fig. 4 illustrate the performance of the DoI

during the no. of tasks using 100, 500, 1000 and 2000. The

proposed CSSA achieved the minimum DoI when compared

to the existing methods such as PSO, GWO, HHO and CSO.

The proposed method achieves the DoI of 12.89, 17.89,

25.28, and 36.62 with the no. of tasks of 100, 500, 1000 and

2000 respectively.

Fig. 4. Graphical representation of Degree of Imbalance

vs. No. of tasks

Table 2. Performance Analysis in terms of Degree of

Imbalance using No. of Tasks

Methods No. of tasks

100 500 1000 2000

PSO 124.26 121.67 87.44 101.27

GWO 101.78 97.89 79.01 79.98

HHO 97.28 56.29 65.20 72.78

CSO 56.23 19.37 36.41 51.37

CSSA 12.89 17.89 25.28 36.62

Table 3. Performance Analysis in terms of Resource

utilization using No. of Tasks

Methods No. of tasks

100 500 1000 2000

PSO 0.29 0.32 0.33 0.52

GWO 0.25 0.29 0.31 0.51

HHO 0.18 0.21 0.28 0.49

CSO 0.11 0.19 0.25 0.46

CSSA 0.09 0.12 0.23 0.45

Fig. 5. Graphical representation of Resource utilization vs.

No. of tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 472

Table 3 and Fig. 5 illustrate the performance of the resource

utilization during the no. of tasks using 100, 500, 1000 and

2000. The proposed CSSA achieved the minimum resource

utilization when compared to the existing methods such as

PSO, GWO, HHO and CSO. The proposed method achieves

resource utilization of 0.09, 0.12, 0.23 and 0.45 with the no.

of tasks of 100, 500, 1000 and 2000 respectively.

Fig. 6. Graphical representation of Response Time vs. No.

of tasks

Table 4. Performance Analysis in terms of Response Time

(ms) using No. of Tasks

Methods No. of tasks

100 500 1000 2000

PSO 1132 1456 1878 2598

GWO 1029 1389 1856 2590

HHO 1002 1298 1793 2501

CSO 998 1167 1789 2498

CSSA 997 1028 1693 2467

Table 4 and Fig. 6 illustrate the performance of the response

time during the no. of tasks using 100, 500, 1000 and 2000.

The proposed CSSA achieved the minimum resource

utilization when compared to the existing methods such as

PSO, GWO, HHO and CSO. The proposed method achieves

resource utilization of 997ms, 1028ms, 1693ms and 2467ms

with the no. of tasks of 100, 500, 1000 and 2000

respectively.

4.2. Comparative Analysis

This section shows the comparative analysis of the proposed

combination of the Cuckoo Search Optimization (CSO)

with the Simulation Annealing (SA) Algorithm in terms of

number of tasks, makespan, Degree of Imbalance, resource

utilization, and response time in Table 5. Table 5. represents

the comparative analysis of the proposed method with

existing methods using no. of tasks. Table 6. represents the

comparative analysis of proposed method with existing

methods using no. of VMs.

Table 5. Comparison of proposed method with existing

methods using No. of tasks

Method No.

of

tasks

Makespan

(ms)

Degree of

Imbalance

Resource

Utilization

Response

time

BSASSO

[16]

2000 151.02 153.4 N/A 328971

QMPSO

[21]

2000 2389.00 120 N/A N/A

MMHHO

[22]

100 N/A N/A 0.38 1000

2000 6600 38.02 N/A N/A

 Proposed

CSSA

100 121.28 12.89 0.09 997

2000 150.09 36.62 0.45 2467

Table 6. Comparison of proposed method with existing

methods using No. of VM

Methods No. of Virtual Machines Makespan

BSASSO [16] 200

1500

QMPSO [21] 3500

MMHHO [22] 2700

 Proposed CSSA 1200

4.3. Discussion

In this section, the advantages of the proposed method and

the limitations of existing methods are discussed. The

existing method has some limitations such as the BSASSO

[16] and considered only the dependent tasks during

balancing the load. The QMPSO [21] server could design

only the VN if it had sufficient memory. The MMHHO [22]

the HHO and MRFO have a low convergence rate in

exploration and exploitation. The proposed CSSA-based

load balancing model outperforms these existing model

limitations. The CSO has the advantage of efficient random

walks and SA is efficient for global search. By combining

PSO with GWO achieves a better balance between

exploration and exploitation, enhancing convergence speed.

The proposed method utilizes up to 200 VMs and number

of tasks up to 2000 to evaluate the performance. The

experimental results show that a proposed CSSA delivers

performance metrics like makespan, Degree of Imbalance,

Resource utilization and Response time and achieved values

of about 150.09, 36.62, 0.45 and 2467 by using the no. of

tasks of 2000 respectively, which ensures the better results

compared with the existing methods such as BSASSO,

QMPSO and MMHHO.

5. Conclusion

In this study, a hybrid optimization using Cuckoo Search

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 473

Optimization (CSO) and Simulation Annealing (SA)

algorithm called CSSA is proposed for load balancing in the

cloud. The proposed method updates the SA’s search space

by using the CSO by considering the multi-objective

functions of cost, Resource Utilization (RU), response time,

and Degree of Imbalance (DoI). The proposed CSSA

improves the system performance by balancing the load

among VM. The experimental results show that a proposed

CSSA delivers performance metrics like makespan, Degree

of Imbalance, Resource utilization and Response time and

achieves values of about 150.09, 36.62, 0.45, and 2467 by

using the no. of tasks of 2000 respectively. In the future, the

proposed method will extend to perform various

performance metrics such as bandwidth and dependent

tasks.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

For this research work all authors' have equally contributed

in Conceptualization, methodology, validation, resources,

writing—original draft preparation, writing—review and

editing.

References

[1] S. Negi, M. M. S. Rauthan, K. S. Vaisla, and N.

Panwar, “CMODLB: an efficient load balancing

approach in cloud computing environment,” The

Journal of Supercomputing, vol. 77, no. 8, pp. 8787–

8839, 2021.

[2] O. Y. Abdulhammed, “Load balancing of IoT tasks in

the cloud computing by using sparrow search

algorithm,” The Journal of Supercomputing, vol. 78,

no. 3, pp. 3266–3287, 2022.

[3] J. Prassanna and N. Venkataraman, “Adaptive

regressive holt–winters workload prediction and

firefly optimized lottery scheduling for load balancing

in cloud,” Wireless Networks, vol. 27, no. 8, pp. 5597–

5615, 2021.

[4] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah, and M. A.

Alzain, “A load balancing algorithm for the data

centres to optimize cloud computing applications,”

IEEE Access, vol. 9, pp. 41731–41744, 2021.

[5] L. Yan, H. Chen, Y. Tu, and X. Zhou, “A task

offloading algorithm with cloud edge jointly load

balance optimization based on deep reinforcement

learning for unmanned surface vehicles,” IEEE

Access, vol. 10, pp. 16566–16576, 2022.

[6] G. A. P. Princess and A. S. Radhamani, “A hybrid

meta-heuristic for optimal load balancing in cloud

computing,” Journal of Grid Computing, vol. 19, no.

2, p. 21, 2021.

[7] J. Nazir, M. W. Iqbal, T. Alyas, M. Hamid, M. Saleem,

S. Malik, and N. Tabassum, “Load balancing

framework for cross-region tasks in cloud computing,”

Computers, Materials & Continua, vol. 70, no. 1, pp.

1479–1490, 2022.

[8] F. M. Talaat, H. A. Ali, M. S. Saraya, and A. I. Saleh,

“Effective scheduling algorithm for load balancing in

fog environment using CNN and MPSO,” Knowledge

and Information Systems, vol. 64, no. 3, pp. 773–797,

2022.

[9] T. P. Latchoumi and L. Parthiban, “Quasi oppositional

dragonfly algorithm for load balancing in cloud

computing environment,” Wireless Personal

Communications, vol. 122, no. 3, pp. 2639–2656,

2022.

[10] A. Pradhan and S.K. Bisoy, “A novel load balancing

technique for cloud computing platform based on

PSO,” Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 7, pp. 3988–3995,

2022.

[11] S. Nabi and M. Ahmed, “PSO-RDAL: Particle swarm

optimization-based resource-and deadline-aware

dynamic load balancer for deadline constrained cloud

tasks,” The Journal of Supercomputing, vol. 78, no. 4,

pp. 4624–4654, 2022.

[12] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam,

“AdPSO: adaptive PSO-based task scheduling

approach for cloud computing,” Sensors, vol. 22, no.

3, p. 920, 2022.

[13] W. Saber, W. Moussa, A. M. Ghuniem, and R. Rizk,

“Hybrid load balance based on genetic algorithm in

cloud environment,” International Journal of

Electrical and Computer Engineering, vol. 11, no. 3,

pp. 2477–2489, 2021.

[14] M. S. Al Reshan, D. Syed, N. Islam, A. Shaikh, M.

Hamdi, M. A. Elmagzoub, G. Muhammad, and K. H.

Talpur, “A Fast Converging and Globally Optimized

Approach for Load Balancing in Cloud Computing,”

IEEE Access, vol. 11, pp. 11390–11404, 2023.

[15] A. Javadpour, A. M. H. Abadi, S. Rezaei, M.

Zomorodian, and A. S. Rostami, “Improving load

balancing for data-duplication in big data cloud

computing networks,” Cluster Computing, vol. 25, no.

4, pp. 2613–2631, 2022.

[16] B. R. Parida, A. K. Rath, and H. Mohapatra, “Binary

self-adaptive salp swarm optimization-based dynamic

load balancing in cloud computing,” International

Journal of Information Technology and Web

Engineering (IJITWE), vol. 17, no. 1, pp. 1–25, 2022.

[17] A. Pradhan, S. K. Bisoy, S. Kautish, M. B. Jasser, and

A. W. Mohamed, “Intelligent decision-making of load

balancing using deep reinforcement learning and

parallel PSO in cloud environment,” IEEE Access, vol.

10, pp. 76939–76952, 2022.

[18] B. Kruekaew and W. Kimpan, “Multi-objective task

scheduling optimization for load balancing in cloud

computing environment using hybrid artificial bee

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 466–474 | 474

colony algorithm with reinforcement learning,” IEEE

Access, vol. 10, pp. 17803–17818, 2022.

[19] S. Sefati, M. Mousavinasab, and R. Z. Farkhady,

“Load balancing in cloud computing environment

using the Grey wolf optimization algorithm based on

the reliability: performance evaluation,” The Journal

of Supercomputing, vol. 78, no. 1, pp. 18–42, 2022.

[20] A. Kaur and B. Kaur, “Load balancing optimization

based on hybrid Heuristic-Metaheuristic techniques in

cloud environment,” Journal of King Saud University-

Computer and Information Sciences, vol. 34, no. 3, pp.

813–824, 2022.

[21] U. K. Jena, P. K. Das, and M. R. Kabat, “Hybridization

of meta-heuristic algorithm for load balancing in cloud

computing environment,” Journal of King Saud

University-Computer and Information Sciences, vol.

34. no. 6B, pp. 2332–2342, 2022.

[22] M. Haris and S. Zubair, “Mantaray modified multi-

objective Harris hawk optimization algorithm

expedites optimal load balancing in cloud computing,”

Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 10B, pp. 9696–

9709, 2022.

[23] S. M. Mirmohseni, C. Tang, and A. Javadpour,

“FPSO-GA: a fuzzy metaheuristic load balancing

algorithm to reduce energy consumption in cloud

networks,” Wireless Personal Communications, vol.

127, no. 4, pp. 2799–2821, 2022.

[24] S. Dhahbi, M. Berrima, and F. A. M. Al-Yarimi, “Load

balancing in cloud computing using worst-fit bin-

stretching,” Cluster Computing, vol. 24, no. 4, pp.

2867–2881, 2021.

[25] C. X. Zhang, K. Q. Zhou, S. Q. Ye, and A. M. Zain,

“An improved cuckoo search algorithm utilizing

nonlinear inertia weight and differential evolution for

function optimization problem,” IEEE Access, vol. 9,

pp. 161352–161373, 2021.

