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Abstract: Load balancing (LB) in Cloud computing (CC) is the most challenging and helpful research for distributing tasks between 

Virtual Machines (VMs) at Data Centers (DC). In the CC environment, the tasks are allocated between VMs and have various frame 

lengths, initial times as well and execution times. The LB is one of the most significant problems in CC and solving these problems leads 

to reducing the response time, energy consumption, and cost. In this study, a hybrid method of Cuckoo Search Optimization (CSO) and 

Simulation Annealing (SA) algorithm called CSSA is proposed for efficiently balancing the load in VMs. This approach updates the search 

space of SA by using the CSO approach by considering the multi-objectives of cost, Resource Utilization (RU), response time and Degree 

of Imbalance (DoI). The experimental outcomes show that the proposed CSSA delivers the performance metrics such as makespan, Degree 

of Imbalance, Resource utilization and Response time and achieved values of about 150.09, 36.62, 0.45 and 2467 by using the no. of tasks 

of 2000, which ensures better results compared with the existing methods named BSASSO, QMPSO and MMHHO. 
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1. Introduction 

The Load Balancing (LB) is significant for enhanced 

utilization of cloud resources and obtaining a greater VM 

performance. The resources are allocated by VMs that are 

hosted on Physical Machines (PM) [1][2]. The LB is a 

procedure to provide requests among various systems by 

task scheduling so that the jobs are executed with minimal 

time as well as monitors the VM’s performance. The LB is 

the effective and impartial task to determine the load 

achievement of users and to enhance a resource 

development rate. The major goal of the LB approach is to 

minimize the makespan while enhancing resource usage 

[3][4]. The gain of performing these LB approaches in the 

cloud can obtain enhanced performance, security, 

durability, cost reduction as well high throughput. An LB 

approach enhances the performance and also enhances the 

quality of service (QoS) parameters like makespan, resource 

utilization, response time and Degree of Imbalance (DoI) 

[5][6].   

Recently, Cloud Computing (CC) has played an important 

role in the internet-based transmission of knowledge. The 

CC has inspired the establishment of number of researchers 

due to the development of communication technology as 

well as the enhancement of many Internet users [7][8]. LB 

in CC is challenging and helpful research for providing the 

tasks between VM at the DC. The CC is an effective 

technology that contains three major parts Service 

providers, cloud environments as well and cloud users 

[9][10]. A focal point of CC is task scheduling for VMs and 

the LB of VM. To minimize computational cost in cloud 

computing, the server association and DC virtualization are 

significant [11][12]. In this regard, the existing researchers 

utilize different approaches to allocate resources for VM to 

control the energy consumption in DC. Identifying the best 

placement of VMs to PMs is one of the important challenges 

in cloud management systems [13][14][15]. Even, though 

virtualization plays a significant role in CC, problems still 

frequently arise such as improper load balancing and 

scheduling to VMs. To solve this problem, the scheduling 

and load balancing between the nodes in CC is proposed to 

optimize the resource allocation using a hybrid method of 

CSO and SA. The primary contributions of this research are 

described as follows; 

• The hybrid method of Cuckoo Search Optimization 

(CSO) and Simulation Annealing (SA) algorithm 

called CSSA is proposed for balancing the load in the 

VM. This method utilized the CSO process to get 

exploration space whereas SA is assigned to find an 

improved response. 

• The proposed method significantly achieves the multi-

objective constraints such as Resource Utilization 

(RU), Response Time (RT), Degree of Imbalance 

(DoI), and cost. The proposed method is evaluated by 

using the number of tasks and virtual machines. 

The rest of the paper is arranged as follows: Section 2 

discusses the recent research on load balancing problems. 

Section 3 provides the proposed work of this paper. The 

results and discussion are illustrated in Section 4 and the 
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conclusion is provided in Section 5. 

2. Literature Survey 

Parida [16] implemented a binary variant of the self-

adaptive Salp Swarm optimization (BSASSO) approach for 

LB. The BSASSO approach maintained not only the trade-

off between VM as well as mapped the tasks onto the 

suitable VM. A single-objective fitness function according 

to the LB issue was examined to estimate task fitness. A 

self-adaptive method automatically analyzed a population 

size for the provided issue. The BSASSO minimized the 

computational cost and makespan as well as enhanced the 

throughput but, this approach was considered only for the 

dependent tasks. 

Pradhan [17] presented Deep Reinforcement Learning with 

Parallel Particle Swarm Optimization (DRLPPSO) for 

solving a problem of LB. The DRL was used to train a 

neural network to obtain the best reward and PPSO was used 

to reduce the entire performance time of all the income load. 

This approach was aimed to maximize the reward function 

through the reduction of makespan time as well as 

consumption of energy while achieving maximum accuracy. 

The DRLPPSO approach efficiently minimized the overall 

processing time. The suggested approach was easy to fall 

into local optimum in high-dimensional space.  

Kruekaew and Kimpan [18] introduced the multi-objective 

task scheduling method with Artificial Bee Colony (ABC) 

with a Q-learning (MOABCQ) approach for an independent 

task scheduling approach in CC. The Reinforcement 

Learning (RL) approach was utilized with the MOABCQ 

algorithm to the faster performance of the approach. This 

approach was also aimed to optimize the scheduling as well 

as resource utilization, cost, makespan, and high throughput. 

The suggested method achieved the minimum makespan 

due to MOABCQ-LJF could allocate a task to suitable 

resources. The MOABCQ-LIF is not optimal as well and 

system performance cannot be optimized in each dataset. 

Sefati [19] developed a Grey Wolf Optimization (GWO) 

according to the capability of resource reliability to preserve 

the suitable LB. Initially, the GWO tried to identify the idle 

or busy nodes and then, the identified node was estimated 

for every threshold node as well as the fitness function. 

After identifying and evaluating a node, alpha and beta 

wolves attacked a prey and chose it as a suitable node. The 

suggested approach improved the usage of makespan while 

load balancing as well as effectively reduced the response 

time. However, the suggested approach has limited 

functionality in reliability as well as service monitoring. 

Kaur and Kaur [20] presented a hybrid approach-based 

resource provisioning and load-balancing architecture for 

the implementation of workflow to optimize VM utilization. 

The two hybrid methods were developed for HDD-PLB 

framework to Predict the Earliest Finish Time (PEFT) 

Heuristic with the Ant Colony Optimization (ACO) 

metaheuristic (HPA). The two developed methods for load 

balancing had been determined which approach was 

preferable for HDD-PLB. The suggested method minimized 

computational time, cost, and effective usage of resources. 

However, the suggested approach was executed by taking 

dynamic VMs hosted on a single physical machine. 

Jena [21] implemented a new method of Modified Particle 

Swarm Optimization (MPSO) and an Improved Q-learning 

algorithm called QMPSO for dynamic load balancing 

between Virtual Machines (VMs). This approach was taken 

out to modify the MPSO velocity by pbest and gbest based 

on the best activity developed by improved Q-learning. This 

approach was developed to enhance a machine's 

performance through load balancing between VMs, improve 

the VM throughput as well and control the balance among 

task priorities through optimizing a task’s waiting time. The 

QMPSO achieved the efficient LB by energy utilization 

comparison. However, the server could design only the VM 

if it had sufficient memory, due to all the requests being 

approved by the servers and equivalent VMs comparison by 

the central server. 

Haris and Zubair [22] developed a hybrid optimization 

approach of Manta Ray Modified Multi-objective Harris 

Hawk Optimization (MMHHO) for dynamic load 

balancing. A hybrid process revised a search space of HHO 

through the Manta Ray Forging Optimization (MRFO) 

approach by establishing cost, utilization of resources as 

well and response time. The hybrid process in the developed 

approach efficiently enhanced the system performance by 

improving the throughput, and LB among VM, balancing 

the task based on superiority. The suggested method 

enhanced the operation efficiency as well as efficiently 

balanced the VM load. However, the HHO and MRFO have 

a low convergence rate due to the rapid development of user 

dependence on the cloud. 

Mirmohseni [23] developed a hybrid Fuzzy PSO and 

Genetic Algorithm (FPSO-GA) for the optimal task 

scheduling in DC management operations with the energy 

method. The developed approach was completed through a 

VM management-aware distribution approach for VM 

control. This approach was also focused on enhancing the 

quality of the service as well as minimizing the violation 

number while the method performance. This approach 

enhanced resource utilization and efficient load balance 

performance. However, this approach has a low 

convergence rate due to the rapid development of user 

dependence on the cloud. 

3. Proposed Methodology 

In this research, a hybrid method of Cuckoo Search 

Optimization (CSO) and Simulation Annealing (SA) 

algorithm called (CSSA) is proposed to solve the LB 
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problem in CC. The LB technique is achieved by combining 

the CSO into SA. This approach leads to discovering the 

better-underloaded container which contains the multi-

objective function called the cost, response time, DoI as well 

as RU to minimize the LB algorithm’s fitness function. The 

process of CSSA discovers the load of every VM as well as 

balances the load through the fitness function. Fig. 1 depicts 

the block diagram of the CSSA-based Load Balancing. 

 

Fig. 1.  Block diagram of the proposed method 

3.1. Load Balancing in Cloud Computing 

The CC provides information on the cloud provisions to 

cloud consumers where every procedure is implemented in 

an environment. The cloud contains a large amount of DC 

called PM and each DC contains the specific computing 

resources to implement a consumer task [24]. The cloud 

consumers contain the number of jobs to the execution of 

the VM and the LB approach is to assign the number of jobs 

of the user to the VM, which continually establishes VM 

load in the CC background. A VM load based on the 

execution time of each task fluctuated as the execution time 

of one task differed from the alternative task.  

The cloud services collect various sets of user requests, 

demanding the growth of a dynamic environment for task 

execution. The LB approaches are computed when the 

balancer obtains user requests and then selects an essential 

VM. Eventually, the jobs are routed to the load balancer, 

which utilizes LB to allocate a job to a suitable VM. The 

VMs obtains the request from the users and the request 

should be distributed to the VM for processing. The 

resource allocation CC is challenging when only VMs are 

overwhelmed or there are some jobs to execute. As a result, 

the users may be disappointed with their service as well as 

move to various cloud providers. Therefore, a stable LB 

approach is generated for an enhanced system performance. 

The load-balancing process utilized the input as the output 

of the optimization algorithm. Fig. 2 depicts the general 

diagram of Load Balancing in Cloud Computing. 

 

Fig. 2.  General diagram of the Load Balancing in Cloud Computing 

3.2. Multi-objective Constraints 

In this study, the multi-objectives are examined and LB 

aims to decrease cost, improve RU as well and minimize the 

RT. By utilizing these objective functions, the system 

performance can be improved. 

3.2.1. Makespan 

It is a helpful factor for multi-objective scheduling 

approaches, which can minimize the execution time as well 

as permit tasks to be completed in immature. The makespan 

can be calculated by the (1) as follows; 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑀𝑎𝑥(𝐸𝑥𝑡𝑇𝑖𝑚𝑒(𝑉𝑀𝑖))                       (1) 

3.2.2. Resource Utilization (RU) 

It calculates the number of VM resources. In DC, the 

utilization of resources is difficult for minimizing the 
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consumption of energy. CC utilizes the number of schemes 

to generate suitable resource use. Using QoS, the proposed 

method aims to enhance the utilization of the resource. The 

RU can be calculated by the (2) as; 

𝑅𝑈 =
∑ (𝑇𝑉𝑀𝑖

)𝑁
𝑖=1

𝑀𝑆×𝑁
                                       (2) 

3.2.3. Response Time (RT) 

The LB response time is described as the time to respond to 

a user request by assigning VMs by minimum load limits. It 

is inversely correlated to the efficiency of the system. The 

RT equals the value of the best makespan. The RT can be 

calculated by the (3) as; 

𝑅𝑇 = 𝐹𝑖𝑛𝑡 − 𝐴𝑟𝑟𝑡 + 𝑇𝐷𝑒𝑙𝑎𝑦                     (3) 

3.2.4. Cost (C) 

It varies based on the tasks and is calculated by the 

following (4) as;  

𝐶𝑜𝑠𝑡 = ∑ (𝑉𝑀𝑖
𝑡𝑖𝑚𝑒 × 𝑉𝑀𝑖

𝑐𝑜𝑠𝑡)𝑁
𝑖=1                      (4) 

3.2.5. Degree of Imbalance (DoI) 

It is utilized to compute load imbalance between VMs, 

which is decreased to make the system balanced. The DoI 

can be calculated by the (5) as follows; 

𝐷𝑜𝐼 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
                               (5) 

Where, N – number of tasks or resources; VMtime – time of 

VM has executed a certain task; VMcost – cost of VM for a 

task execution; TVMi
 – time consumed by VMj to completed 

all the tasks; TDelay – delay in transmission; Fint and Arrt  

– end time and arrival time of user demand; Tmax, Tmin and 

Tavg – Maximum, minimum and Average execution time.  

3.2.6. Fitness Function (F) 

The proposed method’s fitness function is mathematically 

evaluated by (6) as follows; 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐹) = 𝑤𝑒(𝑅𝑈) + 𝑤𝑒(𝑅𝑇)+𝑤𝑒(𝐶)  (6) 

Where, w and e – weight factor and exponential function of 

each parameter; RU, RT and C are the objective functions. 

Therefore, the proposed CSSA based LB process efficiently 

balances a load in the cloud according to the previously 

discussed fitness function. 

3.3. Cuckoo Search Optimization 

The CSA is a bio-inspired metaheuristic optimization 

algorithm that is modeled based on mimicking 

characteristics of cuckoo birds. This bird makes fantastic 

sounds and has an excellent reproduction strategy. To 

establish reproduction, the cuckoo laid their eggs in others' 

nests by draining others' eggs from the nest. The CSA [25] 

has three types of brood parasitism, which are collaborative 

breeding, nest acquisition as well as intraspecific brood 

parasitism. The CSA basic rules are explained as follows. 

Every cuckoo bird brings one egg while selecting the nest 

as well and the best nest is used for the next generation. The 

nest has good eggs that are called the local solution which is 

used for reproduction. Levy an air tips which is named as 

flights and is processed for find the result to good globally.   

The dimension of a matter to be optimized is decided 

through the matter nature as N. The number of birds in the 

nest is m; the current number of iterations is t; the maximum 

number of iterations is T. A position vector Xi of the nest 

(1 ≤ i ≤ m) is defined a Xi = {Xi1, Xi2 , … XiN}. In CSO, a 

bird often looks at its path in m nest in N-dimensional space. 

The optimizing procedure is to efficiently replace the 

previous worst solution with a new solution as well as 

depend upon the stochastic walks and Levy flight for seek. 

As a result, the nesting path and location update of the CS is 

expressed in (7) as follows; 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝜆)                                (7) 

Where, Xi
t  and Xi

t+1 represents the nest of the bird’s location 

vectors i at t and t − 1 iterations; Xi represents the present 

status and α represents the step or transition size. ⊕ 

represents point-point multiplication; Levy(λ) represents 

the stochastic-looking path. The relationship with time t 

follows the Levy dispensation is expressed in (8) as follows; 

𝐿𝑒𝑣𝑦(𝜆)~𝜇 = 𝑡−𝜆(1−< 𝜆 ≤ 3)                      (8) 

The step size data from the current optimal solution is used 

and which is computed the step size factor is expressed in 

(9) as follows; 

𝛼 = 𝛼0(𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡)                             (9) 

Where, α0 – stable and held as 0.01; Xbest – current optimal 

solution. The stochastic numbers are estimated for the 

appropriate computation, which is expressed in (10) as 

follows; 

𝐿𝑒𝑣𝑦(𝜆)~
𝜑𝜇

|𝑣|
1
𝛽

                      (10) 

Where, μ and v – standard normal distribution βϵ(0,2). By 

integrating the (7) to (10), the CSO utilizes the Lagrange 

range multiplier function to make a new solution while Levy 

flight, which is expressed in (11) as follows; 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝛼0
𝜑𝜇

|𝑣|
1
𝛽

(𝑋𝑖
𝑡 − 𝑋𝑏𝑒𝑠𝑡)                  (11) 

After updating the position, the stochastic number 

rand ϵ [0,1] is contrasted by identifying the probability pa. 

If rand > pa, then Xi
t+1 is modified, or else it remains 

unmodified. The desired stochastic walks are utilized to 

modify the Xi
t+1 to develop a similar number of new 

solutions. The arithmetic formula for the stochastic walk 

desire is expressed in (12) as follows; 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟(𝑋𝑗
𝑡 − 𝑋𝑘

𝑡)                          (12) 
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Where, r – homogeneous scattered stochastic value in the 

range between [0,1] interval and Xj
t and Xk

t  – two stochastic 

solutions of the t-th iteration. The output of the CSO is 

utilized as input for the SA approach to effectively solve the 

local optimal problem. 

3.4. Simulation Annealing (SA) 

The Simulated Annealing (SA) is a heuristic stochastic 

search approach inspired by the annealing phenomenon in 

nature. It integrates the Metropolis approach as well as 

distinctly simulates an annealing procedure. In real world, 

the firmness of molecules and atoms is nearly related to 

energy level. If a solid is not in a minimum energy state in 

an annealing process, the solid requires to be provided to 

heating operation, which is followed by the cooling 

operation. As the temperature drops steadily, atoms' energy 

in the solid is slightly minimized, after a systematic crystal 

is produced, that deviates from the global optimum solution 

in an approach. Therefore, the speed of cooling can be 

reduced by energy enhancement. Moreover, the Metropolis 

approach was developed, which permits the new state to be 

obtained by definite probability, even if the new solution is 

poorer than the previous one. According to the Metropolis 

approach, the acceptance probability P is described with 

respect to (13) as follows;  

𝑃 {
1

𝑒𝑥𝑝 (
𝑓(𝑋)−𝑓(𝑋𝑛𝑒𝑤)

𝑇
)                                (13) 

Where, X and Xnew represents current and new solution 

acquired while next iteration; T represents interrelated 

temperature which is expressed in (14) as follows; 

𝑇 = 𝛼 × 𝑇                              (14) 

Where, α – number less than 1. To ensure greater search 

space, a value nearest to 1 is carried and α is assumed as 

0.99. With respect to enhancing the SA search ability, this 

local search approach according to a chaotic map is 

generated into SA to support easily falling into local 

optimum. Hence, the solution of the candidate X′c of SA 

after the chaotic local search can be acquired by (15) as 

follows; 

𝑋′
𝑐 = (1 − 𝑠) × 𝑇 + 𝑠 × 𝐶′

𝑖              (15) 

Where, T – maximum number of iterations; i = 1, 2, 3, …, 

n. Moreover, a random walk behavior of levy flight also be 

useful for an approach to enhance the capability of the 

search as well as ignore getting captured in a local optimum. 

Hence, levy flight is generated as an approach to explore the 

new solutions and which is expressed in (16) as follows; 

𝑋′
𝐿 = 𝑋𝑖 × (1 + 𝐿𝑒𝑣𝑦(𝛽))                    (16) 

Where, X′
L – new candidate solution; Levy(β) – random 

number developed by the distribution of Levy. The best 

performance between X′
c and X′

L is obtained as a solution 

of the candidate by specific probability P.  

3.5. Hybrid Cuckoo Search and Simulated 

Annealing (CSSA) 

The SA simulates an annealing procedure of metal which 

needs the balancing among the heating and cooling 

procedures of metal to design the metal as applicable shape. 

The SA is utilized to proximate the global optimum solution 

of an algorithm by iteratively developing the closest 

solution over the current solution and after choosing to 

retain the current solution or exchange it with the closest 

solution. This meant that SA provided the probability for the 

poor solution to be enhanced, which is adapted feasibility 

utilizing a minimizing parameter known as temperature (T). 

Initially, SA randomly develops a candidate solution (A) 

and after randomly develops another solution (B). 

Subsequently, it estimates the fitness value of A and B. If the 

fitness value of B (f(B)), then SA accepts B. Or else, SA 

accepts B based on minimizing probability (p(B)), which is 

expressed in (17) and (18) as follows; 

∆𝐸 = 𝑓(𝐵) − 𝑓(𝐴)                                   (17) 

𝑝(𝐵) = 𝑒𝑥𝑝∆𝐸/𝑇                             (18) 

Where, ∆E – difference among fitness values of A and B; T 

represents the current temperature value as well and exp is 

the exponential value. 

The CS algorithm does not perform efficiently well as 

endures from an immature convergence issue when it is 

applied to resolve the optimization problems with the 

greater dimensions. This is due to its evolutionary operators 

such as Levy flight, abandoned approach as well and 

random selection approach, these may not be capable of 

efficiently exploring the search space of large optimization 

problems. Moreover, the SA had effective evolutionary 

operators that balanced among exploration and exploitation 

of the solutions. The CS aimed to enhance the search 

performance by applying the SA’s evolutionary operators. 

The SA is utilized in CS to enhance the likelihood of 

identifying a global optimum solution as well as eliminate 

being trapped within a sub-optimal value. The optimized 

solution and client-required tasks are provided to the load 

balancer and then the load balancer can process the input 

functions and provide the output to the VMs.  

4. Experimental Results  

The CSSA-based LB performance has been implemented 

based on the simulation results. Cloud Sim is a simulation 

software for testing the proposed method in the cloud 

environment. It provides efficient modeling as well as 

simulation over the CC services as well as application 

testing. The proposed method is simulated on Cloud Sim4.0 

software and system specification with Windows 10 OS, 

Intel core i5 processor, 3.30 GHz CPU and 4GB RAM.  
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4.1. Performance Analysis 

This research estimated the performance of a proposed 

CSSA based LB process compared with existing methods. 

Initially, the proposed method performance is determined in 

terms of performance metrics named makespan, resource 

utilization, response time, degree of imbalance and cost.  

Table 1. Performance Analysis in terms of Makespan 

using No. of Virtual Machines 

Methods No. of Virtual Machines 

100 200 300 400 

PSO 1590 1430 1450 1390 

GWO 1550 1400 1330 1300 

HHO 1420 1370 1260 1210 

CSO 1400 1250 1200 1180 

CSSA 1350 1200 1180 1150 

 

Table 1 and Fig. 3 illustrate the performance of the 

makespan during the no. of VMs from 100 to 400. The 

proposed CSSA achieved the minimum makespan when 

compared to the existing methods such as PSO, GWO, HHO 

and CSO. The proposed method achieves the makespan of 

1350, 1200, 1180 and 1150 with the no. of VM of 100, 200, 

300 and 400 respectively.  

 

Fig. 3.  Graphical representation of Makespan vs. No. of 

VMs 

Table 2 and Fig. 4 illustrate the performance of the DoI 

during the no. of tasks using 100, 500, 1000 and 2000. The 

proposed CSSA achieved the minimum DoI when compared 

to the existing methods such as PSO, GWO, HHO and CSO. 

The proposed method achieves the DoI of 12.89, 17.89, 

25.28, and 36.62 with the no. of tasks of 100, 500, 1000 and 

2000 respectively.  

 

Fig. 4.  Graphical representation of Degree of Imbalance 

vs. No. of tasks 

Table 2. Performance Analysis in terms of Degree of 

Imbalance using No. of Tasks 

Methods No. of tasks 

100 500 1000 2000 

PSO 124.26 121.67 87.44 101.27 

GWO 101.78 97.89 79.01 79.98 

HHO 97.28 56.29 65.20 72.78 

CSO 56.23 19.37 36.41 51.37 

CSSA 12.89 17.89 25.28 36.62 

 

Table 3. Performance Analysis in terms of Resource 

utilization using No. of Tasks 

Methods No. of tasks 

100 500 1000 2000 

PSO 0.29 0.32 0.33 0.52 

GWO 0.25 0.29 0.31 0.51 

HHO 0.18 0.21 0.28 0.49 

CSO 0.11 0.19 0.25 0.46 

CSSA 0.09 0.12 0.23 0.45 

 

 

Fig. 5.  Graphical representation of Resource utilization vs. 

No. of tasks 
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Table 3 and Fig. 5 illustrate the performance of the resource 

utilization during the no. of tasks using 100, 500, 1000 and 

2000. The proposed CSSA achieved the minimum resource 

utilization when compared to the existing methods such as 

PSO, GWO, HHO and CSO. The proposed method achieves 

resource utilization of 0.09, 0.12, 0.23 and 0.45 with the no. 

of tasks of 100, 500, 1000 and 2000 respectively. 

Fig. 6.  Graphical representation of Response Time vs. No. 

of tasks 

Table 4. Performance Analysis in terms of Response Time 

(ms) using No. of Tasks 

Methods No. of tasks 

100 500 1000 2000 

PSO 1132 1456 1878 2598 

GWO 1029 1389 1856 2590 

HHO 1002 1298 1793 2501 

CSO 998 1167 1789 2498 

CSSA 997 1028 1693 2467 

 

Table 4 and Fig. 6 illustrate the performance of the response 

time during the no. of tasks using 100, 500, 1000 and 2000. 

The proposed CSSA achieved the minimum resource 

utilization when compared to the existing methods such as 

PSO, GWO, HHO and CSO. The proposed method achieves 

resource utilization of 997ms, 1028ms, 1693ms and 2467ms 

with the no. of tasks of 100, 500, 1000 and 2000 

respectively.  

4.2. Comparative Analysis 

This section shows the comparative analysis of the proposed 

combination of the Cuckoo Search Optimization (CSO) 

with the Simulation Annealing (SA) Algorithm in terms of 

number of tasks, makespan, Degree of Imbalance, resource 

utilization, and response time in Table 5. Table 5. represents 

the comparative analysis of the proposed method with 

existing methods using no. of tasks. Table 6. represents the 

comparative analysis of proposed method with existing 

methods using no. of VMs. 

Table 5. Comparison of proposed method with existing 

methods using No. of tasks 

Method No. 

of 

tasks  

Makespan 

(ms) 

Degree of 

Imbalance 

Resource 

Utilization 

Response 

time 

BSASSO 

[16] 

2000 151.02 153.4 N/A 328971 

QMPSO 

[21] 

2000 2389.00 120 N/A N/A 

MMHHO 

[22] 

100 N/A N/A 0.38 1000 

2000 6600 38.02 N/A N/A 

 Proposed 

CSSA 

100 121.28 12.89 0.09 997 

2000 150.09 36.62 0.45 2467 

 

Table 6. Comparison of proposed method with existing 

methods using No. of VM 

Methods No. of Virtual Machines Makespan 

BSASSO [16] 200 

 

1500 

QMPSO [21] 3500 

MMHHO [22] 2700 

 Proposed CSSA 1200 

4.3. Discussion 

In this section, the advantages of the proposed method and 

the limitations of existing methods are discussed. The 

existing method has some limitations such as the BSASSO 

[16] and considered only the dependent tasks during 

balancing the load. The QMPSO [21] server could design 

only the VN if it had sufficient memory. The MMHHO [22] 

the HHO and MRFO have a low convergence rate in 

exploration and exploitation. The proposed CSSA-based 

load balancing model outperforms these existing model 

limitations. The CSO has the advantage of efficient random 

walks and SA is efficient for global search. By combining 

PSO with GWO achieves a better balance between 

exploration and exploitation, enhancing convergence speed. 

The proposed method utilizes up to 200 VMs and number 

of tasks up to 2000 to evaluate the performance. The 

experimental results show that a proposed CSSA delivers 

performance metrics like makespan, Degree of Imbalance, 

Resource utilization and Response time and achieved values 

of about 150.09, 36.62, 0.45 and 2467 by using the no. of 

tasks of 2000 respectively, which ensures the better results 

compared with the existing methods such as BSASSO, 

QMPSO and MMHHO. 

5. Conclusion 

In this study, a hybrid optimization using Cuckoo Search 
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Optimization (CSO) and Simulation Annealing (SA) 

algorithm called CSSA is proposed for load balancing in the 

cloud. The proposed method updates the SA’s search space 

by using the CSO by considering the multi-objective 

functions of cost, Resource Utilization (RU), response time, 

and Degree of Imbalance (DoI). The proposed CSSA 

improves the system performance by balancing the load 

among VM. The experimental results show that a proposed 

CSSA delivers performance metrics like makespan, Degree 

of Imbalance, Resource utilization and Response time and 

achieves values of about 150.09, 36.62, 0.45, and 2467 by 

using the no. of tasks of 2000 respectively. In the future, the 

proposed method will extend to perform various 

performance metrics such as bandwidth and dependent 

tasks. 
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