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Abstract: The Fibre Wireless (FiWi) access network is a next generation (NG) access network that is designed for high data rate, broadband 

multiple services, scalable bandwidth, and flexible communication. The reason for the increased demand for bandwidth is due to 

applications that are being implemented by services such as smart grid (SG), smart cities (SC), and the Internet of Things. As a result, 

issues related to the planning and scalability of the communications infrastructure has become the focus of interest. Thus, there is need for 

designing cost-effective large–scale FiWi networks considering the rise in user groups demand for more bandwidth. This paper proposes 

two optimization algorithms to provide cost-effective scalability and network performance based on dynamic resource allocation for FiWi 

network.    
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1. Introduction 

The applications that are being implemented by services 

provided from smart grid (SG), smart cities (SC), and the 

Internet of Things (IoT) [1] require high bandwidth 

capability. Thus, deploying cost-effective scalable FiWi 

networks is utmost important. Optical and wireless access 

networks are two promising broad-band access technologies 

for high-capacity access networks and provide different 

levels of bandwidth [2–4]. FiWi network combines benefits 

of the high bandwidth capability of an optical access 

network with the simplicity of a wireless access network.  

Optical network acts as the backbone network of FiWi 

network providing downstream and upstream 

communication among end- users through Optical Network 

Unit (ONU) or Access Points (AP) as shown in figure 1. 

Access network is a part of communication network which 

delivers different data from the central office to multiple 

end-users making it a promising network structure for 5G 

communication’s "last mile" access [5-6]. 

This increasing demand for high capacity Internet is a 

requirement in many areas, such as resource and product 

management [7-9].  Although optical networks can transmit 

information at a high capacity, the low flexibility is the big 

problem in these networks that makes them inaccessible to 

the condition and users [10, 11]. Wireless networks, on the 

other hand, provide great flexibility in mobility and are 

useful in most situations. However, they are not suitable for 

data transmission over a high bandwidth environment 

[12,13].  Although high bandwidth wireless networks can be 

created, it is extremely far less than optical fibre networks 

[14].  Thus, a major challenge in designing future 

telecommunication networks involves dealing with growing 

user requirements for high bandwidth and network 

flexibility. The concerns can be effectively addressed using 

fibre-optic technologies over wireless networks. 

 

 

Fig 1 FiWi network structure  

The IoT has emerged as a technology for information 

transmission and worldwide connectivity among all devices 

and things such as smartphones, smart TVs, medical 

equipment, and home appliances [15–17]. Its rapid progress 

over the past decade has made it an integral part of our 

everyday lives based on some new models and platforms 

such as blockchain [18-20]. Interconnected things are 

moving into our lives as the Internet evolves from P2P 

networking to social Internet and clouds [21–23]. Because 

of their application in large projects that require high 
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bandwidth, IoT FiWi networks require bandwidth control, 

data transmission control, and routing control. Integration of 

IoT with FiWi involves two major challenges: Firstly, In 

order to understand the ubiquitous coverage required by 

IoT, it is required to redesign the network architectures for 

better scalability in FiWi integration. Secondly, given the 

diversity of connected devices in IoT and their various 

quality of service (QoS) requirements, another challenge is 

to design flexible and efficient QoS assurance schemes at 

the network level. 

The scalability of FiWi networks refers to the capacity of a 

network or its potential to support increasing reach and 

number of users. The scalability of FiWi networks has been 

extensively investigated in the context of Passive Optical 

Networks (PONs) with special focus on LR-PON and its 

multithread polling-based DBA mechanisms. Horizontal 

scalability refers to the growth of the FiWi network over 

time and in conformity with the evolution and growth of 

users.  This type of scalability involves a process that 

changes, evolves, and adapts automatically over time 

according to the addition of hardware such as base stations 

and fibre optic links. It does not examine the behaviour of 

the process in a single instant of time.  It also does not 

guarantee capacity or capacity can be very limited. This 

capacity can be addressed by vertical scalability whose 

objective is to increase capacity without increasing the 

deployment cost of the communications infrastructure. 

In this paper we assume the architecture given in figure 1 

and present optimal scalability methods to achieve trade-off 

between network scalability and deployment cost. Section 2 

presents a brief review on related work, sections 3 provide 

a methodical model for the problem, in the sections 4 and 5 

we propose two network scalability methods for FiWi 

network, section 6 describes traffic a prediction model used 

to improve network performance of FiWi network, results 

and discussions are presented in section 7 and section 8 

concludes the paper. 

2. Related Work 

A number of studies have focused on the electric energy 

reserves where the information of the data measured by 

leased secondary can be sent at the lowest possible price. 

Both cost of energy and communications are reduced by 

formulating a problem called cost minimization for meter 

data collections [24]. The authors proposed an optimal 

solution for the cost minimization in the selection of 

communication channels and a scheme for the energy 

delivery. 

Based on the ECOSYS methodology and techno economic 

tool, authors in [25] presented commercial perspectives of 

time division multiplexing (TDM) and wavelength-division 

multiplexing (WDM) of PON architectures for Fibre-To-

The-Home (FTTH) under different deployment conditions. 

Authors in [26] investigated system-of systems approach for 

WDM and TDM telecommunication networks for Fibre to 

the Home (FTTH). The work focused on the impact of 

adopting different deployment strategies or delaying 

implementations. A comprehensive methodology is applied 

to selected cases by the authors in [27,28] for evaluating the 

total cost of ownership of migration to next-generation 

optical access networks. The authors provided a detailed 

view of all the costs involved in migration.   

The authors in [29] present real options theory basic 

concepts and provide a practical methodology to apply real 

options to realistic business cases in telecommunications. 

The reference [30] evaluates cost-benefit analysis for the 

deployment of a dark-fibre point-to-point infrastructure.  It 

is revealed that it is necessary to investigate estimation 

methods used to evaluate the economic risk of dark fibre 

deployment in different environments.  Moreover, the open 

access must be diversified in addition to quantifying   

installation and operation of an open access network [31]. 

Authors in [32–34], presented a new multi-stratum 

resources optimization architecture. This architecture 

designed to be software-defined networking to support 

multi-dimensional resource integration with radio over fibre 

networks. In order to effectively to improve radio coverage 

and meet the services requirement quality, the proposed 

architecture is designed to globally optimize radio 

frequency, optical spectrum, and baseband unit processing 

resources 

3. Problem Formulation 

Given a set of ONUs and a set of users requiring FiWi 

network services, the objective is to deploy a network that 

has minimum deployment cost and optimal scalability. 

More specifically, let 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑑}  be the set of 

𝑑 deployments created from the given set of ONUs and a set 

of end users 𝐸 = {𝑒1, 𝑒2,…,𝑒𝑛}. Each deployment has its set 

of ONUs to provide network services their associated users. 

We assume that ONUs have overlapping users.  We define 

the term scalability effectiveness (𝑆) of a deployment as 

ability to network provide its services to the maximum user 

in 𝐸 at the lowest deployment cost. We use 𝑈 to denote the 

total number users in a particular FiWi deployment. The 

objective is to deploy new network with 𝐷𝑛𝑒𝑤   from 𝐷 such 

that.    

 𝑈(𝐷𝑛𝑒𝑤) = |𝐸| and 𝑆(𝐷𝑛𝑒𝑤) is optimal                         (1) 

We also define the second variation of the problem, where 

we assume that the network to be deployed has a constraint 

𝐶𝑑𝑐  on the deployment cost.  Let 𝐶 denote deployment cost 

of a deployment.  The objective is then to deploy a network 

𝐷𝑛𝑒𝑤  from 𝐷 such that  

 

 𝐶(𝐷𝑛𝑒𝑤) ≤ 𝐶𝑑𝑐  and 𝑆(𝐷𝑛𝑒𝑤)  is optimal                            (2) 
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4. Optimal Scalability with Minimized Fiwi 

Deployment Cost.  

Assuming the FiWi architecture presented in the Fig. 1, in 

which an end user is in the coverage of multiple ONUs/APs, 

we present a greedy algorithm [35], which achieves optimal 

scalability while minimizing network deployment cost to. 

We repeat the notations used in our problem formulation 

with , where  𝐷 = {𝐷1, 𝐷2 ,…, 𝐷𝑑}  are the deployments with 

each deployment 𝐷𝑖 = {𝑜1, 𝑜2, … , 𝑜𝑚} containing 𝑚 number 

of ONUs, and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} be the 𝑛 number of end 

users located in an area where network service is to be 

provide with better scalability effectiveness. Let 𝑈 denote 

that number of users using the service from a deployment or 

an ONU in that deployment. Similarly, 𝐶 denotes 

deployment cost of a network deployment or an ONU.  

Each user is assumed to have the ability to utilize the 

services offered through multiple ONUs. We assume that 

each ONU 𝑜𝑗 ∈ 𝐷𝑖 , 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑚,   is deployed 

with minimum deployment cost, which is calculated 

according to Eq. (3) 

𝐶(𝑜𝑗) = ∑ √(𝑥(𝑙) − 𝑥(𝑜𝑗))2 + (𝑦(𝑙) − 𝑦(𝑜𝑗))2
|𝑜𝑗|

𝑙=1     (3) 

Where (𝑥(𝑙), 𝑦(𝑙))  is the position of a wireless router 

associated with that ONU and (𝑥(𝑜𝑗) , 𝑦(𝑜𝑗) is the position 

of 𝑖𝑡ℎ ONU.   The overall deployment cost of network and   

the average network deployment are expressed as shown in 

Eq. (4) and Eq. (5) respectively 

𝐶(𝐷𝑖) =  ∑ 𝐶(𝑜𝑗)𝑚
𝑗=1                                                                     (4)   

   

𝐶𝑎𝑣𝑔(𝐷𝑖) =
𝐶(𝐷𝑖)

𝑚
                                                                          (5) 

To find a 𝐷𝑛𝑒𝑤 from each 𝐷𝑖 ∈ 𝐷, The algorithm operates in 

an iterative manner calculating at each step the scalability 

effectiveness of each ONUs according to Eq(6)  

𝑆(𝑜𝑗) =
𝐶 (𝑜𝑗)

|𝐸(𝑜𝑗)−𝐸(𝐷𝑛𝑒𝑤)|
,   𝑖𝑓  |𝐸(𝑜𝑗) − 𝐸(𝐷𝑛𝑒𝑤)| > 0    

 and          

 𝑆(𝑜𝑗) = 𝑛𝑖𝑙,    𝑖𝑓 |𝐸(𝑜𝑗) − 𝐸(𝐷𝑛𝑒𝑤)| = 0  

         and    1 ≤ 𝑗 ≤ 𝑚                                                               (6) 

Next, the algorithm chooses to include in 𝐷𝑛𝑒𝑤 the ONU 

according to Eq. (7)  

 𝐷𝑛𝑒𝑤 = 𝐷𝑛𝑒𝑤 ∪  {𝑜𝑗},  

        𝑤ℎ𝑒𝑟𝑒 𝑆 (𝑜𝑗) = 𝑀𝑖𝑛{𝑆(𝑜1), … , 𝑆(𝑜𝑚)}                       (7)        

The algorithm stops iterating when 𝑈(𝐷𝑛𝑒𝑤) =   |𝐸|        

4.1. The Algorithm  

Algorithm 1 shows the steps required to create a deployment 

network that minimizes deployment cost and maximizes 

scalability of the network. 

Algorithm 1 

Input: 𝐷𝑖 = {𝑜1, 𝑜2, … , 𝑜𝑚} (Initial ONUs in a 𝑖𝑡ℎ 

deployment. 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}  (Each user attached with one or more 

ONUs) 

Output: 𝐷𝑛𝑒𝑤 = {𝑜1, 𝑜2, … , 𝑜𝑘}, 𝑘 ≤ 𝑚  are the new ONUs 

that minimizes FiWi deployment cost and provides optimal 

scalability 

Begin: 

Step1:   𝐷𝑛𝑒𝑤 = {} 

Step2: For each 𝑜𝑗 ∈ 𝐷𝑖  1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑚, calculate 

scalability effectiveness using Eq. (6). 

Let 𝑜𝑗 be the ONU with minimum scalability effectiveness.   

Step3: 𝑂𝑛𝑒𝑤 = 𝑂𝑛𝑒𝑤  ∪   {𝑜𝑗} 

              𝑂 = 𝑂 −  {𝑜𝑗} 

if 𝑈(𝑂𝑛𝑒𝑤) == |𝐸| then exit  

Go To Step 2 

End 

4.2. Analysis of the algorithm  

We prove that Algorithm 1 gives an approximate solution 

for the overall deployment cost but achieves optimal 

scalability.  Let OPT be the optimal deployment cost of the 

network. There 𝑛 number of users in the network. Assume 

that (𝑘 − 1) users have been added to network before an 

iteration of the Algorithm 1.  Then the cost of adding 𝑘𝑡ℎ  

user to the network≤ 𝑂𝑃𝑇/(𝑛 − 𝑘 + 1). Thus  

Cost of the Algorithm 1   <= (
𝑂𝑃𝑇

𝑛
+

𝑂𝑃𝑇

𝑛−1
+ … +

𝑂𝑃𝑇

1
)  

                                              <=𝑂𝑃𝑇 (
1

𝑛
+

1

𝑛−1
+  … +

1

2
+

1) 

                                            <=𝑂𝑃𝑇(𝑙𝑜𝑔𝑛) 

Therefore, algorithm yields an approximate FiWi 

deployment cost while providing optimal scalability. 

5. Optimal Scalability with Constrained Fiwi 

Deployment Cost 

This problem seeks to maximize FiWi scalability in an area 

where FiWi deployment cost or budget is constrained or 

known in advance.  We use the same notations that we used 

in section 5.   In addition to these notations, we define  𝐶𝑑𝑐 

as the FiWi deployment cost known in advance. We present 

a dynamic algorithm [36] to find maximum network whose 

deployment cost does not exceed 𝐶𝑑𝑐.  Thus, the scalability 
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effectiveness 𝑉 for the first 𝑖 ONUs in a deployment with  

𝐶𝑑𝑐(𝑖) as the deployment cost constraint for this instance is 

given in Eq. (9).  

𝑉(𝑖, 𝐶𝑑𝑐 (𝑖))  

= {   
max (𝑉(𝑖 − 1, 𝐶𝑑𝑐 (𝑖)), 𝐸(𝑜𝑖) + 𝑉(𝑖 − 1,   (𝑖) − 𝐶(𝑜𝑖))  𝑖𝑓𝐶𝑑𝑐 (𝑖) − 𝐶(𝑜𝑖) ≥  0 

𝑉(𝑖 − 1, 𝐶𝑑𝑐 (𝑖))     𝑖𝑓 𝐶𝑑𝑐 (𝑖) − 𝐶(𝑜𝑖) < 0     
} 

                                                                                                     

(8)  

Algorithm 2 

Input: 𝐷𝑖 = {𝑜1, 𝑜2, … , 𝑜𝑚} (Initial ONUs) 

  𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}  (Each user attached to one or more 

ONUs)   

Output: 𝐷𝑛𝑒𝑤 = {𝑜1, 𝑜2, … , 𝑜𝑘}, 𝑘 ≤ 𝑚  are the set of new 

ONUs that provides the optimal scalability for the FiWi 

Network with deployment cost constraint𝐶𝑑𝑐. 

Begin: 

Step 1: for  𝑖 = 0  to 𝐶𝑑𝑐   do (0, 𝑖) = 0   

Step 2: for   𝑖 = 1  to   𝑚  do  (𝑖, 0) = 0 

             for   𝑗 = 1  to   𝐶𝑑𝑐 do if  𝐶(𝑜𝑗) ≤ 𝑗  then 

Compute 𝑉(𝑖, 𝐶𝑑𝑐(𝑖)) using the 𝑚𝑎𝑥 function    defined in 

Eq. (8).  

Else 

𝑉(𝑖, 𝐶𝑑𝑐(𝑖))  =  𝑉(𝑖 − 1, 𝐶𝑑𝑐(𝑖)) 

Step 3:  𝑖 = 𝑚,  𝑗 = 𝐶𝑑𝑐 

Step 4: if 𝑉(𝑖, 𝑗) > 𝑉(𝑖 − 1, 𝑗)    then  𝑂𝑛𝑒𝑤 =  𝑂𝑛𝑒𝑤  ∪

 {𝑜𝑖} 

            𝑗 = 𝑗 − 𝐶(𝑜𝑖) 

Step 5:𝑖 = 𝑖 − 1             if  𝑖 > 0  then Go To Step 4 

End 

It is obvious that the algorithm runs in 𝜃(𝑚 ∙ 𝐶𝑑𝑐) as the 

storage 𝑆 has  (𝑚 + 1) ∙ (𝐶𝑑𝑐 + 1)  entries.  

Algorithm 2 uses Eq. (8) to present the steps required deploy 

the FiWi network that achieves optimal scalability for the 

known deployment cost𝐶𝑑𝑐.   

6. Network Performance and Resource Utilization 

Improvement 

The future optical networks must boost their channel 

capacity due to the estimated exertional traffic growth. As 

opposed to fixed-grid spectrum allocation limit of 

conventional Wavelength Division Multiplexing (WDM) 

networks, Elastic Optical Networks (EONs) allocate 

appropriate-sized, optical bandwidth to an end-to end 

optical path. That is, EONs expand an optical Path based on 

traffic volume. However, without intelligent decision-

making abilities of existing EONs cannot realize dynamic 

resource allocation. Considering peak loads for resource 

allocation usually leads to under-utilization and wastage of 

resource and increases operating expenses. Therefore, 

dynamic adjustment of network resources based on accurate 

traffic prediction in EONs is of great important to improve 

network performance and resource utilization.  

To model traffic dynamics as an information dissemination 

process, researchers proposed Graph Convolution Network 

(GCN). GCN operates directly on a graph structure. Recent 

studies exploited it to capture spatial dependency in network 

traffic.  Furthermore, its integration with Recurrent Neural 

Network (RNN) or Convolutional Neural Network (CNN) 

has shown to be very effective in taking the full advantage 

spatial and temporal features. The authors in [37] considered 

latent spatial and temporal dependency among optical 

network nodes and proposed GCN with the gated recurrent 

unit (GRU) to study the pair-wise spatial correlations 

between optical network nodes using a directed graph. 

Nodes of the graph are the switch traffic and edge weights 

denote the connections among the nodes.  In this paper, we 

use GCN-GRU model to improve network performance and 

resource utilization based on accurate traffic prediction in 

optical network. This uses GCN-GRU model to improve 

FiWi network performance through better resource 

utilization. 

Fig. 2 shows the components and the steps of the GCN-GRU 

model.  As shown in the Figure, the model comprises three 

layers namely, a GCN layer, a GRU layer, and an output 

layer sequentially. GRU captures trends in traffic through 

time steps simultaneously. That is, it can capture 

spatiotemporal dependencies among time series and apply 

to various multiple-nodes time series prediction tasks. With 

help of back propagation through time, the model 

maximizes the likelihood of generating the target future 

time series to train the entire framework. With spatial and 

temporal dependency modelling, model has found to 

consistently achieve satisfactory accuracy when evaluated 

on various real-time traffic load. 

 

Fig 2. Working of GCN-GRU model 
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7. Results and Discussion  

We consider the initial FiWi network with randomly 

deployed nodes (users) in 1000 × 10000 sq. meter area. 

From the given set of ONUs and end users, we randomly 

deploy FiWi networks each with minimum deployment cost 

which is calculated as explained in [*]. It is also assumed 

that ONUs includes overlapping users in the network. We 

apply Algorithm 1 to each network to create a new network 

deployment that has the optimal scalability and minimized 

deployment cost; that is, the deployment for the resulting 

network is minimized as much as possible with respect to 

the initial deployment cost. The algorithm does this by 

finding scalability effectiveness of each ONU and selects 

the with minimum scalability effectiveness. We monitor 

behaviour of the algorithm by deploying networks of 

different sizes. 

As mentioned in the problem, we create 𝐷 =

{𝐷1, 𝐷2, … , 𝐷𝑑} containing a set of 𝑑 different deployment 

from the given ONUs and end users in 𝐸. As before, we use 

𝐶 to denote cost for a deployment, and  𝑆 denote the 

scalability effectiveness. Let 𝑁 be the number of ONUs in 

the resulting deployment.  For Algorithm 1, we measure the 

total scalability effectiveness of the resulting deployment 

according Eq. (9). The smaller this value the better the 

network deployment cost.   

 𝑆(𝐷𝑛𝑒𝑤) =   ∑ 𝑆(𝑜𝑖)𝑘
𝑖=1 , 𝑜𝑖 ∈ 𝐷𝑛𝑒𝑤  𝑎𝑛𝑑 𝑘 = |𝐷𝑛𝑒𝑤|       (9) 

Algorithm 2 aims to find optimal scalability with the known 

deployment cost. This is useful in a region that has restricted 

infrastructure cost and requires the network service to be 

exposed to the maximum users. Scalability effectiveness 

here indicates the ability to provide network services to the 

maximum users in the region, where the maximum 

deployment cost in known.  In this case, we first measure 

network deployment cost constraint (𝐶𝑑𝑐) as 75% of average 

of total cost of all deployments which is given by the Eq. 

(10).  The scalability effectiveness (𝑆) is calculated as the 

ratio of 𝐶𝑑𝑐 to the total number of users in the network as 

shown in Eq (11). For the convenient of measuring 

scalability effectiveness, it is assumed that each user is 

associated with a single ONU in each deployment.  𝑆𝐷 

denotes the scalability difference of scalability effectiveness 

of a deployment and resulting deployment. Smaller this 

value better the scalability of the resulting deployment. 

𝐶𝑑𝑐 =  (
∑ 𝐶(𝐷𝑖)𝑑

𝑖=1

𝑑
)  × 0.75                                       (10) 

𝑆 =
𝐶𝑑𝑐

𝑁𝑆
, 𝑁𝑆 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒                                                    (11) 

The Table 1 shows the simulation parameters used to 

monitor the behaviour of the two algorithms.  Table 2 shows 

the results obtained from Algorithm 1 for network 

containing 100 users. We run the algorithm for five different 

network each deployed with 10 ONUs as shown in the Table 

2.   We use 𝐷𝑛𝑒𝑤
𝑖  to denote the resulting deployment from 

the deployment𝐷𝑖 .   The resulting network from the 

deployment  𝐷5 has the best scalability effectiveness, which 

means that the deployment can provide network services to 

all users at the lowest cost possible and has requires only 

50% of the total ONUs be installed to achieve this.  For 𝐷1 

and 𝐷4 , any one of the resulting deployments be considered 

for deployment as their final deployment cost is the same, 

although they have different 𝑆 values. The deployment  𝐷2  

has the highest resulting deployment cost with its 𝑆 being 

maximum of all. It is obvious from the table that given 

network with its deployment cost, 𝑆 value is directly 

proportional to its resulting deployment cost.  

Table 1. Simulation parameters 

   Parameter Value 

Network area 1000 × 1000 sq. meter 

Network size 100, 200 

No. of ONUs for a deployment 10 

Number of randomizations  25 

Deployment cost constraint  𝐶𝑑𝑐 

Number of deployments  5 

 

Table 2. Results of Algorithm 1 for network size=100 

𝐷 𝐶𝑎𝑣𝑔 (𝐷𝑖) 𝐶𝑎𝑣𝑔(𝐷𝑛𝑒𝑤
𝑖 ) 𝑁(𝐷𝑛𝑒𝑤

𝑖 )      𝑆(𝐷𝑛𝑒𝑤
𝑖 ) 

𝐷1 195 190 7 167.7 

𝐷2 228 220 7 215.6 

𝐷3 219 212 7 185.4 

𝐷4 206 190 7 161.7 

𝐷5 214 182 5 63.3 

 

Table 3. Shows the results obtained from deployments 

where the network size is 200 and has the same number of 

initial ONUs as before. Although the deployments𝐷2 , 𝐷4 

and 𝐷5 have the same number of OUNUs with 𝐷2 being the 

deployment with lowest 𝑆 values, we choose to consider 𝐷5 

because of its resulting deployment cost compared to the 

initial deployment cost.  Similarly, it is very clear from the 

table that between 𝐷2 and𝐷4, 𝐷4 is to be preferred 

considering the extent to which the original cost is reduced.  

In the case of 𝐷1 and𝐷3 , scalability is achieved with 8 

ONUs for  𝐷1 and its resulting network has better 

deployment cost than𝐷3 . Thus, we choose to use the 

resulting deployment from𝐷1.  
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Table 3. Results of Algorithm 1 for network size=200 

𝐷 𝐶𝑎𝑣𝑔 (𝐷𝑖) 𝐶𝑎𝑣𝑔(𝐷𝑛𝑒𝑤
𝑖 ) 𝑁(𝐷𝑛𝑒𝑤

𝑖 )   𝑆(𝐷𝑛𝑒𝑤
𝑖 ) 

𝐷1 223 218 8 85.1 

𝐷2 241 230 7 72.2 

𝐷3 228 222 9 123.7 

𝐷4 227 213 7 79.9 

𝐷5 210 191 7 75.1 

 

Table 4. Performance of Algorithm 2 for 𝑁𝑆 = 100  and 

𝐶𝑑𝑐 =  1167 

𝑫 𝑪(𝑫𝒊) 𝑵(𝑫𝒏𝒆𝒘
𝒊 ) 𝑪(𝑫𝒏𝒆𝒘

𝒊 ) 𝑺(𝑫𝒊) 𝑺(𝑫𝒏𝒆𝒘
𝒊 ) 𝑺𝒅 

𝐷1 1263 5 1076 11.67 13.58 -1.90 

𝐷2 1471 5 1083 11.67 14.97 -3.29 

𝐷3 1529 6 1136 11.67 13.58 -1.90 

𝐷4 1777 5 1067 11.67 15.99 -4.32 

𝐷5 1743 7 1166 11.67 15.56 -3.89 

 

Table 4. shows results obtained from the Algorithm 2 for a 

network of size 200 with different deployments. We keep 

the same number of ONUs for each deployment as before.  

In table 4. and table 5.  𝐶(𝐷𝑖)  and 𝐶(𝐷𝑛𝑒𝑤 )  indicate the 

total deployment cost of  𝐷𝑖  and the resulting deployment 

from  𝐷𝑖  .  𝑆(𝐷𝑖) and  𝑆(𝐷𝑛𝑒𝑤
𝑖 ) is the scalability 

effectiveness of  𝐷𝑖   and  the resulting deployments from 𝐷𝑖  

, whose values are computes using Eq. (11).  Note that  

𝑆(𝐷𝑖) is the same for all deployments as shown in the table 

4., since the network size remains the same for all 

deployments. 𝑆𝑑  is the new difference between 𝑆(𝐷𝑖) and  

𝑆(𝐷𝑛𝑒𝑤
𝑖 ).  That is, 𝑆𝑑 =  𝑆(𝐷𝑖) −  𝑆(𝐷𝑛𝑒𝑤

𝑖 ).  Deployment 

cost constraint  𝐶𝑑𝑐 = 1167 is calculated using Eq. (10). 

The most acceptable resulting deployment out of five 

deployments can be decided by looking at the value of  𝑆𝑑. 

The objective of the algorithm is to achieve a value for  𝑆𝑑 

that is closer to 0. In other words, maximizing the value of 

𝑆𝑑  means that maximizing the number of users to have 

network services within a known network deployment cost.  

Thus, the resulting deployments 𝐷𝑛𝑒𝑤 
1  and  𝐷𝑛𝑒𝑤 

3  should be 

considered as they have the best scalability effectiveness for 

the given set of deployments. However, the deployment cost 

of the  𝐷𝑛𝑒𝑤 
1  is considerably lower than the deployment cost 

of the  𝐷𝑛𝑒𝑤 
3 . Thus,  𝐷𝑛𝑒𝑤 

1  is preferred to 𝐷𝑛𝑒𝑤 
3  when we 

consider the cost minimization. The deployment 𝐷𝑛𝑒𝑤 
4 has 

the worst scalability effectiveness although its deployment 

cost is notably smaller as compared with 𝑪𝒅𝒄 and it is the 

least among all deployment cost. This means that at this cost 

it can provide network services to the least numbers of end 

users.  

Table 5. shows scalability effectiveness values for 

deployments with network size 100 and the deployment 

constraint𝐶𝑑𝑐 = 1317.  The deployment 𝐷𝑛𝑒𝑤
1  achieves the 

maximum scalability effectiveness at the cost of 1214, 

which makes it most preferred network deployment to offer 

network services to its users.  The deployment  𝐷𝑛𝑒𝑤
4  

achieves the lowest deployment cost; however, at this cost 

it can provide network services to the least number of users 

as compared with other deployments. 

Table 5. Performance of Algorithm 2 for 𝑁𝑆 =  200  and 

𝐶𝑑𝑐 = 1317 

𝑫 𝑪(𝑫𝒊) 𝑵(𝑫𝒏𝒆𝒘
𝒊 ) 𝑪(𝑫𝒏𝒆𝒘

𝒊 ) 𝑺(𝑫𝒊) 𝑺(𝑫𝒏𝒆𝒘
𝒊 ) 𝑺𝒅 

𝐷1 1428 5 1214 6.59 7.36 -0.77 

𝐷2 1637 5 1136 6.59 8.18 -1.60 

𝐷3 1784 6 1272 6.59 8.39 -1.80 

𝐷4 1918 6 1124 6.59 9.35 -2.76 

𝐷5 2018 6 1270 6.59 9.09 -2.50 

 

As mentioned previously, to improve network performance 

during peak loads and reduce operating expenses in FiWi 

network, we use GCN-GRU model to predict spikes in the 

traffic to achieve efficient resource utilization. We consider 

the best network selected using Algorithm 1 and use GCN-

GRU to improve its performance under burst traffic. We use 

ns2 simulator to generate burst traffic and analyse 

throughput analysis to understand the ability of the network 

to operate under large spike in traffic followed by a small 

decline and then a additional, higher-traffic burst. Table 6 

shows the simulation parameters for this experimental 

setup.   

Table 6. Simulation Parameters 

 

   Parameter Value 

Network Size 1000 × 1000 sq. 

meter 

Number of wireless routers 100 

Packet size 100KB 

Burst Time  2s 

Idle Time  1s 

Data rate  100 to 500Kbps 

Number of randomizations  25 
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Burst times and idle times mentioned in the table are taken 

from exponential distributions. We measure the percentage 

of data received by all users in the network every 60secs for 

different data transmission rates.   We call this measure 

utility of the network as shown in the Fig.  3. 

 

Fig 3. Network Utility for peak loads. 

8. Conclusion  

Providing FiWi services to the maximum users in an area is 

as important as deployment that network at the minimum 

cost.  We prefer to use the network that provides services to 

the maximum possible users at the lowest possible network 

cost. In this paper we proposed two algorithms address this 

important problem, where the first algorithm ensures 

providing services to every user at the minimum possible 

cost of network deployment. The second algorithm ensures 

that network deployment cost does not exceed a certain limit 

while focusing on providing services to the maximum users. 

The experimental results from Algorithm 1 show that the 

focus must be on reducing deployment cost as the maximum 

scalability is always ensured.  In other words, we always 

prefer the deployment with lowest cost irrespective of its 

scalability values. In the case of Algorithm 2, results show 

that the focus must be on maximizing  network service as 

resulting cost is bounded by certain upper limit on 

deployment cost; however when the deployment costs are 

equal, we must prefer the deployment that has maximum 

scalability effectiveness value.  
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