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Abstract: Federated learning is a machine learning technique that allows multiple devices to collaboratively train a machine learning model 

without having to share their raw data. This is important for privacy-sensitive applications, such as healthcare, where the data cannot be 

shared with a central server. This paper proposes a federated learning framework for efficient analysis of large-scale healthcare image 

datasets in IoT-enabled healthcare systems. The framework uses a combination of federated averaging and transfer learning to train a 

machine learning model that can be deployed to multiple IoT devices. To evaluate the framework on a real-world healthcare dataset of 

chest X-ray (CXR) images and show that it can achieve state-of-the-art accuracy in classifying pneumonia while preserving the privacy of 

the data. The framework is designed to be scalable and efficient, so that it can be used to train machine learning models on large datasets 

of healthcare images. The results of experiments show that federated learning framework achieve state-of-the-art accuracy in classifying 

pneumonia on a real-world healthcare dataset of CXR images. Proposed work has the potential to revolutionize the way that healthcare 

image analysis is performed. By harnessing federated learning, it trains machine learning models on large datasets of healthcare images 

without having to share the raw data with a central server. This can help to protect the privacy of patients and improve the accuracy of 

healthcare diagnoses. Specifically, proposed federated learning framework achieved an accuracy of 98.87% in classifying pneumonia on 

the CXR images dataset. This is comparable to the accuracy of traditional machine learning models that are trained on the entire dataset. 

It believes that federated learning framework is a promising approach for healthcare image analysis. It is scalable, efficient, and privacy-

preserving. 

Keywords: Federated learning, Healthcare image analysis, IoT-enabled healthcare systems, Transfer learning, Pneumonia classification, 

Privacy preservation. 

1. Introduction 

The modern healthcare landscape is undergoing a 

paradigm shift, driven by the convergence of cutting-edge 

technologies and medical practice. The integration of 

Internet of Things (IoT) devices within healthcare systems 

has ushered in a new era of data-driven decision-making 

and patient-centric care[1]–[3]. At the heart of this 

transformation lies the promise of harnessing the power of 

machine learning to analyze large-scale healthcare image 

datasets, facilitating accurate diagnoses and improved 

treatment strategies[4], [5]. 

The core challenge in this context is to ensure both the 

accuracy of the machine learning models and the privacy 

of the sensitive patient data [6]. This paper introduces an 

innovative framework that capitalizes on federated 

learning, a decentralized machine learning technique that 

addresses these challenges while operating within the IoT-

enabled healthcare ecosystem. The framework's focal 

point is the efficient analysis of large-scale healthcare 

image datasets, aiming to revolutionize how healthcare 

image analysis is performed while preserving data 

privacy. 

In a world where data privacy concerns have never been 

more pressing, federated learning emerges as a solution 

that enables institutions to collaborate in refining machine 

learning models without divulging raw data. In the 

healthcare domain, where patient confidentiality is 

paramount, federated learning shines as a beacon of hope. 

The proposed framework embraces this concept, allowing 

individual hospitals, clinics, or IoT devices to train models 

locally on their respective datasets[7], [8], [33]. 

The genius of federated learning lies in its orchestration of 

model updates rather than data sharing. Each participant 

refines its local model using its data and sends only the 

model updates to a central server. The server aggregates 

these updates to construct a global model that 
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encapsulates the collective knowledge while maintaining 

the integrity of the individual datasets. This not only 

addresses privacy concerns but also optimizes 

communication efficiency, making it an ideal approach 

for the IoT-enabled healthcare environment[9], [10]. 

The proposed framework represents a strategic fusion of 

two powerful concepts: federated averaging and transfer 

learning. Federated averaging, a key technique in the 

framework, facilitates the aggregation of local model 

updates. This aggregation is achieved through a weighted 

average, which accounts for the varying contributions of 

different participants based on their data distribution and 

model performance[11]. 

Complementing federated averaging, transfer learning 

leverages the insights gained from diverse datasets. 

Pretrained models, often developed on extensive datasets, 

are fine-tuned using the local data of each participant. This 

approach not only accelerates the model's convergence 

but also helps in overcoming the scarcity of data that 

individual participants might possess. 

To validate the efficacy of the proposed framework, a 

comprehensive set of experiments was conducted using a 

real-world healthcare dataset comprising chest X-ray 

(CXR) images. The objective was to classify pneumonia 

accurately, a task of critical clinical significance. The 

results exceeded expectations, with the framework 

achieving an accuracy rate of 98.87% in pneumonia 

classification. This achievement stands as a testament to 

the power of federated learning in enabling accurate 

diagnostics without compromising data privacy. 

The integration of IoT devices within healthcare systems 

has ushered in an era of unprecedented data accessibility 

and connectivity. These devices, ranging from wearable 

health trackers to medical imaging equipment, generate a 

vast amount of data that holds immense potential for 

healthcare analytics. IoT devices not only enable real-time 

data collection but also create opportunities for remote 

patient monitoring, predictive analytics, and personalized 

treatment plans[12]. 

In the context of the proposed federated learning 

framework, IoT-enabled devices play a pivotal role in 

aggregating diverse datasets. These devices act as data 

sources that contribute to the collaborative model training 

process, enriching the model's insights with a wide array 

of patient demographics, conditions, and imaging 

modalities. Moreover, IoT devices facilitate seamless 

communication between participants in the federated 

learning ecosystem, promoting efficient exchange of 

model updates while safeguarding patient data. 

The implications of the proposed framework are 

profound. By amalgamating the strengths of federated 

learning and transfer learning, the framework empowers 

healthcare institutions to transcend data silos and embark 

on a collective journey towards improved patient care. 

Moreover, the privacy-preserving nature of federated 

learning alleviates concerns related to data breaches and 

regulatory compliance. 

The future holds exciting possibilities for the integration 

of IoT devices within the healthcare sector. As these 

devices continue to proliferate, the potential for data-

driven insights and patient-centric care grows 

exponentially. Further exploration could involve 

optimizing the federated learning framework to 

accommodate a wider range of healthcare tasks, 

embracing additional privacy-preserving techniques, and 

investigating the feasibility of federated learning in multi-

modal healthcare data analysis. 

The paper introduces a pioneering framework that marries 

federated learning with transfer learning to catalyze the 

efficient analysis of large-scale healthcare image datasets 

within IoT-enabled healthcare systems. By fostering 

collaboration while preserving data privacy, the 

framework embodies a new era of healthcare analytics 

that centers on patient well-being. The successful 

application of the framework in pneumonia classification 

showcases its potential for a wide array of diagnostic 

tasks, heralding a transformative era in healthcare image 

analysis. The integration of IoT devices within this 

ecosystem further amplifies the framework's impact, 

accelerating the journey towards personalized, accurate, 

and privacy-respecting healthcare. As the healthcare 

sector continues to evolve, the proposed framework serves 

as a beacon of innovation, illuminating a path towards 

data-driven excellence while safeguarding the principles 

of patient privacy and dignity. 

2. Literature Review 

The application of advanced machine learning techniques 

in healthcare has led to significant breakthroughs in 

diagnostic accuracy and patient care. With the 

proliferation of Internet of Things (IoT) devices, 

healthcare systems have witnessed an explosion of data 

generation, creating new opportunities and challenges for 

effective data analysis. This literature review, delve into 

the diverse methodologies and algorithms employed 

across various healthcare domains, highlighting the 

limitations that underscore the need for federated learning 

in IoT-enabled healthcare as follows. 
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Author Dataset Methodology Algorithm 

used 

Results 

Verma et 

al.[13] 

Chest X-ray 

images 

Cloud-centric IoT SVM Acc= 90% 

Chiu et 

al.[14] 

Audio 

recordings 

Semi-supervised 

distributed 

learning 

CNN Acc= 95% 

Valero et 

al.[15]  

Vital signs 

data 

Edge computing LSTM Acc=92% 

Haghi 

Kashani et 

al.[16] 

ECG data Blockchain Decision tree Acc= 97% 

Alzubi[17] Medical 

images 

Blockchain Lamport 

Merkle Digital 

Signature 

Authentication 

success rate of 

98% 

Shen et 

al.[18] 

Histopathology 

images 

Federated 

learning 

Orchestral 

stain-

normalization 

GAN 

Acc=96% 

Yan et 

al.[19] 

Medical 

images 

Label-efficient 

self-supervised 

federated learning 

CNN Acc= 93% 

Raheja et 

al.[20] 

Heart disease 

data 

IoT SVM Acc= 91% 

J Andrew et 

al.[21] 

Healthcare 

data 

Blockchain Hyperledger 

Fabric 

Transaction 

throughput of 

10,000 per second 

Thulasi et 

al.[22] 

IoT data LSO-CSL Convolutional 

stacked LSTM 

(CSL) 

Acc= 94% 

Rajagopal et 

al.[23]  

ECG data Federated 

learning 

Decision tree Acc= 96% 

Kayalvizhi 

et al.[24]  

Medical 

images 

Heuristic-derived 

deep learning 

CNN Acc= 95% 

Alohali et 

al.[25]  

IoT data Swarm 

intelligence 

Random forest Acc= 93% 

Zhang et 

al.[26]  

Remote 

sensing images 

Federated deep 

learning 

Prototype 

matching 

Acc= 98% 

Hossen et 

al.[27]  

Skin disease 

images 

Federated 

machine learning 

SVM Acc= 92% 

 

The existing body of literature showcases remarkable 

achievements across different healthcare domains. 

However, a common thread among these studies is the 

presence of limitations that can hinder the effectiveness of 

traditional data analysis methods, particularly in the 

context of IoT-enabled healthcare systems. One primary 

limitation is the inherent sensitivity and privacy concerns 

associated with patient data. Healthcare data, often 

encompassing medical images, vital signs, and other 

sensitive information, requires stringent privacy 
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protection mechanisms to comply with ethical and 

regulatory standards. Conventional centralized 

approaches face challenges in ensuring robust data 

security while performing meaningful analysis. 

Additionally, the sheer volume of data generated by IoT 

devices demands scalable solutions that can harness the 

collective power of distributed data sources without 

compromising data integrity. To address these limitations, 

federated learning emerges as a compelling solution that 

aligns seamlessly with the intricacies of IoT-enabled 

healthcare. “Federated Averaging”, a widely adopted 

variant of federated learning, holds the potential to 

revolutionize the healthcare landscape by enabling 

privacy-preserving collaborative model training. This 

technique allows multiple devices or institutions to 

collectively refine a machine learning model without 

sharing raw data. Instead, only model updates traverse the 

network, ensuring that patient privacy is upheld while 

knowledge is shared. In response to the rising need for 

IoT-based mobile healthcare applications to forecast 

illnesses, including diabetes, Rashmi Ashtagi et al. [28] 

suggested a non-invasive self-care system that leverages 

ML and IoT to monitor blood sugar and other crucial 

indicators for early diabetes prediction. Goal is to provide 

diabetes management solutions that enable patient 

monitoring and decision-making supported by 

technology. In order to predict the development of 

diabetes, goal was to develop a hybrid ensemble ML 

system that used boosting and bagging techniques. An 

offline survey and an online application based on the 

Internet of Things were used to gather data from 13,421 

participants and validate the model. In [29] suggested 

model makes a distinction between superficial spreading, 

nodular melanoma, and lentigo maligna, enabling early 

viral identification and rapid isolation and therapy to stop 

the illness from spreading further. The pixel-based 

multilayer perceptron and convolutional neural 

network deep layer topologies and shallow structure, 

respectively, are examples of neural network algorithms 

that reflect deep learning technology and the traditional 

non-parametric machine learning approach [32]. Ramya 

Thatikonda et al. In [30], feature extraction with cloud 

computing for healthcare is linked, a secure data 

agreement technique is suggested in order to look at and 

improve the user parties' ability to make wise judgments. 

The suggested strategy divides into two parts. The first 

part focuses on the modified data formulation method, 

which is used to find the correlation between variables, or 

relationship between variables, and to evaluate the data 

using trained data. Data reduction and data scale 

development are facilitated by it. The model's fitness is 

assessed based on the data using feature selection in the 

second component, which also uses subset selection to 

validate the model.  

3. Methodology 

i. Dataset 

The dataset available at the provided link, "Chest X-Ray 

Images (Pneumonia)," is a widely-used and publicly 

accessible dataset for training and evaluating machine 

learning models in the field of medical image analysis, 

particularly for detecting pneumonia from chest X-ray 

images [31]. The dataset comprises a collection of chest 

X-ray images obtained from various sources, including 

pediatric and adult patients, across different imaging 

modalities and conditions.nThe dataset contains three 

main subfolders: train, test, and val (validation). Each 

subfolder is further divided into two subdirectories: 

NORMAL and PNEUMONIA, representing the two 

classes of X-ray images: normal and pneumonia-infected. 

 

Fig. 1 Sample dataset 
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ii. Pre-Processing 

a. Data normalization: This is a technique that is 

used to scale the data to a common range. This is 

important because different features in the dataset may 

have different scales, and this can lead to problems with 

the training of the machine learning model. For example, 

if one feature has a range of 0 to 100, and another feature 

has a range of 0 to 1,000, then the model will be biased 

towards the feature with the larger range. Data 

normalization can help to address this problem by scaling 

all of the features to a common range, such as 0 to 1. 

b. Image resizing: This is a technique that is used to 

resize the images to a common size. This is important 

because different images in the dataset may have different 

sizes, and this can lead to problems with the training of 

the machine learning model. For example, if one image is 

100x100 pixels, and another image is 500x500 pixels, 

then the model will have to learn to process images of 

different sizes, which can be computationally expensive. 

Image resizing can help to address this problem by 

resizing all the images to a common size as 256x256 

pixels. 

c. Image augmentation: This is a technique that is 

used to artificially increase the size of the dataset. This is 

important because the more data that the model has to 

train on, the better it will be able to generalize to new data. 

Image augmentation can be used to artificially increase 

the size of the dataset by creating new images from the 

existing images

 

 

 

Fig. 2 Data Augmentation 

 

iii. Federated Algorithm  

Federated learning is a decentralized machine learning 

approach that enables multiple participants, often edge 

devices or institutions, to collaboratively train a global 

machine learning model while keeping their local data 

private. This is achieved by sharing model updates rather 

than raw data. Using one of the prominent algorithms in 

federated learning is Federated Averaging (FedAvg), 

which combines local model updates to create a global 

model. The goal is to find a model that performs well 

across all participants' datasets while maintaining data 

privacy. 

a. Local Model Update 

At each participant k, the local model is updated using its 

local data as in eq.1, 

𝑤𝑘,𝑡+1 = 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑎𝑣𝑔,𝑡 , 𝐷𝑘)…. (1) 

Where, 𝐷𝑘= “local dataset of participant k” 

b. Averaging 

After local updates, the global model is updated by 

aggregating the local model updates using weighted 

averaging as in eq.2, 

𝑤𝑎𝑣𝑔,𝑡+1 =  
1

𝐾
∑ 𝑤𝑘,𝑡+1

𝐾
𝑘=1 …... (2) 

 

Table 1 Algorithm for Federated Learning (FedAvg) 

ALGORITHM 1: FEDERATED LEARNING (FEDAVG) FOR HEALTH CARE IMAGES 

1 def federated_learning_for_healthcare(clients, images, labels, epochs) 

2   # Initialize the global model 

3  
model  initialize_model() 

4   # Train the global model using federated averaging 
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5  
for epoch in range(epochs): 

6     # Train local models on clients 

7  
for client in clients: 

8  
client.train(model, images[client], labels[client]) 

9     # Aggregate local models 

10  
aggregated_model  aggregate_models(clients, model) 

11     # Update global model 

12  
model  aggregated_model 

13   # Evaluate the global model on the test set 

14  
test_accuracy  evaluate_model(model, images["test"], labels["test"]) 

15  
return model, test_accuracy 

 

 

Fig. 3 Pseudocode for Federated Learning (FedAvg) 

 

iv. Transfer Learning Integration 

In the context of federated learning, the integration of 

transfer learning introduces a powerful dimension to 

enhance model performance and address the challenge of 

limited data availability. Transfer learning leverages pre-

trained models' knowledge, typically trained on vast 

datasets, and adapts them to specific tasks or domains with 

smaller datasets. Within the federated framework, transfer 

learning provides an innovative solution to leverage 

collective intelligence while preserving data privacy. 

Consider a pre-trained model M with learned parameters 

𝜃𝑀 are fined-tuned using local data from the k’s domain 

𝐷𝑘to create a task-specific model 𝑀𝑘. The fine-tuning 

process is represented as in eq.3,4: 

𝑀𝑘 = 𝐹𝑖𝑛𝑒𝑇𝑢𝑛𝑒(𝑀, 𝐷𝑘)….3 

𝜃𝑚𝑘 = 𝐹𝑖𝑛𝑒𝑇𝑢𝑛𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑀, 𝐷𝑘)…4 

Where, 𝑀𝑘= “task-specific model for participant k”, 𝐷𝑘= 

“participant k’s local dataset”, 𝜃𝑚𝑘 = “parameters of the 

fine-tuned model”. 

4. Results and Outputs 

i. Heat map 
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Fig. 4 Heatmap of Dataset Images 

ii. Greyscale Conversion 

 

Fig. 5 Convert to Greyscale 

iii. Training and Valication accuracy/ Loss  

 

Fig. 6 Training and Validation Accuracy/ Loss Plot 
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iv. Evaluation Parameters 

Table 2 Comparison of various evaluation parameters 

Model Accuracy Recall Precision MCC AUC 

CNN 95.32 92 94 0.88 0.95 

LSTM 94.65 89 92 0.86 0.92 

RNN 92.18 85 88 0.8 0.91 

Proposed Model 98.87 97.26 98 0.91 0.97 

 

 

fig. 7 Comparison of various evaluation parameters 

v. Other Evaluation parameters 

Table 3 Other evaluation parameters 

Evaluation Parameter Result 

Convergence Rate Converged in 10 rounds 

Learning Curves Smooth convergence 

Communication Efficiency 5 communication rounds 

Resource Utilization Moderate memory usage 

Communication Overhead 20 MB per round 

  

The performance evaluation of the models, including the 

Proposed Model, was conducted across multiple 

evaluation metrics to ascertain their efficacy in healthcare 

image analysis. The summarized results provide a 

comprehensive overview of the outcomes achieved by 

each model. Fig.3 represent the heatmap, fig.4 represent 

the conversion to greyscale and fig.4 depicts the training 

and validation accuracy/ loss comparison. 

Among the tested models, the Proposed Model 

demonstrated remarkable performance, outshining the 

baseline models CNN, LSTM, and RNN across all 

evaluation metrics. The Proposed Model achieved an 

exceptional accuracy of 98.87%, establishing its 

proficiency in accurately classifying healthcare images as 

shown in table-2,3 and fig.7.  This heightened accuracy is 

complemented by its exceptional recall and precision 

values, indicating its ability to effectively identify positive 

cases while minimizing false positives. Further affirming 

its predictive power, the Matthews Correlation 

Coefficient (MCC) and Area Under the Curve (AUC) 

metrics underscored the Proposed Model's robust 

performance and predictive capacity. These metrics 

collectively validate its potential to significantly enhance 

healthcare diagnostics through accurate classification of 

medical images. 

In addition to its performance, the Proposed Model 

displayed efficient convergence, converging optimally 

within a mere 10 communication rounds. This swift 
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convergence was mirrored by smooth learning curves, 

highlighting consistent performance improvements over 

the course of iterations. Remarkably, the Proposed Model 

achieved this efficiency while requiring only 5 

communication rounds, showcasing its prowess in 

utilizing communication resources effectively. Resource 

utilization analysis revealed the Proposed Model's 

moderate memory usage, rendering it suitable for 

deployment on resource-constrained devices. Moreover, 

the minimal communication overhead of approximately 

20 MB per round further emphasizes its communication 

efficiency. 

The collective findings not only validate the Proposed 

Model's proficiency in healthcare image analysis but also 

underscore its suitability for IoT-enabled healthcare 

systems. By ensuring the privacy of sensitive data while 

achieving state-of-the-art performance, the proposed 

federated learning approach holds transformative 

potential in advancing medical diagnostics and patient 

care within the constraints of privacy-conscious 

environments. 

5. Conclusion and Future Scope 

This research explored the potential of Federated 

Learning for efficient analysis of large-scale healthcare 

image datasets within IoT-enabled healthcare systems. 

The proposed framework, underpinned by Federated 

Averaging (FedAvg), showcased exceptional results in 

classifying healthcare images, particularly in diagnosing 

pneumonia. Through privacy-preserving collaboration, 

the framework achieved an impressive accuracy of 

98.87%, outperforming traditional machine learning 

models. The integration of transfer learning further 

bolstered the framework's capabilities, enabling the model 

to harness shared knowledge from pre-trained models 

while adapting to the nuances of individual participants' 

datasets. Additionally, our evaluation encompassed 

metrics such as recall, precision, MCC, and AUC, 

collectively substantiating the robustness of the proposed 

approach. Looking ahead, several promising directions 

emerge for the expansion and refinement of the proposed 

Federated Learning framework. Exploring the potential of 

multi-task learning within the federated setting could 

empower the model to handle multiple healthcare 

diagnostic tasks concurrently, enhancing its utility and 

versatility. 
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