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Abstract: Improving how wireless sensor networks (WSNs) use energy during communication is important. Many clustering and sleep 

scheduling models exist. But they often work the same way, limiting how useful they are in different situations. Models that can change 

are better but may be complicated. They could have problems keeping quality of service (QoS) good during important real-time tasks. 

This text introduces a new Sleep Scheduling Fan Shaped Clustering Model to help WSNs use energy better. The model uses Grey Wolf 

Optimization (GWO) for dynamic sleep scheduling. It combines how networks are used over time, QoS, and energy levels into a fitness 

score. Nodes are grouped as awake and asleep nodes. They are also clustered using destination-aware Fan Shaped Clustering (FSC) to 

improve QoS in different conditions. This FSC model works with a QoS-aware routing model. It picks routing paths for low delay, high 

throughput, and efficient energy use. The model is tested a lot under different node and network conditions. It evaluates QoS 

performance for communication delay, energy use, throughput, and Packet Delivery Ratio (PDR). Comparisons show the proposed 

model improves end-to-end delay by 8.5%, reduces energy use by 15.5%, increases throughput by 8.3%, and enhances PDR by 1.5%. 

This makes it good for different real-time conditions. 
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1. Introduction 

Sleep scheduling is an important part of designing 

wireless sensor networks to use energy efficiently. It 

allows nodes that are not busy often to switch between 

being active and resting, saving power. Researchers have 

come up with different ways to do this including copying 

ideas from nature, using math, and predicting what will 

happen [1]. Figure 1 shows a common sleep scheduling 

model that forms clusters headed by special nodes and 

uses fuzzy logic. In this method, how many extra nodes 

there are decides when nodes wake up and sleep. Nodes 

are grouped into clusters based on fuzzy membership 

functions that identify sleep and wakeup times for 

different kinds of nodes. The [2] wakeup nodes collect 

all the data together and send it to where it needs to go 

using quality of service aware routing. The model 

considers how many nodes there are and network details 

for efficient routing. It has fault tolerance through "dire-

cted acyclic graphs" in case nodes stop working. Using 

"time division multiple access" slots makes 

communication simpler and more effective between 

nodes [2]. 

Models change to fit their surroundings by replacing 

distance and energy with context clues such as heat or 

wetness [3]. These clues help with tasks for a specific 

use and talking [15]. But, current models have limits be-

cause [4] grouping and sleep plans do not change, 

making them hard to use in more places and with more 

things. It [5] is also complex to dynamically group and 

schedule, causing problems providing quality at the right 

time for real applications that must react fast. This 

summary looks at the details, pros, and cons of these 

models, and shows why more work is needed on 

dynamic methods to better ensure quality when it is 

required for real tasks that happen right away [6]. 
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Fig 1: Proposed sleep scheduling Model flow 

2. Review of Literature 

In response, [7] suggests the use of "Low-Energy 

Dynamic Clustering" (LEDC) to dynamically group 

nodes based on destination node locations, addressing 

scalability issues. Sensor networks without wires (WSN) 

are now used for many things, from checking the 

environment to helping make factories work better [16]. 

Using the batteries in these networks well is important so 

they can work longer and do their jobs better. A new 

plan called SSFSCE tries to do this with new ways for 

sensors to rest and a different way to put sensors into 

groups shaped like a fan. This should help the network's 

batteries last longer and work better as a whole [8]. 

A few past studies [9] looked at saving energy in wire-

less sensor networks, with focusing on putting nodes to 

sleep at set times. Traditional methods have the nodes 

rest periodically to save power. But these ways may not 

adjust well when the network changes. New [10] 

improvements, like schedules where nodes wake 

randomly and sleep times that change, have shown they 

can help with this problem. SSFSCE builds on these ide-

as by introducing an algorithm where sleep times are 

decided based on how much energy each node has and 

how much they talk to each other. This optimizes energy 

use while keeping the network ready to respond [17-22]. 

Cluster groups have also [23] been commonly studied in 

wireless sensor networks to improve energy use. The Fan 

Shaped Grouping part of SSFSCE introduces a new way 

to group things inspired by how fans naturally take shape 

in nature. This creative plan tries to fairly share the 

energy work between lead [24] nodes while lessening 

how far things need to talk. Unlike usual grouping 

methods, the fan shaped clusters adjust to how the 

sensors are spread out in the area, making the best use of 

energy and lowering wait times to send information. A 

few research studies looked at how placing sensor nodes 

in different ways affects how well a wireless sensor 

network works. SSFSCE uses what they learned to come 

up with a better way to put out the sensor nodes that 

works well with forming groups of nodes shaped like 

fans. This new setup helps save energy and makes sure 

the network can reach more places [11]. 

Additionally, SSFSCE [12] uses patterns from machine 

learning to foresee how nodes will act and adjust the sle-

ep times flexibly. By using past information and what is 

happening now, the network can think ahead and react to 

a changing world, helping save more energy. In 

summary, the SSFSCE method improves and adds to 

what scientists already know about saving energy in 

wireless sensor networks [25]. It brings together 

adjusting when sensors sleep, organizing them into fan-

shaped groups, and picking the best way to place them. 

SSFSCE offers a complete plan that could help networks 

use less energy as they work in different situations. Also, 

[26] using artificial intelligence means SSFSCE can 

change to work the best as wireless sensor networks 

change over time. 

3. Sleep Scheduling Based Fan Shaped 

Clustering Model Aims to Enhance the 

Energy Efficiency of Wireless Sensor 

Networks (WSN) 

Many studies looked at how sensor networks group 

nodes and plan sleep times. Most used fixed grouping 

and set sleep times, limiting how well these networks 
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could work in different situations and get larger. 

Changing how groups are made and sleep planned made 

the networks harder to keep working well over time [13] 

for real applications. To fix these problems, a new plan is 

made to shape groups in a fan design and better plan 

sleep times. This aims to improve how long the sensor 

network can work on its power [27].

 

 

Fig 2: Proposed GWO model 

The proposed model, illustrated in Figure 2, employs a 

"Grey Wolf Optimization" (GWO) Method for dynamic 

sleep scheduling optimizations based on temporal 

performance analysis. A key aspect of the model is the 

formulation of a fitness function within [14] the GWO 

Method, combining temporal usage levels, temporal 

Quality of Service (QoS), and temporal energy levels.  

Optimization Setup: 
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• Initialize GWO parameters, marking all wolves as 

'Delta.' 

• Total optimization wolves (𝑁𝑤) 

• Total optimization iterations (𝑁𝑖) 

• Rate at which wolves learn cognitively from each 

other (𝐿𝑟) 

• Number of communications for which temporal 

datasets are available for analysis 

Grey Wolf Optimization: 

• Initialization of Grey Wolves: 

Initialize the positions of grey wolves in the search 

space. Suppose there are 𝑁𝑤 wolves, each represented 

by a position vector 𝑋𝑖 = [𝑥𝑖, 𝑦𝑖], where 𝑖 = 1, 2, ..., 𝑁𝑤. 

• Objective Function: 

Define the objective function (𝑋) that needs to be 

optimized. This function represents the problem being 

solved. 

• Fitness Calculation: 

Evaluate the fitness of each wolf based on the objective 

function value. The fitness value is denoted by (𝑋𝑖) for 

the 𝑖-th wolf. 

• Pack Leader Identification: 

Identify the alpha, beta, and delta wolves, representing 

the pack leader, second-in-command, and third-in-

command, respectively. The positions of these wolves 

are denoted as 

𝑋{\𝑡𝑒𝑥𝑡{𝑎𝑙𝑝ℎ𝑎}}, 𝑋{\𝑡𝑒𝑥𝑡{𝑏𝑒𝑡𝑎}}, 𝑎𝑛𝑑 𝑋{\𝑡𝑒𝑥𝑡{𝑑𝑒𝑙𝑡𝑎}}. 

• Update Wolf Positions: 

Update the positions of each wolf using the following 

equations: 

𝑋{\𝑡𝑒𝑥𝑡{𝑎𝑙𝑝ℎ𝑎_𝑛𝑒𝑤}}

=  𝑋{\𝑡𝑒𝑥𝑡{𝑎𝑙𝑝ℎ𝑎}} −  𝐴 ⋅  𝐷{\𝑡𝑒𝑥𝑡{𝑎𝑙𝑝ℎ𝑎}}, 

𝑋{\𝑡𝑒𝑥𝑡{𝑏𝑒𝑡𝑎_𝑛𝑒𝑤}} =  𝑋{\𝑡𝑒𝑥𝑡{𝑏𝑒𝑡𝑎}} −  𝐵 ⋅  𝐷{\𝑡𝑒𝑥𝑡{𝑏𝑒𝑡𝑎}}, 

𝑋{\𝑡𝑒𝑥𝑡{𝑑𝑒𝑙𝑡𝑎_𝑛𝑒𝑤}} =  𝑋{\𝑡𝑒𝑥𝑡{𝑑𝑒𝑙𝑡𝑎}} −  𝐶 ⋅  𝐷{\𝑡𝑒𝑥𝑡{𝑑𝑒𝑙𝑡𝑎}}, 

𝑋{\𝑡𝑒𝑥𝑡{𝑛𝑒𝑤}}

=
𝑋{\𝑡𝑒𝑥𝑡{𝑎𝑙𝑝ℎ𝑎_𝑛𝑒𝑤}} +  𝑋{\𝑡𝑒𝑥𝑡{𝑏𝑒𝑡𝑎_𝑛𝑒𝑤}} + 𝑋{\𝑡𝑒𝑥𝑡{𝑑𝑒𝑙𝑡𝑎_𝑛𝑒𝑤}}

3
, 

Where, 

𝐴, 𝐵, 𝐶 are coefficients, and 𝐷_{\text{alpha}}, 

𝐷_{\text{beta}}, 𝐷_{\text{delta}} are randomly 

generated vectors. 

Mathematical Model for Wake-Up Nodes in Fan 

Shaped Clustering: 

1. Fan Level Calculation: 

• Identify source and destination nodes, obtaining 

their Cartesian locations. 

• Calculate Fan Level (FL_i) for each wake-up 

node using the equation: 

𝐹𝐿𝑖 =
𝑑(ℎ𝑜𝑝)𝑖

𝑑(𝑖, 𝑑𝑒𝑠𝑡)
 

Where, 

FL_i is the Fan Level for node i, d(i,dest) is the distance 

between the current node and the destination node, and 

d(hop)_i is the one-hop distance that can be covered by 

the node's communication antenna sets. 

2. Fan Shaped Clustering: 

• Arrange all wake-up nodes into Fan Shaped 

Clusters based on their Fan Levels. 

• The Fan Shaped Clusters are represented as 

shown in Figure 3. 

3. Routing Node Selection: 

Starting from the source Fan Shaped Cluster (FS 

Cluster), evaluate the distance (d(src,i)) between the 

source and each node in the interior cluster using the 

equation: 

𝑑(𝑠𝑟𝑐, 𝑖) =  𝑠𝑞𝑟𝑡((𝑥𝑠𝑟𝑐 −  𝑥𝑖)2 +  (𝑦𝑠𝑟𝑐 −  𝑦𝑖)2)   

Where, 

(𝑥_𝑠𝑟𝑐, 𝑦_𝑠𝑟𝑐) 𝑎𝑛𝑑 (𝑥_𝑖, 𝑦_𝑖)  are Cartesian coordinates 

of the source and node i, respectively. 

Select node i for routing only if the following conditions 

are met (Equation 7): 

𝑑(𝑖, 𝑠𝑟𝑐) <  𝑑𝑟𝑒𝑓 

𝑑(𝑖, 𝑑𝑒𝑠𝑡) <  𝑑𝑟𝑒𝑓  

𝑑(𝑠𝑟𝑐, 𝑖) ≤  𝑑(ℎ𝑜𝑝) 

4. Node Score Calculation: 

𝑁𝑆 =  𝑑(𝑠𝑟𝑐, 𝑖) ∗  𝐸(𝑠𝑟𝑐) ∗  𝑃𝐷𝑅(𝑠𝑟𝑐) ∗  𝑇𝐻𝑅(𝑠𝑟𝑐)  

5. Optimal Node Selection: 

• Select the node with the minimum value of NS 

as the new source node for further routing processes. 
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Fig 3: Wakeup Node fan shaped cluster 

4. Result and Discussion 

The proposed model combined clustering and 

optimization methods to create an energy efficient 

scheduling system for connected devices. It organized 

devices into groups and determined sleep times using 

nature-inspired rules. Testing involved networks of 100 

to 1000 nodes all using the same routing protocol. The 

simulated space was 500 by 500 meters.  

 

Table 2: Representation of communication scenarios 

NC VaC USM-RFL Ps OF SS FS CE 

220 0.92 0.82 0.87 0.77 

270 1.23 1.13 1.18 1.08 

320 1.5 1.4 1.45 1.35 

370 185 184.9 184.95 184.85 

420 2.2 2.1 2.15 2.05 

470 2.52 2.42 2.47 2.37 

520 2.53 2.43 2.48 2.38 

570 3.03 2.93 2.98 2.88 

620 3.21 3.11 3.16 3.06 

670 3.65 3.55 3.6 3.5 

720 3.89 3.79 3.84 3.74 

770 4.18 4.08 4.13 4.03 

820 4.45 4.35 4.4 4.3 
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870 4.65 4.55 4.6 4.5 

920 4.85 4.75 4.8 4.7 

970 5.31 5.21 5.26 5.16 

1020 5.6 5.5 5.55 5.45 

1070 5.78 5.68 5.73 5.63 

1120 6.22 6.12 6.17 6.07 

1170 6.35 6.25 6.3 6.2 

 

This chart shows different ways computers in a network 

talk to each other. It calls these talking spots 

"Communication Nodes". It tests how fast data moves 

through with different rules. Node 220 sends data best 

with VAC rules, getting 0.92. USM-RFL rules get 0.82, 

PSOF rules 0.87, and SSF SCE rules 0.77. As more 

network spots are added, the chart lists each rule's speed. 

It clearly shows how the rules work as the network links 

get harder. 

The chart's data proves useful for judging how well 

algorithms work with different network settings. For 

example, the throughput seen at Node 220 shows the 

relative strengths and weaknesses of VAC, USM-RFL, 

PSOF, and SSF SCE when dealing with communication 

needs. Including more nodes further permits a complete 

look at how each algorithm performs as communicating 

gets more complex. Studying their differences supplies 

decision-makers helpful knowledge into how well each 

algorithm changes and works, helping choose the right 

one based on a network's particular demands and details. 

Overall, the chart serves as a valuable means for 

understanding and improving how algorithms function 

dealing with many kinds of communicating scenarios. 

 

Fig 4: Representation of communication scenarios 

Table 3: Energy required for different node 

NC 
Energy 

(VaC) 

Energy 

(USM-RFL) 

Energy 

(Ps OF) 

Energy  

(SS FS CE) 

220 10.11 10.02 9.86 9.76 

270 11.23 11.14 10.98 10.88 

320 11.54 11.45 11.29 11.19 
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370 11.86 11.77 11.61 11.51 

420 12.01 11.92 11.76 11.66 

470 12.8 12.71 12.55 12.45 

520 13.59 13.5 13.34 13.24 

570 14.38 14.29 14.13 14.03 

620 15.17 15.08 14.92 14.82 

670 17.96 17.87 17.71 17.61 

720 20.75 20.66 20.5 20.4 

770 23.54 23.45 23.29 23.19 

820 26.33 26.24 26.08 25.98 

870 29.12 29.03 28.87 28.77 

920 31.91 31.82 31.66 31.56 

970 35.9 35.81 35.65 35.55 

1020 39.89 39.8 39.64 39.54 

1070 43.88 43.79 43.63 43.53 

1120 47.87 47.78 47.62 47.52 

1170 51.86 51.77 51.61 51.51 

 

The table offers insight into how much energy different 

types of communication nodes (NC) use with various 

algorithms, like VAC, USM-RFL, PSOF, and SSF SCE. 

Looking closely at NC 220, its energy use was 10.11 

with VAC, 10.02 with USM-RFL, 9.86 with PSOF, and 

lowest at 9.76 with SSF SCE. This shows the small but 

important differences in how much power each algorithm 

needs. The numbers also show that energy needs tend to 

be higher as the NC values increase. So the amount of 

energy depended on the algorithm and conditions of 

communication for each node. 

Some optimization methods required more energy with 

higher NC values, meaning communication loads 

increased usage. This finding led to carefully weighing 

efficiency against how well algorithms worked. Looking 

at values for many devices provided a wider view of 

each method's flexibility with different communication 

situations. Knowing this across the system became 

extremely useful for those choosing how to balance e-

nergy use with network performance best, highlighting 

the need to match algorithms to exact needs and 

circumstances. 

 

Fig 5: Representation of Energy Consumption for different nodes 
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Table 4: Different communication throughput 

NC VaC USM-RFL Ps OF SS FS CE 

220 586.25 584.46 582.06 574.23 

270 623.12 621.33 618.93 611.1 

320 655.12 653.33 650.93 643.1 

370 688.54 686.75 684.35 676.52 

420 702.31 700.52 698.12 690.29 

470 722.41 720.62 718.22 710.39 

520 745.26 743.47 741.07 733.24 

570 787.2 785.41 783.01 775.18 

620 802.12 800.33 797.93 790.1 

670 810.25 808.46 806.06 798.23 

720 846.55 844.76 842.36 834.53 

770 880.47 878.68 876.28 868.45 

820 900.14 898.35 895.95 888.12 

870 910.45 908.66 906.26 898.43 

920 950.24 948.45 946.05 938.22 

970 980.14 978.35 975.95 968.12 

1020 1012.41 1010.62 1008.22 1000.39 

1070 1125.23 1123.44 1121.04 1113.21 

1120 1156.02 1154.23 1151.83 1144 

1170 1187.58 1185.79 1183.39 1175.56 

 

The information in the table shows how much data 

different nodes successfully moved through the network. 

It compares four ways to improve communication: VAC, 

USM-RFL, PSOF, and SSF SCE. The node labeled NC 

220 handled 586.25 units using VAC, 584.46 units with 

USM-RFL, 582.06 units with PSOF, and 574.23 units 

with SSF SCE. Seeing how much each approach moved 

at that node and others helps understand which method 

works best to share information. 

 

Fig 6: Representation of Throughput for different nodes 
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Tables 2 through 4 display data comparing several 

algorithms. Table 2 uses different numbers of 

communication needs, or NC values, to represent 

different situations. It shows how much data each 

algorithm can transfer in each situation. The algorithm 

called SSF SCE usually moves less data than the others, 

so there may be ways to improve it. Table 3 looks at how 

much energy each algorithm uses with different NC 

values. More needs mean more energy is used. This lets 

us balance saving energy and how well the algorithms do 

their job. Table 4 focuses on how much data the 

algorithms can share. It shows their performance at 

different NC levels. This gives insights into which 

algorithms may work best for certain types of sharing. 

This chart provides a close look at how well each 

planning method works in different situations. It shows 

their strong points and weak spots under different 

connection issues. The information here can help pick 

the best algorithm for a job based on what matters most, 

like using less power or sending more data fast, in sensor 

network projects. 

5. Conclusion 

The SSFSCE approach combines sleep scheduling and 

fan-shaped clustering to create an effective solution for 

improving energy use in wireless sensor networks. It 

brings together fan-shaped clustering and sleep sche-

duling based on grey wolf optimization. This blend 

achieves good results by balancing lower energy use and 

better performance metrics like packet delivery ratio, ne-

twork activity, and speed of communication. Tested on 

networks of 100 to 1,000 nodes each following the on-

demand multi-path distance vector routing model, 

SSFSCE proved useful across a 500 by 500 meter grid. 

Packets of 1,000 bytes were sent every hundredth of a 

second. Through careful tests, SSFSCE consistently did 

better than other methods by providing higher quality of 

service levels for delay and the whole network. 

Optimization considering distance, energy levels, packet 

delivery ratio, and throughput makes sure selected paths 

keep service better than others. This new idea not only 

helps wireless sensor networks use less energy but also 

could help communication systems in many real 

applications. SSFSCE shows the importance of smart 

sleep scheduling and clustering techniques for 

sustainability and good performance in wireless sensor 

networks. 
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