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Abstract: This study looks at how stress impacts how people function each day and its connection to different brain health issues. It 

suggests the human brain plays a central role in responding to stressful things, making it important to study. The researchers used a deep 

neural network designed to identify stress by analyzing raw EEG signals from people who were stressed during a made-up math test 

simulation. This method uses something called the Montreal imaging stress task to cause stress in a controlled setting. The steps involve 

extracting EEG features, selecting important features using a test and four rules, and classifying using a deep neural network. The study 

finds the best results using rules 1, 2, and 3 instead of rule 4, with changes in power from the AF7 part of the brain being most accurate. 

By using objective measures linked to how the brain responds to stress, this research provides a promising way to understand and 

possibly reduce the bad effects of long-term stress. Using a method like this could give useful insights into stress management strategies, 

ultimately helping address the growing social problem of brain health issues tied to psychological stress. 
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1. Introduction 

The detection and management of human stress represent 

critical components for enhancing overall well-being and 

addressing stress-related illnesses [1]. Various 

methodologies have been explored by researchers to 

achieve rapid and continuous stress detection, allowing 

individuals to adapt their daily activities for stress 

reduction and healthcare professionals to deliver more 

effective treatments. [2] pioneered a video-based stress 

detection method using a deep neural network, while 

[3]employed a recurrent neural network analyzing 

speech. Additionally, extensive research has focused on 

analyzing physiological signals, emphasizing their non-

invasive nature and potential to significantly improve 

quality of life. 

Past studies often combined signals from different 

sensors, such as electrocardiogram (ECG), electrodermal 

activity (EDA), and electromyography (EMG), utilizing 

traditional machine learning algorithms. However, the 

results were mixed, prompting the exploration of deep 

neural networks for enhanced performance. Notably, the 

present study introduces two deep neural networks 

specifically designed for analyzing physiological signals, 

showcasing improved efficacy over prior approaches. 

Historically, [4] were among the pioneers in stress 

detection using physiological signals. They employed 

signals from ECG, EMG, EDA, and respiratory rate 

sensors, hand-crafting 22 features for binary 

classification of stressed and non-stressed conditions 

using the linear discriminant analysis (LDA) algorithm. 

Subsequent studies, such as that b[5]incorporated wrist-

worn devices with multiple sensors, achieving a 72% 

accuracy rate with the random forest algorithm. 

It [6] explored emotion classification using physiological 

signals, manually generating features for machine 

learning algorithms. They achieved a subject-

independent correct classification ratio of 70% by 

employing the LDA algorithm. In a more recent study [7] 

stress and emotion detection using physiological signals 

from chest and wrist sensors were extensively 

investigated. Multiple machine learning algorithms, 

including decision trees and random forests, were 

compared for binary and 3-class classification tasks, 

demonstrating varying accuracy rates. Notably, the best 

performances reached 92.83% accuracy for binary 

classification and 76.60% for 3-class classification.  

2. Related Work 

Many studies have explored how to detect psychological 

stress using deep neural networks [9] and different ways 

to select important features. One study introduced a 

video-based stress detection method using a deep neural 

network that focused on visual cues. Another [11] used a 

recurrent neural network to analyze speech patterns for 
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stress detection. While these studies provided valuable 

information, they mainly relied on single types of 

information, showing the need for a method using 

multiple types of data to improve accuracy and 

reliability. In contrast, the work of another pioneer used 

physiological signals from the body, such as e-

lectrocardiogram (ECG), [12] electromyography (EMG), 

electrodermal activity (EDA), and respiratory rate, for 

stress detection. However, traditional machine learning 

methods were used that required manually choosing 

important features. A later study expanded on this by 

including a wrist-worn device with multiple sensors, 

achieving a 72% accuracy rate [13] in stress 

classification using the random forest algorithm. While 

effective, these approaches face limitations in being 

easily copied and adapted because of manually crafting 

features. 

The earlier investigation [14] explored emotion 

classification applying physiological signs, 

demonstrating a subject-independent proper cate-

gorization ratio of 70% with a recurrent neural network. 

Another study conducted broad research on stress and 

emotion detection using physiological signals from chest 

and wrist sensors, contrasting the performance of various 

machine learning algorithms. While achieving promising 

outcomes, these studies shared a common constraint of 

relying on hand-crafted features, which can hinder fle-

xibility and general applicability. In response to this 

limitation, the proposed research introduces a novel 

approach to select important features for psychological 

stress detection using a deep CNN [15]. The standards 

for picking features are decided based on the confidence 

value of a paired t-test, offering a statistical basis for the 

chosen features. This method aims to overcome the 

downsides of manually designing features by taking 

advantage of statistical significance, confirming the 

selected features meaningfully contribute to stress 

detection. The paper [17] highlights how neural networks 

can help identify stress. Unlike past work, it combines 

strict math rules when choosing important features from 

the data. The method uses multiple criteria from a paired 

t-test confidence value to strengthen how features are se-

lected for deep CNNs. This aims to improve how well 

and reliably these neural networks can detect stress. This 

new way addresses weaknesses in older methods. It fits 

with changing research on stress detection focusing on 

more useful and expandable solutions. As the study 

continues, it may provide valuable understandings to the 

growing field of detecting psychological stress. It could 

help deep learning be used better in learning about 

mental health too. 

3. Methodology 

3.1) Subject Selection  

The trial's inclusion of healthy male and female 

participants with an average age of 21.67 ensures a 

diverse representation. Collecting raw data under both 

Normal and Control conditions adds robustness to the 

study's findings. The consideration of varied 

backgrounds further enhances the external validity of the 

research. The acknowledgment of distinct productive 

hours, specifically in the mornings (9:00 a.m. to 12:00 

p.m.) and evenings (4:00 p.m. to 7:00 p.m.), when data is 

collected, underscores the importance of circadian 

rhythms. This temporal sensitivity aligns with the natural 

fluctuations in cognitive and physiological processes, 

potentially providing nuanced insights into stress 

responses and contributing to the ecological validity of 

the study. 

3.2) EEG Device Selection 

The selection of a 6-plus-1-channel EEG device, 

featuring six passive, silver-coated electrodes and a 

reference electrode, follows a meticulous review of 

available EEG equipment. The device, manufactured in 

India, ensures reliable data collection. This choice 

reflects a thoughtful consideration of both electrode 

configuration and technological specifications, laying a 

solid foundation for accurate and comprehensive EEG 

data acquisition in the testing process. 

 

 

Fig 1: Selected EEG Device 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 310–323 |  312 

The EEG device boasts versatile compatibility, 

supporting USB 2.0 and 3.0 interfaces for seamless 

connectivity with PCs and laptops. With six channels and 

one reference electrode, it operates within a safe voltage 

range of 5 volts. The four-feet electrode length ensures 

flexibility in positioning. It maintains a low power 

consumption of 1 watt, eliminating the need for batteries, 

drawing power directly from the PC or laptop. The 

seven-feet input wire enhances user mobility. 

3.3) EEG Placement 

This standardized placement ensures consistency in 

electrode positioning across subjects. One earlobe serves 

as the reference electrode, enhancing signal stability. The 

flexibility to position electrodes anywhere on the brain 

allows for targeted data collection, facilitating 

comprehensive insights into neural activity patterns. This 

meticulous electrode configuration aligns with 

established protocols, promoting accuracy and reliability 

in capturing brain signals for analysis. 

 

Fig 2: 10-20 Montage brain location 

3.4) Design of Experiment 

This study uses a math technique to mildly stress people. 

It's called the Mental Arithmetic Task Tool or MATT. 

MATT comes from another stress test called MIST. 

MATT uses a computer to calmly stress people in a 

linked way to how their body and brain react. The main 

goals of MATT are to study how people handle stress 

and see closely how their body responds when stressed. 

To minimize how training could affect the results and the 

hypothalamic-pituitary-adrenal axis, data is carefully 

gathered in two sessions with at least a day apart. An 

EEG device records both the stress and normal 

conditions sessions. Figure 3 breaks the experiment into 

four clear stages: getting familiar, resting, solving math 

problems, and relaxing. This planned approach makes 

sure controlled stress happens. It allows a detailed look 

at stress answers within a well-set up experiment.
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Fig 3: Experiment Flow (a) Mental Stress Condition (b) Normal Condition 

The experimental protocol begins with an initial block 

aimed at acclimatizing participants to their surroundings. 

Upon arrival, participants receive an introduction to the 

experiment, guiding them to sit comfortably with upper 

and lower teeth separated, palms on open knees, and 

wearing shoes. During this acclimatization phase, partic-

ipants engage in practice math problems, each requiring 

a single-digit numeric answer (0–9) displayed on the 

screen, emphasizing the reduction of eye movement. 

Subsequently, the second block involves recording raw 

EEG data during a rest phase. Participants are instructed 

to focus on a presented circle to minimize artifacts. The 

core of the experiment unfolds in the mental arithmetic 

exercise block, where participants tackle mathematical 

operations (addition, subtraction, multiplication, and 

division) involving values up to 99. Tasks, uniform in 

both normal and stressful conditions, differ in execution. 

Four levels (L1-L4) are presented, ranging from basic 

addition to all four operations with four numbers, each 

with a single-digit answer entered by participants based 

on screen prompts.  

Under stress conditions, a time restriction is imposed on 

each task, accompanied by threatening phrases displayed 

to induce stress. Feedback, portraying phrases like "Too 

Slow!" or "Do Fast Calculation!", contributes to a stress-

ful environment. Task performance is assessed based on 

response time and accuracy, while EEG data is concur-

rently recorded. In contrast, under normal conditions, 

there is no time restriction, and stress-inducing feedback 

is absent. Feedback is limited to correctness or incorrect-

ness after each task. Comparative analysis of the Mental 

Arithmetic Task Tool (MATT) performance under nor-

mal and stressful circumstances reveals an average per-

formance of 73.71% under normal conditions, surpassing 

the 60.18% average performance under stress. This dis-

crepancy of 13.53% suggests the effectiveness of the 

MATT stress-inducing tool in eliciting stress responses. 

The stress-induced environment significantly impacts 

performance, shedding light on the tool's capability to 

effectively induce psychological stress for experimental 

purposes. 

The experimental design systematically guides partici-

pants through phases of acclimatization, rest, and stress-

inducing mental arithmetic tasks. The incorporation of 

threatening feedback and time constraints during stress 

conditions creates a challenging environment, reflecting 

real-world stressors. The observed performance dispari-

ties underscore the successful induction of psychological 

stress, validating the MATT stress-producing tool as a 

potent instrument for stress-related studies. Overall, this 

comprehensive approach provides valuable insights into 

the nuanced dynamics of stress responses during cogni-

tive tasks, contributing to the broader understanding of 

stress in psychological research. 

3.5) EEG Signal Pre-processing: Artifacts Removal 

Gathering exact and dependable EEG signals is essential 

for meaningful analysis, but various internal and outside 

factors can present contamination. To manage 

contamination, a blend of channels is utilized, including 

an air channel, trim channel, harmonic channel, and 

bandpass channel. Where electrodes are situated is a 

basic part of assembling EEG information, and 

inaccuracies or free situating can compromise flag 

honesty. The presentation of an air channel, which se-

parates between AIR and EEG flags, acts as a sensible 

answer for recognize and remedy issues with where ele-

ctrodes are set. This channel assists with guaranteeing 

that the flags are accurately caught between the 

electrodes, upgrading the general quality of EEG re-

cordings. 
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3.6) Time to Frequency Domain 

Changing the raw EEG signal information into fre-

quencies is important for a deeper look, showing signal 

details needed for grouping. The FFT is a main way to 

do this change, taking apart the information into its mak-

ing up frequencies using the Fourier change. This new 

look allows a more complete grasp of the frequency 

spread within the EEG signals. The use of a window size 

of 1024 and a 75% overlapping factor in PSD computa-

tion ensures capturing EEG bands' spectral features with 

detail. These parameters affect the accuracy of PSD 

analysis, permitting a thorough inspection of the power 

spread across different frequency bands. FFT and PSD 

together contribute to a strong methodology, revealing 

the subtle frequency qualities of EEG signals, establish-

ing the foundation for effective signal categorization and 

offering important understandings into brain activity 

designs. 

3.7) (FE) Feature Extraction from EEG Signals: 

In the analysis of cleaned EEG signals obtained through 

FFT and PSD, crucial features are extracted from both 

frequency and time-based data. Utilizing two-minute 

epochs of cleaned EEG signals for each level and subject 

in both stressful and non-stressful scenarios. 

Table 1: Various EEG Bands with Frequency Range 

Sr. No. EEG Band Frequency Range (Hz) 

1 Delta Between 0.5 Hz to 4 Hz 

2 Theta Between 4Hz to 8Hz 

3 Alpha Between 8Hz to 13Hz 

4 Beta Between13Hz to 30Hz 

5 Gamma Between 30Hz to 100Hz 

6 EEG Between 0.5Hz to 100Hz 

 

3.7.1 ) (NAP) Normalized Absolute Power 

Normalized Absolute Power quantifies specific 

frequency band power relative to total power, aiding 

comparative analysis. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑜𝑤𝑒𝑟

=
 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝐴𝑙𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑎𝑛𝑑𝑠
 

Normalized Absolute Power 

Normalization achieved by dividing absolute power by 

the highest absolute power in range. 

𝑃𝐴𝑛𝑖𝑗 =  
𝑃𝐴𝑖𝑗

𝑀𝑎𝑥 (𝑃𝐴𝑖)
            (2) 

4. Selection of Feature 

4.1) Paired t-test 

 The Paired t-value is calculated using the formula: 

𝑡 =  
µ1 − µ2

√𝜎12 
𝑛1

−
𝜎22

𝑛2

 

Cumulative Probability (CP) derives from comparing the 

t-test value to the t-distribution table, representing 

confidence in distinguishing classes. Strong association 

is evident with the highest CP values for the class 

variable and feature. Minimal CP criteria, e.g., 0.95 

(95%), enhance analysis robustness.  

4.2)  Feature Selection Criteria  

4.2.1) Highlighted Feature Type of Preferred 

Channel Exceeding t-Test Confidence Threshold of 0 

Choosing a specific feature type from a selected channel 

using a t-test confidence threshold of 0 indicates a strin-

gent criterion for feature selection. This approach en-

sures that only features demonstrating a statistically sig-

nificant difference are considered, enhancing the reliabil-

ity of the selected features from that particular channel. 

4.2.2) Enhanced Feature Type Chosen, Achieving 

90 Confidence Threshold Using T-Test 

The feature matrix selection adheres to the third 

criterion, focusing on a specific feature type from the 

chosen channel, with a confidence threshold exceeding 

90 for frequency bands. This ensures a robust feature set 

with a matrix size of w x h, where w = 6 (representing 

six phases) and h ≤ 6 (indicating bands with confidence 

≥ 90). The resulting 4 feature types across 6 channels 

yield 24 test cases (Fn x Cn). Two versions, employing 

ngram = 1 and ngram = 2 with ngram = 1, generate 48 

training models, demonstrating a comprehensive 

approach to diverse phases and frequency bands for 

model development. 
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5. Deep Learning 

Deep Learning (DL) constitutes a branch of artificial 

intelligence encompassing. The data collected from the 

EEG device falls into the category of unstructured data, 

lacking the conventional tabular organization seen in 

relational databases. This unstructured nature poses chal-

lenges for manual feature definition. In the comparison 

between Deep Learning and Neural Networks (NN), a 

standard NN comprises input, hidden, and output layers. 

However, in DL, the NN transforms into a "deep learning 

neural network," featuring deeper hidden layers. This 

evolution enhances the network's capacity for intricate 

pattern recognition and abstraction in handling complex 

data sets. 

 

Table 2: Summary of Total Number of Models Created by Four Criterias 

 Criteria Feature Channel Confidence 

Threshold (%) 

n-Gram n - kernels Network 

Models (#) 

 

 

 

Criteria1 

Normalized Absolute 

Power, Relative 

Power,  

Normalized Peak 

Power, Change in 

Power 

 

FP1, FP2, 

AF7, AF8, 

F7, F8 

 

 

       0 

 

1 

 

1 

 

24 
 

2 1 24 

 

 

Criteria2 

Normalized Absolute 

Power, Relative 

Power,  

Normalized Peak 

Power, Change in 

Power 

 

 

All 

Channels 

 

 

0 

 

1 

 

1 

 

4 

 

2 

 

1 

 

4 

 

 

Criteria3 

Normalized Absolute 

Power, Relative 

Power,  

Normalized Peak 

Power, Change in 

Power 

 

FP1, FP2, 

AF7, AF8, 

F7, F8 

 

 

90 

  

 1 

 

1 

 

24 

 

2 

 

1 

 

24 

 

 

Criteria4 

Normalized Absolute 

Power, Relative 

Power,  

Normalized Peak 

Power, Change in 

Power 

 

 

All 

Channels 

 

 

90 

 

1 

 

1 

 

4 

 

2 

 

1 

  

4 

                                                                                                       Total Models       112 

5.1)  CNN Architecture 

This diagram shows the design of a convolutional neural 

network (CNN). The input layer gets an image grid that 

is sized based on four rules. For example, one rule makes 

a 6 by 6 grid with one color channel and a confidence 

limit of zero. The first hidden layer is a convolutional 

layer. Its size is the image width times the number of 

word groups, multiplied by the number of filters. Tests  

 

used word groups up to two words long. The best results 

came from word groups of two words with one filter. The 

convolutional layer's output goes to the max pooling 

layer. It makes a feature map that is one pixel wide and 

as long as the image height minus the word group size 

plus one. This uses the image height and word group 

length. This sequential process forms the core structure 
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of the CNN for effective feature extraction and pattern recognition.

 

 

Fig. 4. Representation of Structure of Advanced Convolutional Neural Networks 

 

Fig. 5: Convolutional Neural Network Architecture 

 

6. Training and Prediction Methodology 

6.1) Prediction Methodology  

Following the processing steps, as shown in fig. 7, 

detailed earlier, EEG signals undergo feature extraction 

to generate a feature matrix. This matrix is then input 

into a pre-trained model. The model yields an output 

value ranging from 0 to 1, as illustrated in Fig. 8. 

Interpretation of the output involves categorizing 

individuals with a prediction value close to 0.25 as 

normal, those near 0.75 as stressed, and a value of 0.5 

indicating a stressed state. This streamlined approach 

enables efficient classification and interpretation of EEG 

signals for stress prediction. 
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Fig. 6: Training Methodology 

 

Fig. 7: Prediction Methodology 

7. Performance Metrics 

For a comprehensive evaluation, it is imperative to 

assess the classifier's performance across diverse feature 

sets and classifier designs applied to multiple subjects. 

The evaluation metrics, particularly precision, play a 

crucial role in this analysis. Precision, as defined in 

equations (8) and (10), quantifies the percentage of true 

positive cases accurately identified by the classifier. This 

metric is essential for gauging the classifier's accuracy in 

correctly identifying relevant cases, contributing to a 

robust evaluation of its performance. 

Fig. 8 Output of Prediction 
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8. Results 

The study utilizes EEG signals recorded from six chan-

nels (F1, F2, F7, F8, AF7, and AF8) to investigate stress 

classification among 21 subjects. The dataset, amounting 

to 3.1 GB, is divided into training (80%) and testing 

(20%) sets. Criteria 1, yields 48 training models. For 

ngram = 1, these models exhibit optimal results, indicat-

ing AF7's crucial role in stress classification. Criteria 2 

considers "normalized absolute power" across all chan-

nels, demonstrating its effectiveness. Criteria 3, involv-

ing FP1, F8, and AF7 channels, Criteria 4, emphasizing 

"normalized absolute power," emerges as effective, par-

ticularly for ngram = 2. Criteria 1, ngram = 1, under-

scores AF7's pivotal role, showcasing the "change in 

power" feature as highly accurate. Criteria 2, ngram = 1, 

emphasizes "normalized absolute power" across chan-

nels, showing robust stress classification. Criteria 3, 

ngram = 1, recognizes FP1, F8, and AF7 channels. Crite-

ria 3, ngram = 2, demonstrates the effectiveness of mul-

tiple features across various channels. Criteria 4, ngram 

= 1, highlights the limitations of "normalized peak pow-

er" across channels. Criteria 4, ngram = 2, underscores 

the efficacy of "normalized absolute power."

Table 3: Best Results of Criteria 1, 2, 3 and 4 

Criteria Feature Type Channel Precision 

(in %) 

Recall 

(in %) 

Accuracy 

(in %) 

Criteria 1 

Confidence 

Threshold = 0 

(ngram = 1 and nkernel = 1) 

Normalized Absolute 

Power F7 
80% 80% 80% 

Normalized Peak Power AF7 100% 60% 80% 

Change in Power AF7 83.33% 100% 90% 

Criteria 1 

Confidence 

Threshold = 0 

(ngram = 2 and nkernel=1) 

Normalized Peak Power AF7 
100% 60% 80% 

Normalized Peak Power F8 71.43% 100% 80% 

Change in Power AF7 100% 60% 80% 

Criteria 2 

Confidence 

Threshold = 0 

(ngram = 1 and nkernel=1) 

Normalized Absolute 

Power All 

62.5% 100% 70% 

Criteria 2 

Confidence 

Threshold = 0 

(ngram = 2 and nkernel=1) 

Normalized Peak Power All 100% 60% 80% 

Criteria 3 

Confidence 

Threshold = 90 

(ngram = 1 and nkernel=1) 

Normalized Absolute 

Power 
FP1 100% 60% 80% 

Normalized Peak Power F8 100% 80% 90% 

Change in Power AF7 100% 100% 100% 

Criteria 3 

Confidence 

Threshold = 90 

Normalized Absolute 

Power AF8 
100% 60% 80% 

Relative Power F7 100% 60% 80% 
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(ngram = 2 and nkernel=1) Normalized Peak Power FP2 100% 60% 80% 

Change in Power AF7 100% 60% 80% 

Change in Power AF8 100% 80% 90% 

Change in Power F8 80% 80% 80% 

Criteria 4 

Confidence 

Threshold = 90 

(ngram = 1 and nkernel=1) 

Normalized Peak Power All 60% 60% 60% 

Criteria 4 

Confidence 

Threshold = 90 

(ngram = 2 and nkernel=1) 

Normalized Absolute 

Power 
All 62.5% 100% 70% 

The three proposed measures of average strength, highest strength, and power difference provided good accuracy according 

to the first two tests. The third and fourth exams did not yield as encouraging outcomes.  

       

                       (a)       (b) 

Fig 9. (a) Performance of Classifier using Criteria 1 (b) Performance of Classifier using Criteria 1 

Fig 9a illustrates the performance of the classifier 

utilizing Criteria 1. It showcases the classifier's 

effectiveness in stress classification. The presented 

metrics in Fig 9a provide a detailed overview of the 

classifier's accuracy, sensitivity, specificity, and 

precision, offering insights into its robust performance. 

Fig 9b continues to showcase the performance of the 

classifier using Criteria 1. The graphical representation 

in Fig 9b allows for a visual comparison of the 

classifier's performance metrics, aiding in the 

comprehensive assessment of its ability to distinguish 

between stress and normal states. Together, these figures 

contribute to a thorough evaluation of the classifier's 

efficacy under Criteria 1, guiding the understanding of its 

strengths and potential areas for improvement. 
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   (c)        (d) 

Fig 9. (c) Performance of Classifier using Criteria 1 with ngram = 1 and CT=0 Versus EEG Features (d) Performance of 

Classifier using Criteria 1 with ngram = 2 and CT=0 Versus EEG Features 

 

Fig 10. (a) Performance of Classifier using Criteria 2 with ngram = 1 and CT=0 versus EEG Features (b) Performance of 

Classifier using Criteria 2 with ngram = 2 and CT=0 versus EEG Features 

 

   (a)        (b) 

Fig 11: (a) Performance of Classifier using Criteria 3 with ngram = 1 and CT=90 versus EEG channels (b) Performance of 

Classifier using Criteria 3 with ngram = 2 and CT=90 versus EEG channels 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 310–323 |  321 

 

 

Fig 11. (c) Performance of Classifier using Criteria 3 with ngram = 1 and CT=90 versus EEG channels (d) Performance of 

Classifier using Criteria 3 with ngram = 2 and CT=90 versus EEG channels 

                                           

 

Fig 12 (a) Performance of Classifier using Criteria 4 with ngram = 1 and CT=90 versus EEG Features (b) Performance of 

Classifier using Criteria 4 with ngram = 2 and CT=90 versus EEG Features 

Table 4: Comparison with other methods 

Paper Method Accuracy ( in %) 

[26] Support Vector Machine 79.45% 

[22] k-Nearest Neighbour 

Support Vector Machine 

65.80% 

80.32% 

[21] Deep Learning using 

Convolution Neural Network 

64.20% 

 

[24] k-Nearest Neighbour 

Support Vector Machine 

88.32% 

92.86% 

[25] k-Nearest Neighbour 

Support Vector Machine 

78.31 

79.91% 

Proposed Method DCNN using Criteria 1 90% 

DCNN using Criteria 2 100% 
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DCNN using Criteria 3 80% 

DCNN using Criteria 4 70% 

 

9. Conclusion 

This research introduces a quantitative methodology for 

the detection and prediction of psychological stress, lev-

eraging features like normalized absolute power, relative 

power, normalized peak power, and change in power. 

The proposed deep learning neural network demonstrates 

reliability, showcasing promising outcomes. In Criteria 1 

and 2, impressive results are observed, with an overall 

accuracy of 90%. Notably, the feature "Change in Pow-

er" on channel AF7 achieves a recall of 100% and a pre-

cision of 83.33%, emphasizing its effectiveness. Fur-

thermore, Criteria 2 yields remarkable accuracy of 100% 

for "Change in Power" on AF7 and 80% for "Normalized 

Absolute Power" and "Normalized Peak Power" on the 

same channel, showcasing the model's versatility. Crite-

ria 3 maintains solid performance, achieving 80% accu-

racy for normalized absolute power across all channels, 

signifying the model's consistency. These findings un-

derscore the potential of the proposed methodology, of-

fering a robust solution for real-time stress detection and 

contributing to advancements in stress-related research. 

The nuanced evaluation across multiple criteria and 

channels provides a comprehensive understanding of the 

model's capabilities and limitations, paving the way for 

further refinement and application in stress monitoring 

and intervention. 
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