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Abstract: Hyperspectral remote sensing data, captured across a broad spectrum, provides rich information for various applications, which 

is including land cover classification and the environmental monitoring. In this research paper, we conduct a comprehensive comparative 

study of machine learning and deep learning algorithms on three widely used hyperspectral datasets: Indian Pines, Pavia University, and 

Salinas. For machine learning, Support Vector Classification (SVC) and Random Forest algorithms were selected due to their proven 

effectiveness in classification tasks. Additionally, we explored deep learning techniques by implementing 1D CNN and 2D CNN models, 

leveraging the spatial and spectral characteristics inherent in hyperspectral data. Our experimental results reveal that among the machine 

learning algorithms, Random Forest demonstrated competitive performance, while SVC exhibited commendable accuracy. However, the 

deep learning models, particularly the 2D CNN architecture, outperformed the traditional machine learning algorithms, achieving an 

impressive accuracy of 98%. This outcome highlights the capability of deep learning models, specifically designed to capture spatial 

patterns in hyperspectral data, to provide superior classification accuracy. 
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1. Introduction 

Remote Sensing and GIS as a field were introduced in the 

1960 by Evelyn L. Pruitt ,marking the beginning of a 

renewed interest in Earth observations from space and 

airborne platforms.The Landsat satellites, operational 

since 1972, have been pivotal in global research, with 

sensors like the Multispectral Scanner (MSS), Thematic 

Mapper (TM), and Enhanced Thematic Mapper Plus 

(ETM+) contributing high-resolution images for various 

applications. These technological developments 

underscore the evolution and expanding utility of remote 

sensing in contemporary Earth observation efforts[1]. 

Multispectral and hyperspectral imaging are two distinct 

approaches in the realm of remote sensing, each offering 

unique advantages and trade-offs. Multispectral data 

captures information across a limited number of 

predefined spectral bands, typically ranging from three to 

ten bands, providing a broad overview of the scene[2]. In 

contrast, hyperspectral imaging acquires a much finer 

spectrum, often consisting of hundreds of contiguous 

bands, allowing for a more detailed and comprehensive 

characterization of the observed environment. While 

multispectral data is advantageous in terms of simplicity, 

cost-effectiveness, and ease of interpretation, it may lack 

the specificity required for certain applications that 

demand a more nuanced spectral analysis. On the other 

hand, hyperspectral data excels in discerning subtle 

spectral differences, offering enhanced discriminatory 

capabilities, but it comes with increased data complexity, 

computational demands, and higher costs[3]. 

The rapid advancement of remote sensing technology[4] 

has led to the widespread application of hyperspectral 

images. The precise classification of ground features 

through hyperspectral images is a significant research 

focus garnering widespread attention. This paper [5] 

reviews hyperspectral image classification methods, 

focusing on supervised, semi-supervised, and 

unsupervised approaches. Hyperspectral images, acquired 

with high spatial and spectral resolution, find applications 

in diverse fields such as environmental monitoring[6], 

military surveillance[7], agriculture, forestry[8] and 

medical diagnostics[9]. These images capture detailed 

spectral information, reflecting the physical and chemical 

composition of objects, making them valuable for image 

classification. 

In our Research Several hyperspectral datasets have been 

employed to evaluate and compare the performance of 

various algorithms. The Indian Pines dataset, originating 

from Northwestern Indiana, United States, is widely 

utilized in hyperspectral image analysis. It comprises 224 

spectral bands and is commonly employed for tasks such 

as land cover classification. Additionally, the Pavia 

University dataset, acquired over Pavia, Italy, is another 

valuable resource in hyperspectral research, offering high 

spatial resolution with 103 spectral bands. 

Lastly, the Salinas dataset, collected over Salinas Valley, 

California, features 224 bands and is frequently utilized 

for applications like agriculture monitoring and land cover 

classification. These datasets serve as essential 
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benchmarks, enabling a comprehensive assessment of 

algorithmic performance across diverse spectral and 

spatial characteristics[10]. 

The contribution of our research lies in conducting a 

comprehensive comparative study of various algorithms 

applied to hyperspectral data analysis. Through 

meticulous investigation and evaluation, we aim to 

provide valuable insights into the strengths and 

weaknesses of different algorithms in processing 

hyperspectral datasets. This comparative analysis serves 

as a guide for researchers and practitioners in choosing the 

most effective algorithms for specific applications 

involving hyperspectral data. Our research contributes to 

advancing the understanding of algorithmic performance 

in the context of hyperspectral image analysis, thereby 

facilitating informed decision-making in the selection and 

implementation of algorithms for diverse hyperspectral 

data scenarios. 

2. Literature Review 

Table 1. Comparison of methods available in the literature 

Ref 

No 

Model Objective Dataset Performance Limitation and future 

scope 

11 Deep CNN CNN for Hyperspectral 

Image Classification 

Indian Pines data set, the Salinas 

data set, and the University of 

Pavia data set 

Indian Pins:94.24 

Salinas:95.42 

Pavia:96.73 

Does not provide a 

comprehensive evaluation 

12 DAGCN Deep 

Attention Graph 

Convolutional Network for 

Hyperspectral Image 

Classification 

Indian Pines data set, the Salinas 

data set, and the University of 

Pavia data set 

Indian Pins:98.61 Computational complexity 

is high 

13 SFE-SCNN CNN based on spectral 

feature enhancement (SFE-

SCNN) 

Kennedy Space 

center,Salinas,Indian Pines 

Indian Pines:98.72 

SA:99.56 

Does not compare the 

proposed method with 

other 

14 hybrid 

CNN(2D - 

3D) 

Hybrid 3D-2D 

Convolutional Neural 

Networks for HIC 

Salinas (SA), Pavia University 

(PU), and Indian pines (IP) 

OA:9736 

KAPPA:96.70 

AA:9766 

Does not provide any 

visualization 

15 DFFN Classification With Deep 

Feature Fusion Network 

Salinas (SA), Pavia University 

(PU), and Indian pines (IP) 

Indian Pins:98.52 

Salinas:98.87 

Pavia:98.73 

Does not provide any 

analysis of parameters and 

hyperparameters 

16 CNN, To enhance CNN's 

generalization performance 

for HSIC. 

Salinas (SA), Pavia University 

(PU), and Indian pines (IP) 

IP=98.94% 

SA = 99.9876% 

PU= 99.9070% 

Hybrid=99.9628% 

Usage of L1, L2, Dropoff 

methods which is 

unacceptable 

17 CNN STN New method using STN 

(scaled, translated and 

rotated) and CNN classifier 

for HSI classification 

SA, Kennedy Space center 

(KSC) 

SA 

CNN-Dropout = 

94.83+1.59 

CNN-Dropblock = 

95.24+0.50 

KSC 

CNN-Dropout = 

96.80+2.50 

CNN-Dropblock = 

98.85+0.09 

Proposed techniques may 

not work on diverse 

hyperspectral datasets. 
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18 CNN 

(Hybrid 

Model 

3D/2D) 

low-complexity 3D–2D 

CNN model 

IP, SA, PU, PAVIA Center, 

Salina Full Scene, Botswana 

SA + SFS = 94.36 IP = 

68.32 

PU = 94.84 

Botswana = 80.23 

Requires a huge 

computation 

19 CNN 

(Hybrid 

Model 

3D/2D) 

Hybrid model with 3D HSI 

to 2D 

IP, SA, PU SA = 99.98 

IP = 98.01 

PU = 99.20 

The model tends to overfit 

20 CNN To create a Fused features to 

apply CNN 

IP, SA, PU SA = 0.9994 

IP = 0.9902 

PU = 0.9994 

Execution time is high 

 

[21] This paper combines CNNs and RNNs to form a 

hierarchical convolutional recurrent neural network 

(HCRNN) that can extract temporal and spatial 

features from the spectral data of multispectral 

remote sensing images for pixel-level classification. 

[22] This paper proposes a novel backbone network 

called SpectralFormer that uses transformers to 

model the sequence attributes of spectral signatures 

and learn spectrally local sequence information from 

neighboring bands of hyperspectral images. 

[23] This paper provides a comprehensive overview of 

the deep learning methods for hyperspectral image 

classification, including the main challenges, the 

network architectures, the data augmentation 

techniques, and the evaluation metrics. 

[24] This paper combines deep convolutional neural 

networks (DCNNs) and Markov random fields 

(MRFs) to perform spectral–spatial classification of 

hyperspectral images, where the DCNNs can learn 

the spectral features and the MRFs can model the 

spatial context. 

[25] This paper reviews the recent advances of 

convolutional neural networks (CNNs) for 

hyperspectral image classification, and discusses the 

challenges, the network architectures, the data 

preprocessing methods, and the future directions. 

[26] This paper applies convolutional neural networks 

(CNNs) to extract deep features from hyperspectral 

images and use them for classification, and also 

proposes a spectral–spatial classification strategy 

based on CNNs and principal component analysis 

(PCA). 

[27] This paper provides a comprehensive study of the 

deep learning methods for hyperspectral image 

analysis, covering the topics of data preprocessing, 

feature extraction, feature fusion, feature selection, 

dimensionality reduction, classification, and 

segmentation. 

[29-33] presents different aspects of remote sensing, 

Spatio-temporal data, spectral data and other data 

processing and also novel aspects. 

3. Methodology For 1d, 2d and 3d Cnn. 

3.1. Data Description 

Dataset  

Indian Pines 

 

Pavia University 

Salinas Data 

Parameters 

Location Indiana (USA) Pavia, northern Italy Salinas Valley, California 

Data Type Hyperspectral Hyperspectral Hyperspectral 

Number Of Bands 220 115 224 

Bands in Corrected Data 
200 103 204 
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Total Classes 

16,Wheat,Soybean- 

clean,Oats,Corn,Grass- trees 

etc. 

9,Asphalt,Meadows,Grav 

el,Trees,,Bare Soil etc. 

16,Brocoli_green_weeds_1, 

Grapes_untrained,Lettuce_r 

omaine_4wk etc. 

Spatial Resolution 20 m 1.3 m 3.7 m 

Total No of Pixels 145*145=21025 610, 340=207400 512, 217=111104 

File Format Used .mat File .mat File .mat File 

 

The Indian Pines scene was acquired by the AVIRIS 

sensor over the Indian Pines test site in North-western 

Indiana, encompassing 145 * 145 pixels and featuring 224 

spectral reflectance bands.The Salinas scene was captured 

using the 224-band AVIRIS sensor over Salinas Valley, 

California, and is distinguished by its high spatial 

resolution with 3.7-meter pixels. The covered area spans 

512 lines by 217 samples.Pavia University scenes 

were obtained through the ROSIS sensor during a flight 

campaign over Pavia, northern Italy. Pavia University's 

dataset comprises 103 spectral bands, and the scene 

dimensions are 610 * 340 pixels[28]. 

Indian Pines contains images of a rural area in Indiana, 

USA, with 16 classes of crops and natural vegetation. It 

can be used to show how hyperspectral data can help 

identify different types of crops and monitor their health 

and growth. Pavia University contains images of an urban 

area in Pavia, Italy, with 9 classes of buildings and roads. 

It can be used to show how hyperspectral data can help 

distinguish different types of land cover and land use in 

urban environments. Salinas contains images of an 

agricultural area in Salinas Valley, California, USA, with 

16 classes of crops and soil. It can be used to show how 

hyperspectral data can help detect and characterize 

different materials based on their spectral properties. 

 

Fig 1.: Proposed Methodology 

Data Reshaping for Convolutional Neural Networks 

(CNNs) 

To prepare the data for analysis using 1D, 2D, and 3D 

CNNs, the following reshaping procedures were 

employed: 

• For 1D CNN: Each pixel's spectral signature (200-

dimensional vector) was extracted and treated as an 

individual sample, leading to a reshaped dataset of 

dimensions (21025, 200), where 21025 represents the 

total number of spatial pixels. 

• For 2D CNN: The dataset was interpreted as multi-

channel 2D images, akin to RGB images in standard 

image processing, but with 200 spectral channels, 

retaining its original spatial dimensions (145, 145, 
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200). 

• For 3D CNN: The data was used in its intrinsic 3D 

form (145, 145, 200), encapsulating both spatial and 

spectral information. 

Normalization 

Given the varying magnitudes of spectral reflectance 

values, normalization was a critical step to standardize the 

data. This involved scaling the dataset so that each spectral 

band had a mean of zero and a standard deviation of one. 

This step was essential to ensure that no single band 

disproportionately influenced the model due to its 

magnitude. 

Train-Test Split 

For model evaluation and to mitigate overfitting, the 

dataset was partitioned into training and testing subsets. A 

stratified split was performed to maintain the proportion 

of samples from each class in both subsets. Typically, 

70% of the data was used for training, and the remaining 

30% constituted the testing set. 

Data Augmentation 

To enhance the robustness of the models and to address 

issues of limited data in certain classes, data augmentation 

techniques such as spectral rotation and flipping were 

considered. This step was contingent on the initial model 

performance and data availability for each class. 

One-Hot Encoding of Labels 

For classification purposes, the ground truth labels were 

one-hot encoded. This process converted categorical 

labels into a binary matrix representation, suitable for the 

output layer of the CNN models. 

Hyperparameter Tuning 

In preparation for model optimization, a range of 

hyperparameters for each CNN type was defined. These 

included, but were not limited to, the number of filters, 

kernel size, density of fully connected layers, and dropout 

rates. Random search was employed to navigate through 

this hyperparameter space, balancing comprehensiveness 

and computational efficiency. 

Fig 2.: Band Extraction 

The dataset was restructured to cater to the requirements 

of different Convolutional Neural Network (CNN) 

architectures. For the 1D CNN, the data was reshaped into 

a vector form, treating each pixel's spectral signature as a 

separate instance. The 2D CNN architecture necessitated 

the retention of spatial information in a two- dimensional 

format, akin to traditional image data but with multiple 

spectral channels. Lastly, the 3D CNN utilized the data in 

its volumetric form, embracing both spatial and spectral 

dimensions. 

3.2. Model Architectures 

The study compared three distinct CNN architectures - 

1D, 2D, and 3D - each tailored to the nature of the 

hyperspectral data. 

1D Convolutional Neural Network (CNN): The 1D CNN 

was designed to analyze the spectral signatures linearly. It 

comprised an input layer accepting 200-dimensional 

vectors, followed by multiple convolutional layers with 

1D convolution operations. Pooling layers were 

interspersed to reduce dimensionality and computational 

load. The network concluded with fully connected layers 

and a softmax output layer for multi- class classification. 

2D Convolutional Neural Network (CNN): The 2D CNN 

mimicked traditional image processing techniques, 

treating the hyperspectral data as multi-channel images. 

The model started with 2D convolutional layers that 

processed spatial features, followed by 2D pooling layers. 

The architecture culminated in fully connected layers, 

paralleling the structure of the 1D CNN but adapted for 

2D input. 

3D Convolutional Neural Network (CNN): The 3D CNN 

was the most comprehensive, processing the data in its 

original three-dimensional form. This architecture utilized 

3D convolutional layers to simultaneously capture spatial 

and spectral features. Similar to its counterparts, it also 

featured pooling layers and fully connected layers, 

concluding with a softmax output layer. 
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3.3. Hyperparameter Tuning and Model 

Training 

The hyperparameters for each model were optimized 

using a random search approach. This involved defining a 

range for key hyperparameters such as the number of 

filters, kernel size, number of dense units, and dropout 

rate. Models were trained using randomly selected 

combinations of these parameters, and their performance 

was assessed based on classification accuracy. The 

optimal set of parameters was then chosen for the final 

model training. 

Each model was compiled using the Adam optimizer and 

categorical cross-entropy loss function, reflecting the 

multi-class nature of the dataset. The models were trained 

on the preprocessed dataset, with a portion of the data 

reserved for validation to monitor and mitigate overfitting. 

3.4. Evaluation Metrics 

The performance of the 1D, 2D, and 3D CNNs was 

evaluated using accuracy, precision, recall, and F1-score. 

These metrics provided a comprehensive view of each 

model's performance, considering aspects such as the 

balance between sensitivity and specificity, and the 

harmonic mean of precision and recall. 

The 3 datasets will be used to train 3 different CNN 

Models. The CNN model for the Hyperspectral Data has 

6 convolutional Layers, 2 Max Pooling Layers, 2 

Dropouts, 1 Dense Layer with Relu and Output with 

Softmax. 

The Architecture of the CNN model is as follows: - 

 

 

These CNN models will then be fused and put through an 

LSTM network with the intention of getting the required 

Output and Time series analysis of the data to compare the 

change in value in the region. The LSTM network will 

have 4 output values. High value, Good, Low, Very Low. 

The output of the model will be plotted and Geo-

referenced to create a Tiff file that can be used as a layer 

in GIS software. The Output of the model will be assigned 

to the respective area and using the Coordinates of the area 

the Tiff file will be created. 
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4. Results and Discussion 

Evaluation Matrix Accuracy Precision Recall 

Datasets 

Salinas CNN:0.9351 CNN:0.9353 CNN:0.9362 

 RF:0.9491 RF:0.9568 RF:0.9409 

 SVC:0.9192 SVC:0.9220 SVC:0.9169 

Pavia CNN:0.948 CNN:0.9489 CNN:0.9485 

 RF:0.9124 RF:0.9397 RF:0.9194 

 SVC:0.9221 SVC:0.9222 SVC:0.9225 

Indian Pines CNN :0.9102 CNN :0.9113 CNN:0.9103 

 RF:0.7721 RF:0.9314 RF:0.7724 

 SVC:0.8902 SVC:0.8952 SVC:0.8904 

 

 

Results of Training of Salinas Dataset (1-D CNN) 

 

Results of Training of Indian Pines Dataset (1-D CNN) 
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Results of Pavia Dataset (1-D CNN) 

5. Conclusion 

The Convolutional neural networks (CNNs) will be 

utilized in this study to build hyperspectral image 

categorization remote sensing technology. Achieving 

good generalization, addressing difficulties like 

overfitting, as well as improving classification accuracy 

were the objectives. In order to increase efficacy and 

reliability in hyperspectral image classification, the study 

compared 1-D CNN,2-D CNN,Support Vector Classifier 

,Random Forest performance on benchmark datasets and 

built remote sensing technologies to close the gap between 

traditional methods and modern standards. 

References: 

[1] Geospatial World. (2010). High Resolution Remote 

Sensing Sensors. [online] Available 

at:https://www.geospatialworld.net/article/high-

resolution-remote-sensing-sensors/. 

[2] Shrestha, R. and Hardeberg, J.Y., 2014, November. 

Evaluation and comparison of multispectral imaging 

systems. In Color and Imaging Conference (Vol. 

2014, No. 2014, pp. 107-112). Society for Imaging 

Science and Technology. 

[3] Yokoya, N., Grohnfeldt, C. and Chanussot, J., 2017. 

Hyperspectral and multispectral data fusion: A 

comparative review of the recent literature. IEEE 

Geoscience and Remote Sensing Magazine, 5(2), 

pp.29-56. 

[4] Abdulraheem, M.I., Zhang, W., Li, S., Moshayedi, 

A.J., Farooque, A.A. and Hu, J., 2023. Advancement 

of Remote Sensing for Soil Measurements and 

Applications: A Comprehensive Review. 

Sustainability, 15(21), p.15444. 

[5] Lv, W. and Wang, X., 2020. Overview of 

hyperspectral image classification. Journal of 

Sensors, 2020. 

[6] Stuart, M.B., McGonigle, A.J. and Willmott, J.R., 

2019. Hyperspectral imaging in environmental 

monitoring: A review of recent developments and 

technological advances in compact field deployable 

systems. Sensors, 19(14), p.3071. 

[7] Shimoni, M., Haelterman, R. and Perneel, C., 2019. 

Hyperspectral imaging for military and security 

applications: Combining myriad processing and 

sensing techniques. IEEE Geoscience and Remote 

Sensing Magazine, 7(2), pp.101- 117. 

[8] Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., 

Morais, R. and Sousa, J.J., 2017. Hyperspectral 

imaging: A review on UAV-based sensors, data 

processing and applications for agriculture and 

forestry. Remote sensing, 9(11), p.1110. 

[9] Cui, R., Yu, H., Xu, T., Xing, X., Cao, X., Yan, K. 

and Chen, J., 2022. Deep learning in medical 

hyperspectral images: A review. Sensors, 22(24), 

p.9790. 

[10] Makantasis, K., Karantzalos, K., Doulamis, A. and 

Doulamis, N., 2015, July. Deep supervised learning 

for hyperspectral data classification through 

convolutional neural networks. In 2015 IEEE 

international geoscience and remote sensing 

symposium (IGARSS) (pp. 4959-4962). IEEE. 

[11] Lee, H. and Kwon, H., 2017. Going deeper with 

contextual CNN for hyperspectral image 

classification. IEEE Transactions on Image 

Processing, 26(10), pp.4843-4855. 

[12] Bai, J., Ding, B., Xiao, Z., Jiao, L., Chen, H. and 

Regan, A.C., 2021. Hyperspectral image 

classification based on deep attention graph 

convolutional network. IEEE Transactions on 

Geoscience and Remote Sensing, 60, pp.1-16. 

[13] Gao, H., Chen, Z. and Li, C., 2021. Sandwich 

convolutional neural network for hyperspectral 

image classification using spectral feature 

enhancement. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 

14, pp.3006-3015. 

[14] Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, 

A., Zhao, N. and Tariq, A., 2021. Hyperspectral 

image classification using a hybrid 3D-2D 

convolutional neural networks. IEEE Journal of 

Selected Topics in Applied Earth Observations and 

Remote Sensing, 14, pp.7570-7588. 

http://www.geospatialworld.net/article/high-resolution-remote-sensing-sensors/
http://www.geospatialworld.net/article/high-resolution-remote-sensing-sensors/


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 324–332 |  332 

[15] Song, W., Li, S., Fang, L. and Lu, T., 2018. 

Hyperspectral image classification with deep feature 

fusion network. IEEE Transactions on Geoscience 

and Remote Sensing, 56(6), pp.3173-3184. 

[16] Ahmad, M., Mazzara, M. and Distefano, S., 2021. 

Regularized CNN feature hierarchy for 

hyperspectral image classification. Remote Sensing, 

13(12), p.2275. 

[17] He, X. and Chen, Y., 2019. Optimized input for 

CNN-based hyperspectral image classification using 

spatial transformer network. IEEE Geoscience and 

Remote Sensing Letters, 16(12), pp.1884-1888. 

[18] Ahmad, M., Shabbir, S., Raza, R.A., Mazzara, M., 

Distefano, S. and Khan, A.M., 2021. Hyperspectral 

image classification: Artifacts of dimension 

reduction on hybrid CNN. arXiv preprint 

arXiv:2101.10532. 

[19] Roy, S.K., Krishna, G., Dubey, S.R. and Chaudhuri, 

B.B., 2019. HybridSN: Exploring 3-D–2-D CNN 

feature hierarchy for hyperspectral image 

classification. IEEE Geoscience and Remote 

Sensing Letters, 17(2), pp.277-281. 

[20] Vaddi, R. and Manoharan, P., 2020. Hyperspectral 

image classification using CNN with spectral and 

spatial features integration. Infrared Physics & 

Technology, 107, p.103296. 

[21] Fan, X., Chen, L., Xu, X., Yan, C., Fan, J. and Li, X., 

2023. Land Cover Classification of Remote Sensing 

Images Based on Hierarchical Convolutional 

Recurrent Neural Network. Forests, 14(9), p.1881. 

[22] Hong, D., Han, Z., Yao, J., Gao, L., Zhang, B., Plaza, 

A. and Chanussot, J., 2021. SpectralFormer: 

Rethinking hyperspectral image classification with 

transformers. IEEE Transactions on Geoscience and 

Remote Sensing, 60, pp.1- 15. 

[23] Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P. and 

Benediktsson, J.A., 2019. Deep learning for 

hyperspectral image classification: An overview. 

IEEE Transactions on Geoscience and Remote 

Sensing, 57(9), pp.6690-6709. 

[24] Qing, C., Ruan, J., Xu, X., Ren, J. and Zabalza, J., 

2019. Spatial‐spectral classification of hyperspectral 

images: a deep learning framework with Markov 

Random fields based modelling. IET Image 

Processing, 13(2), pp.235-245. 

[25] Gao, Q., Lim, S. and Jia, X., 2018. Hyperspectral 

image classification using convolutional neural 

networks and multiple feature learning. Remote 

Sensing, 10(2), p.299. 

[26] Chen, Y., Jiang, H., Li, C., Jia, X. and Ghamisi, P., 

2016. Deep feature extraction and classification of 

hyperspectral images based on convolutional neural 

networks. IEEE transactions on geoscience and 

remote sensing, 54(10), pp.6232-6251. 

[27] Petersson, H., Gustafsson, D. and Bergstrom, D., 

2016, December. Hyperspectral image analysis 

using deep learning—A review. In 2016 sixth 

international conference on image processing theory, 

tools and applications (IPTA) (pp. 1-6). IEEE. 

[28] www.ehu.eus. (n.d.). Hyperspectral Remote Sensing 

Scenes - Grupo de Inteligencia Computacional 

(GIC). [online] Available at: 

https://www.ehu.eus/ccwintco/index.php/Hyperspe

ctral_Remote_Sensing_Scenes. 

[29] A. Abdollahi, B. Pradhan, S. Gite and A. Alamri, 

"Building Footprint Extraction from High 

Resolution Aerial Images Using Generative 

Adversarial Network (GAN) Architecture," in IEEE 

Access, vol. 8, pp. 209517-209527, 2020, doi: 

10.1109/ACCESS.2020.3038225. 

[30] Abdollahi, A., Pradhan, B., Gite, S., & Alamri, A. 

(2020). Building footprint extraction from high 

resolution aerial images using generative adversarial 

network (GAN) architecture. IEEE Access, 8, 

209517-209527. 

[31] Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. 

Remote-Sensing Data and Deep-Learning 

Techniques in Crop Mapping and Yield Prediction: 

A Systematic Review. Remote Sens. 2023, 15, 2014. 

https://doi.org/10.3390/rs15082014 

[32] Serbouti, I.; Raji, M.; Hakdaoui, M.; El Kamel, F.; 

Pradhan, B.; Gite, S.; Alamri, A.; Maulud, K.N.A.; 

Dikshit, A. Improved Lithological Map of Large 

Complex Semi-Arid Regions Using Spectral and 

Textural Datasets within Google Earth Engine and 

Fused Machine Learning Multi-Classifiers. Remote 

Sens. 2022, 14, 5498. 

https://doi.org/10.3390/rs14215498 

[33] S. Gite, B. Pradhan, A. Alamri and K. Kotecha, 

"ADMT: Advanced Driver’s Movement Tracking 

System Using Spatio-Temporal Interest Points and 

Maneuver Anticipation Using Deep Neural 

Networks," in IEEE Access, vol. 9, pp. 99312-

99326, 2021, doi: 10.1109/ACCESS.2021.3096032. 

 

http://www.ehu.eus/
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://doi.org/10.3390/rs15082014
https://doi.org/10.3390/rs14215498

