

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 333

Choosing a Suitable Consensus Algorithm for Blockchain Applications:

A Review of Factors and Challenges

 1Rajat Jain, 2Dr. Pradnya Borkar, 3Priyanshu Deshmukh, 4Dr. Sagarkumar Badhiye, 5Kritika Nimje,
6Dr. Kapil Gupta

Submitted: 25/10/2023 Revised: 15/12/2023 Accepted: 25/12/2023

Abstract: Consensus algorithms are essential for ensuring the security, reliability, and performance of blockchain systems, which are

distributed ledgers that store and process transactions among multiple nodes. However, choosing a suitable consensus algorithm for a

blockchain application is a challenging task, as different algorithms have different trade-offs and limitations in terms of scalability,

performance, and security. This paper reviews and compares various consensus algorithms, such as Byzantine fault tolerance (BFT),

practical Byzantine fault tolerance (PBFT), and their improved variants, based on multiple criteria, such as goals, power consumption,

cost, CAP theorem, application scenarios, and research directions. The paper provides a comprehensive overview of the current state and

future challenges of consensus algorithms for blockchain technology and offers some guidelines and recommendations for selecting the

best algorithm for different blockchain applications.

Index Terms: consensus algorithms, blockchain, Byzantine fault tolerance, scalability, performance, security, CAP theorem.

1. Introduction

Blockchain is a new way of storing and sharing data that is

very secure and transparent. It works by creating a chain of

blocks, where each block contains some information and a

link to the previous block. This way, anyone can see the

history and verify the accuracy of the data. However, to

make sure that everyone agrees on what data is in each

block, there is a need for consensus algorithms. These are

rules that help the different parts of the network, called

nodes, to decide on the same data and avoid conflicts or

errors. Consensus algorithms are very important for

blockchain, and they are the focus of many research

projects that try to make them better and faster. Distributed

systems, which form the backbone of blockchain

technology, consist of intricate components that require

careful consideration. One of the challenges is to ensure the

concurrent processing of information by individual nodes,

each maintaining its own clock without a global time

reference, while safeguarding against potential component

failures. Another challenge is to achieve consensus—a

shared decision-making process wherein nodes

unanimously converge on a definitive output given a

specific input. The pioneering work of Leslie Lamport in

designing the underlying scheme for proving the correctness

of distributed systems elucidates two essential criteria—

safety and liveness. A robust distributed system must

neither engage in erroneous behaviors (safety) nor fail to

make progress towards the intended outcome (liveness).

Consensus algorithms play a pivotal role in achieving this

critical objective. They must satisfy three fundamental

principles: validity, agreement, and termination. Validity

necessitates that any value agreed upon must be proposed

by one of the processes involved, underlining the

importance of a transparent and accountable decision-

making process. Agreement man-dates that all non-faulty

nodes reach a unanimous consensus, reinforcing the

significance of reliability and uniformity in the decision-

making mechanism. Termination ensures that all non-faulty

nodes ultimately arrive at a definitive resolution,

emphasizing the need for prompt and efficient decision-

making without undue delays or bottlenecks.

The paper will discuss the following parameters.

• Goals: The main objectives and design choices of each

algorithm

• Power consumption: The amount of energy required to

run each algorithm

1 Symbiosis Institute of Technology Nagpur campus, Symbiosis

International (Deemed University), Pune, India.

Nagpur, India

rajat.jain.btech2022@sitnagpur.siu.edu.in
2Symbiosis Institute of Technology Nagpur campus, Symbiosis

International (Deemed University), Pune, India.

Nagpur, India

pradnyaborkar2@gmail.com
3Symbiosis Institute of Technology Nagpur campus, Symbiosis

International (Deemed University), Pune, India.

Nagpur, India

priyanshu.deshmukh.btech2022@sitnagpur.siu.edu.in
4Symbiosis Institute of Technology Nagpur campus, Symbiosis

International (Deemed University), Pune, India.

Nagpur, India

sagarbadhiye@gmail.com
5Symbiosis Institute of Technology Nagpur campus, Symbiosis

International (Deemed University), Pune, India.

Nagpur, India

kritika.nimje.btech2022@sitnagpur.siu.edu.in
6St. Vincent Pallotti College of Engineering and Technology, Nagpur

Nagpur, India

kaps04gupta@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 334

• Potential attacks and security: The types and severity of

threats that each algorithm faces and how they cope with

them

• Cost: The monetary and computational expenses involved

in implementing each algorithm

• CAP theorem: The trade-offs between consistency, avail-

ability, and partition tolerance that each algorithm makes

• Real world performance, adoption and enterprise use:

The practical outcomes and challenges of deploying each

algorithm in various scenarios and the suitability and

applicability of each algorithm for business purposes

• Scalability: The ability of each algorithm to handle in-

creasing workloads and network sizes

• Research: The current state and future directions of

research on each algorithm.

Analysing the given parameters can help one to fully

understand the nature of the specific blockchain and if the

person happens to work on it this analysis can help to

decide which type of consensus algorithm to choose based

on the system requirements. We also need to learn the CAP

theorem before starting the discussion which is given in the

next section.

2. Cap Theorem

[11] Brewer’s theorem, or the CAP theorem, states that a

distributed system cannot ensure consistency, availability,

and partition tolerance simultaneously. Consistency means

that all nodes have the same data. Availability means that

all nodes can respond to requests. Partition tolerance means

that

the system can function despite network failures. The CAP

theorem implies that a system must sacrifice one of these

properties and choose two.

 Fig. 1. CAP diagram

 [11] The CAP theorem is a helpful tool to check the

accuracy of a consensus algorithm, which is a protocol that

helps nodes concur on the same data. A consensus

algorithm must meet validity, agreement, and termination.

Validity means that the agreed value is proposed by a node.

Agreement means that all non-faulty nodes reach the same

value. Termination means that all non-faulty nodes finally

decide on a value.

The CAP theorem inspired the NoSQL movement and

ignited a debate about trade-offs in data systems. It

questioned the assumption that strong consistency was

essential for databases. However, the CAP theorem also

has some drawbacks and criticisms. It has vague and

conflicting interpretations, and it does not offer a

comprehensive framework to describe trade-offs.

Therefore, a better framework is required to reason about

systems, which should be clear, intuitive, and formal.

The CAP theorem is still a fundamental constraint for any

distributed system, and ignoring it may have hidden

consequences.

3. Consensus Algorithms

A. Proof of Work (PoW)

[15][10] Proof of Work (PoW) is the consensus algorithm

that is mostly used by cryptocurrencies, including Bitcoin.

Adding any transaction to the network requires participants,

known as miners. New transactions are added only after

being validated by the miners.

Miners in a Proof of Work (PoW) consensus algorithm

compete to find a hash value that meets certain criteria by

solving complex mathematical puzzles to validate and add

transactions in the blockchain network. The computation

process requires extensive energy. The work is declared as

done when the first miner to solve the puzzle broadcasts the

solution to the network. Other existing nodes verify the

solution, and a new block is added to the blockchain.

Miners achieve this by repeatedly attempting to hash the

contents of the new block while adding a random number,

known as a nonce, until they find a hash that meets the

required criteria. As a reward for their efforts, miners

receive cryptocurrencies and transaction fees from users. By

maintaining the integrity of the network, miners are

incentivized to continue participating in it.

The PoW consensus algorithm is known for its high-

security mechanism due to its high computational energy

requirements, making it challenging for hackers to

manipulate the system.

The implementation of the Proof of Work (PoW) consensus

algorithm in cryptocurrencies primarily addresses

Availability and Partition Tolerance in the context of the

CAP theorem, while it may have an impact on Consistency.

Cryptocurrencies like Bitcoin prioritize availability.

Therefore, miners compete constantly to validate and add

transactions to the blockchain, ensuring that the network

remains responsive and that transactions continue to be

processed. It ensures that the network can function even

when there are network partitions or isolated nodes. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 335

network will continue to function as long as some miners

can communicate and maintain the blockchain.

PoW does not ensure that all nodes in the network see the

same data at the same time, showcasing a lack of

consistency. Bitcoin, the first cryptocurrency, is based on

PoW, with miners competing to solve puzzles and secure

transactions. Ethereum initially used Proof of Work (PoW),

but with Ethereum 2.0, it is switching to Proof of Stake

(PoS). The "silver" to Bitcoin's "gold," Litecoin, employs

Scrypt-based PoW. Bitcoin Cash, a fork of Bitcoin, keeps

PoW while adjusting block sizes.

PoW's competitive structure encourages equitable

cryptocurrency distribution, thwarts attacks, and prohibits

centralized control. While PoW has been shown to be

effective, criticism of its high energy consumption has

prompted ongoing research into more environmentally

friendly alternatives that balance security. Noteworthy

drawbacks include excessive power consumption and

susceptibility to 51 percent attacks.

One suggested solution involves adding multiple proof

rounds to improve PoW and lower energy consumption.

The results show notable improvements, with energy gain

rates of 15.63 percent for five rounds and 19.91 percent for

ten rounds.

In distributed systems, where every computer has a partial

and constrained view of the system as a whole, diversity is

essential. These distributed systems, often located in

different geographic locations, use different hardware and

software architectures. Decentralized peer-to-peer (P2P)

networks contribute significantly to this diversity.

Introduced to address trust-related problems in distributed

systems, the Byzantine Generals Problem (BGP) focuses on

issues caused by malicious or untrustworthy nodes sending

false information. In distributed systems, "fault tolerance" is

emphasized, particularly in asynchronous environments

where there is no global clock for synchronization. This is

crucial in distributed computing and multi-agent systems,

reaching consensus when dealing with malfunctioning pro-

cesses is essential. Applications such as blockchain, clock

synchronization, and cloud computing require this coordina-

tion of processes to reach a consensus on a common value.

Blockchain has applications outside of finance, including

smartcontracts, goods and service exchanges, predictive

systems, and product traceability in sectors like food. It also

provides safe, decentralized exchanges and unfalsifiable

traceability.

The following are some current and potential paths for pow

algorithm research:

• Utilizing Renewable Energy: Research into the

integration of renewable energy sources and PoW

algorithms. By

creating systems that use clean energy, the environmental

impact of conventional PoW implementations will be

lessened.

• Optimizing Incentive Mechanisms: Future studies are

probably going to concentrate on making PoW-based

systems’ incentive mechanisms more efficient. The goal

of the research is to persuade miners to voluntarily

adopt more energy-efficient practices by better aligning

incentives.

• Strengthening Security and Decentralization: Persistent ef-

forts to improve PoW’s decentralization and security

features. Researchers will look into ways to keep these

important characteristics while also lowering the total

number of resources used by the algorithm.

• Multidisciplinary Teamwork: Future directions call for

more interdisciplinary cooperation between specialists in

computer science, energy engineering, and environmental

science. The goal of this cooperative strategy is to

create more sustainable alternatives while addressing the

problems caused by PoW from all angles

B. Proof of Stake (PoS)

[10][15] Proof of Stake (PoS) is an alternative consensus

algorithm used by cryptocurrencies like Ethereum 2.0 and

Cardano. This algorithm saves computational work by

creating stakes and having validators validate transactions,

contributing to increased scalability. Participants, known as

validators, put forward stakes of a certain amount of

cryptocurrencies. This stake serves as collateral to

participate in block validation. Validators are selected

based on stake age and the quantity of tokens staked, and

they are motivated to act honestly as their staked tokens

may be lost if they act maliciously.

In the PoS system, consistency is maintained as all

validators agree on the state of the blockchain. When a

block is added to the blockchain, it is assumed that all

validators will reach an agreement on the ledger's state,

ensuring consistency. The processing of transactions

continues even in the presence of network partitions or

isolated nodes, demonstrating system responsiveness and

availability. Validators are expected to be available to

validate transactions and create new blocks, ensuring that

the blockchain continues to function. The blockchain is

designed to operate even in the event of network partitions

or connectivity issues, and partition tolerance is achieved

as long as some validators can communicate and validate

transactions.

Proof of Stake (PoS) is a popular consensus algorithm in

cryptocurrencies and blockchain networks. Ethereum 2.0 is

transitioning from Proof of Work (PoW) to PoS to improve

scalability and reduce energy consumption. Cardano's PoS

model prioritizes security and interoperability, Tezos uses

on-chain governance, Polkadot employs Nominated Proof

of Stake, Avalanche uses PoS via the "Snowman" protocol,

and Algorand uses a variant of PoS for speed and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 336

decentralization. Solana utilizes "Proof of History,"

Cosmos and EOS use PoS and Delegated Proof of Stake,

respectively, for interconnectivity and transaction

validation. PoS is favored in blockchain projects for its

energy efficiency and scalability.

Researchers have addressed challenges such as long-range

attacks and nothing-at-stake attacks resulting from forks in

enhanced PoS algorithms. Notable algorithms include

Ouroboros, Sleepy Consensus, Snow White, and Delegated

Proof of Stake (DPoS). These algorithms advance

consensus mechanisms in areas such as encouraging

voting, ensuring security in dynamic situations, and

improving verification efficiency.

Sleepy Consensus (2017), created by researchers at Cornell

University, questions conventional consensus algorithms

and addresses their shortcomings in maintaining security in

dynamic situations. Ouroboros Praos (2017) offers security

against fully adaptive corruption in a semi-synchronous

setting, improving the identity verification process for

block producers and preventing bribery and Distributed

Denial of Service (DDoS) attacks.

The dynamic availability of Ouroboros Genesis (2018) is

intended to handle long-term PoS attacks and

accommodate

newly added nodes to the network. In order to choose

block producers, it uses a verifiable random function

(VRF), and participants are free to join or exit the system

whenever they choose. The protocol ensures flexibility in

the face of fluctuating network conditions by handling

parties going offline for protracted periods of time. The

topic of privacy protection in PoS-based blockchain

protocols is the focus of Ouroboros Crypsinous (2019).

Because it guarantees privacy consistency and activity, it

operates independently of other protocols. By fending off

adaptive attacks, this design seeks to improve PoS-based

consensus’s overall privacy features.

A reconfigurable consensus algorithm appropriate for

proof-

of-work blockchains is proposed by Snow White (2019).

With a brief reconfiguration time, it permits nodes to join

and leave the network at random, thwarting adversarial

posterior corruption attacks. Snow White’s added

flexibility guarantees resilience to shifting network

dynamics. These developments mark a substantial step

forward for blockchain consensus algorithms, tackling

important problems with security, privacy protection, and

dynamic network conditions. The main objective is to

increase the resilience and adaptability of blockchain

technology to real-world situations.

The paragraph goes into more detail about Delegated Proof

of Stake (DPoS) and how it’s used in EOS and the Bit

shares

project. DPoS is defined as a ”accounting method of

democratic centralism,” addressing concerns expressed by

Proof of Stake (PoS) participants about not wanting to

participate in bookkeeping, as well as issues related to

energy waste and cooperative mining related to PoW.

C. BFT and PBFT

BFT is a characteristic of a distributed system that enables

it to achieve consensus among nodes, even if some of the

nodes are defective or malicious. Consensus algorithms are

the principles that determine how nodes in a distributed

system concur on the same value or state. BFT is crucial

for ensuring the dependability and security of distributed

systems, especially in applications such as blockchain,

where nodes may have opposing or dishonest interests.[12]

The Byzantine Generals Problem is a well-known problem

in distributed computing, where a group of generals has to

concur on a common action, such as attacking or retreating

from an enemy city, despite the existence of traitors and

unreliable communication channels. Leslie Lamport and

his co-authors introduced and solved this problem in 1982

by presenting two solutions: oral message and digital

signature.

The oral message solution utilizes a verified channel and a

recursive voting scheme. It works if less than one-third of

the generals are traitors. On the other hand, the digital

signature solution employs a cryptographic technique and a

simple majority rule. It works if there are at most m

traitors, where m is any number less than the total number

of generals.

The choice of solution depends on the trade-off between

performance and reliability, as well as the number of

traitors.

Fig. 2. Byzantine Generals Problem

Byzantine Generals Blockchain

Geographic distance Distributed Network

Generals Nodes

Attack or retreat Transactions

Traitor Generals Faulty or malicious nodes

Unreliable Messengers Unreliable network

TABLE 1. Comparison of Byzantine and Blockchain

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 337

[9] PBFT (Practical Byzantine Fault Tolerance) is an

algorithm that replicates a state machine and consists of

three main parts: the consistency protocol, the view change

protocol, and the garbage collection protocol. The

consistency protocol is the key component of the PBFT

algorithm, ensuring that messages in the blockchain system

are accurate and coherent.

The view change protocol is triggered by other nodes when

the primary node fails, utilizing a timeout mechanism to

maintain consensus activity. The garbage collection

protocol is employed to remove old logs and update the

valid range of request sequence numbers.

The algorithm operates under the assumption that the total

number of nodes in the consensus system is n = 3f + 1,

where f is the maximum number of Byzantine nodes that

the system can withstand.[9]

 The PBFT algorithm has five phases for achieving

consensus: The request phase, the pre-prepare phase, the

prepare phase, the commit phase, and the reply phase. The

algorithm process can be described as follows:

1) Request phase: The client sends a request to the

primary

node.

2) Pre-prepare phase: The primary node receives the

request from the client, then packages the transactions into

blocks in a sequential order and broadcasts them to all

replicas.

3) Prepare phase: All replicas verify the validity of the

preprepared message by broadcasting each other.

4) Commit phase: Similar to the prepare phase, each node

verifies the validity of the message again by broadcasting

each other.

5) Reply phase: The node that has committed the message

sends the consensus result to the client. The system

reaches a consensus if the client receives more than f

valid reply messages from all nodes.

 To explain the Goal of the BFT lets compare it with

Simple

fault tolerant system or crash fault tolerant (CFT).

Type of

System

Definition Environment Faults

Handled

Crash

Fault

Tolerant

(CFT)

Protects the

system from

node(s)

crashes or

failures

in a controlled

environment

Controlled Node

crashes or

failures

Byzanti

ne Fault

Tolerant

(BFT)

Ensures system

operation

despite

malicious or

failing node(s)

in uncontrolled,

open.

permission-less

environments

Uncontrolled,

open, and

permission-less

Node

crashes,

failures,

or

malicious

behavior

TABLE 2. CFT VS BFT

[17] The BFT algorithm aims to ensure the continuation of

system operations even in scenarios where nodes within an

open and uncontrolled environment might behave

maliciously or fail unpredictably. It emphasizes not only

the resilience against node crashes or failures, as seen in

Crash Fault Tolerant (CFT) systems, but also guards

against intentional misbehavior or Byzantine faults, hence

the name “Byzantine Fault Toler- ant.” Therefore, while

CFT primarily addresses node crashes, BFT expands its

scope to include protection against both node-related faults

and malicious activities that might compromise the

integrity or consensus within the system. The power

consumption of BFT depends on various factors, such as

the number of nodes, the communication over- head, the

cryptographic operations, and the network latency. One of

the advantages of BFT is that it does not require intensive

computational efforts, unlike proof-of-work (PoW)

consensus algorithms, which involve solving complex

hashing problems. Therefore, BFT can reduce the electrical

energy consumption and the environmental impact of

distributed systems, especially in applications such as

blockchain.[6] In Bitcoin, each block requires a Proof-of-

Work round, which leads to a rise in miners’ electricity

consumption. This can surpass the amount of electricity

used by some small countries annually.[3] India’s per

capita electricity consumption in 2021-22 was 1255 kWh,

which is approximately one-third of the global average.

This implies that India has a low energy consumption

compared to other countries, and may benefit from using

BFT consensus algorithms to run distributed systems in a

more energy-efficient and reliable way. The common

attacks and security challenges for BFT

algorithms are discussed below. BFT algorithms are

designed

to achieve consensus among distributed nodes, even in the

presence of faults or attacks. Some of the common threats

to BFT algorithms are timing attacks, DoS attacks,

sharding

attacks, and ARP attacks, which can affect the correctness,

availability, security, and efficiency of the consensus

process.

Different BFT algorithms cope with these attacks and

security challenges in different ways. Some of the possible

solutions or countermeasures are:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 338

• Using cryptographic techniques, such as digital sig-

natures, message authentication codes, or hash-based

proofs, to verify the authenticity and integrity of messages

and nodes.

• Using trusted hardware or software components, such as

trusted platform modules (TPMs) or secure enclaves, to

enhance the security and trustworthiness of nodes and

messages.

• Using dynamic or adaptive mechanisms, such as leader

rotation, node replacement, or parameter tuning, to cope

with changing network conditions or fault scenarios.

• Using advanced or novel protocols, such as hybrid or

randomized consensus, to improve the resilience and

performance of BFT algorithms.

The Cost of implementing BFT algorithm can be estimated

by using the following formula:

 C = N (E + L + S + T) ……………………………….

(1)

where C is the total cost, N is the number of nodes, E is the

energy consumption per node, L is the network latency per

node, S is the storage space per node, and T is the time

complexity per node. The values of E, L, S, and T can vary

depending on the specific BFT algorithm and the system

configuration.

PBFT, Practical Byzantine Fault Tolerance, is one of the

most common and efficient Byzantine Fault Tolerance

(BFT) algorithms. It operates in three phases of

communication and can tolerate up to one-third of the

nodes being Byzantine. The cost of PBFT can be estimated

using the formula:

C = N (E + 3L + S + O(N^2)) …………………………… (2)

where:

- E is the energy consumption of cryptographic operations,

- L is the network latency of message transmission,

- S is the storage space of message logs, and

- O(N^2) is the time complexity of message verification.

In the context of the CAP theorem, BFT algorithms,

including PBFT, make trade-offs between consistency,

availability, and partition tolerance depending on the

design and purpose of the system. PBFT prioritizes

consistency and availability over partition tolerance. This

means that it can ensure all nodes have the same view of

the data and respond to every request as long as the

network is reliable, and the number of faulty nodes is

below the threshold.

However, in cases where the network is partitioned or the

number of faulty nodes exceeds the threshold, PBFT may

struggle to reach consensus or provide service. The CAP

theorem highlights the inherent trade-offs in distributed

systems, and PBFT's design reflects its emphasis on

maintaining consistency and availability under normal

operating conditions.[6]

BFT and PBFT have been deployed in various

applications, such as blockchain, cloud computing, and

IoT, to achieve different practical outcomes. In blockchain,

they ensure the security and performance of the distributed

ledger. In cloud computing, they ensure the availability and

consistency of the cloud services. For IoT, they ensure the

privacy and authenticity of IoT data and devices. Byzantine

Fault Tolerance (BFT) and Practical Byzantine Fault

Tolerance (PBFT) are consensus algorithms suitable and

applicable for business purposes, especially in scenarios

requiring high security, reliability, and performance.

The text mentions scalability issues with BFT and PBFT

algorithms, which are used to achieve consensus among

distributed nodes in the presence of faults or attacks. BFT

algorithms have a high communication complexity of

O(N^2) or O(N^3), where N is the number of nodes,

limiting their scalability. PBFT, a specific BFT algorithm,

has a lower communication complexity of O(N^2) but still

cannot support very large networks. Techniques and

methods to improve the scalability of BFT and PBFT

algorithms include reducing the number of communication

phases or messages, as seen in Zyzzyva, which reduces

communication phases from three to two in the best case.

Other methods involve using sharding or grouping

techniques to divide nodes into smaller subsets or clusters,

performing consensus within or across the subsets or

clusters, and utilizing a mesh-and-spoke network to group

nodes into different layers. Additionally, hybrid or

randomized consensus protocols, such as Istanbul BFT,

combine the advantages of different consensus algorithms

by merging PBFT with a proof-of-authority algorithm.

Research on Byzantine Fault Tolerance (BFT) and

Practical Byzantine Fault Tolerance (PBFT) algorithms is

an active and important area of study in distributed

systems, particularly in blockchain applications. BFT and

PBFT algorithms aim to achieve consensus among nodes,

even if some nodes are faulty or malicious, ensuring the

security and performance of the system. However, these

algorithms face various challenges and limitations, such as

scalability, performance, and security, which require

further improvement and optimization.[7][8]

Some of the current state and future directions of research

on BFT and PBFT algorithms are:

- Improving the scalability and throughput of BFT and

PBFT algorithms by reducing the communication and

computational complexity, using sharding or grouping

techniques, or combining different consensus algorithms.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 339

- Improving the performance and efficiency of BFT and

PBFT algorithms by using speculative execution, leader

rotation, or randomization techniques, or leveraging trusted

hardware or software components.

 - Enhancing the security and resilience of BFT and PBFT

algorithms by employing cryptographic techniques,

reputation models, or voting mechanisms, or addressing

various attacks, such as timing attacks, denial of service

attacks, sharding attacks, and address resolution protocol

attacks.

- Applying BFT and PBFT algorithms to various scenarios

and applications, such as cloud computing, Internet of

Things, smart contracts, and data analytics, and evaluating

their feasibility and effectiveness.

D) Paxos Algorithm

Paxos is a family of protocols designed to achieve

consensus in a network of unreliable or error-prone

processors. It has been a dominant topic in discussions on

consensus algorithms over the past decade and is

frequently used to teach students about consensus.

However, Paxos can be challenging to grasp, despite

various attempts to make it more accessible. Furthermore,

implementing Paxos often involves complex changes in

system architecture, making it a daunting task for both

system builders and students.

Paxos operates within a network of nodes, with each node

providing input as a proposal related to a topic, allowing

each node to participate in the decision-making and

agreement process. The Paxos algorithm consists of three

phases:

1) Phase 1 (Prepare and Promise): In this phase, a

proposer node suggests a value for the system to agree

upon. Subsequently, the proposer node requests other

nodes to propose their views on the value. Once all nodes

submit their input, acceptor nodes accept the proposal with

the highest majority and communicate the result.

2) Phase 2 (Accept): After the proposal gains approval

from the majority of acceptors, the proposer sends an

acceptance request containing the proposed value, and the

acceptors confirm their agreement.

3) Phase 3 (Learn): When the proposer receives

acknowledgments from the majority of nodes, consensus is

achieved. The value that has been agreed upon is

considered finalized, and the proposer can inform learners

of this agreement.

Several systems have implemented the Paxos algorithm:

1) Google Chubby: Chubby by Google is a distributed

lock service that employs Paxos to maintain consistency

among replicas in case of failures.

2) Google Spanner and Megastore: Both of these Google

systems use Paxos internally to achieve consistency.

3) Open Replica: Open Replica utilizes Paxos to maintain

its open-access storage system.

4) Apache Cassandra: Apache Cassandra employs a

'Paxos-like protocol,' which is a variant of the Paxos

algorithm.

The Paxos consensus algorithm, while being a fundamental

contribution to distributed systems, does face certain

challenges:

a) Complexity: The complexity of Paxos can lead to errors

during implementation, making it challenging to ensure the

correctness of the system. To improve this, it may be

beneficial to simplify the process or break it down into

smaller components that can be tested and verified

independently. Additionally, implementing thorough

testing protocols and regularly reviewing and updating the

code can help catch and prevent errors before they become

major issues.

b) Performance: Paxos can experience performance issues

due to message delays, participant activity, and message

volume. To improve the performance of Paxos, you may

want to consider implementing message prioritization,

optimizing participant activity, and employing message

compression techniques to reduce message volume.

Additionally, investigating the possibility of using a more

powerful server infrastructure or upgrading your network

capabilities to handle higher message volumes may be

beneficial.

c) Non-Byzantine Fault Tolerance: When it comes to the

Paxos algorithm, Byzantine faults can be a major concern

due to the potential for faulty nodes to engage in malicious

behaviour. This is particularly worrisome in scenarios

where there may be malicious actors seeking to disrupt the

system. It’s worth noting that the Paxos consensus

algorithm is not specifically designed to handle Byzantine

faults, whereas the Raft consensus algorithm is. This is an

important consideration to keep in mind when deciding

which algorithm to use in a given scenario.

E) Raft Algorithm

The Raft consensus algorithm is a protocol that enables

members of a distributed system to agree on a sequence of

values even when there are failures in the system. It was

designed as an alternative to the Paxos family of

algorithms, to be simple to understand. In a Raft system,

there are two parties- The Leader and the Follower or

candidate, in case the leader is not available or during an

election. The leader has the duty of log replication to the

followers and regularly keeps the followers informed about

the log replication in the form of a heartbeat. In case there

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 340

is no heartbeat signal, the follower changes its status from

follower to candidate to start a new election of leader.[20]

Raft implements consensus with the means of a leader

approach. One cluster has a single leader who is

completely responsible for log replication on the cluster’s

other servers.

The Raft algorithm was designed to make it easier for

developers to understand and implement compared to the

more complex Paxos algorithm. However, like any

algorithm, Raft is not without its challenges.[16]

1) One of the main challenges of the Raft algorithm is its

strong dependency on the leader replica. This means that

the system’s availability can be compromised, especially

when dealing with grey failures.[15] Therefore, it is

crucial to have a reliable leader replica to ensure system

stability.

2) Another challenge of the Raft algorithm is its

performance. Since only the leader server interacts with

clients, it can become a bottleneck in case of a spike

in client activity.[19] This can lead to a slower system

response time and a decrease in overall performance.

3) Despite being relatively simpler than Paxos,

implementing the Raft algorithm in a real-world system

can still be

complex. There might be several issues to consider, such

as network partitions, node failures, and message loss.

Therefore, it is essential to have a thorough understanding

of the algorithm and how it works to implement it

effectively.[16]

Here are some of the systems that have Raft

implementation:

1) CockroachDB: They use Raft in the replication layer.

2) MongoDB: Uses a variant of raft in their replication set.

3) RabbitMQ: Uses Raft to implement FIFO queues.

4. Conclusion

Consensus algorithms are essential for ensuring the

security,

reliability, and performance of blockchain systems, which

are

distributed ledgers that store and process transactions

among

multiple nodes. However, choosing a suitable consensus

algorithm for a blockchain application is a challenging

task,

as different algorithms have different trade-offs and

limitations in terms of scalability, performance, and

security. This paper reviewed and compared various

consensus algorithms, such as PoW, PoS, BFT, PBFT,

Paxos, Raft and their improved variants, based on multiple

criteria, such as goals, power consumption, cost, CAP

theorem, application scenarios, and research directions.

The paper provided a comprehensive overview of the

current state and future challenges of consensus algorithms

for blockchain technology, and offered some guidelines

and recommendations for selecting the best algorithm for

different blockchain applications.

References

[1] Arati Baliga. Understanding blockchain consensus

models.

[2] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The

latest gossip on bft consensus. arXiv preprint

arXiv:1807.04938, 2018.

[3] Press Information Bureau. Raksha mantri us secretary

of defence to co-chair india-us 2+2 ministerial

dialogue hold bilateral talks on november10, 2023.

Ministry of Defence, 2023.

[4] Miguel Castro and Barbara Liskov. Practical

byzantine fault tolerance.In Proceedings of the Third

Symposium on Operating SystemsDesign-and

Implementation, page 173–186. USENIX

Association, 2001.

[5] Stefano De Angelis, Leonardo Aniello, Roberto

Baldoni, Federico Lombardi, Andrea Margheri, and

Vladimiro Sassone. Pbft vs proof- of-authority:

Applying the cap theorem to permissioned

blockchain. In Italian Conference on Cyber Security,

2018.

[6] Diego Geroni. Byzantine fault tolerance - a complete

guide. 101 Blockchains, 2021.

[7] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and

Mohammad

Sadoghi. An in-depth look of bft consensus in

blockchain: Challenges

and opportunities. In 2019 IEEE International

Conference on Blockchain and Cryptocurrency

(ICBC), page 370–377. IEEE, 2019.

[8] Zainab Hussein, Mohamed A Salama, and Sherif A

El-Rahman. Evo-lution of blockchain consensus

algorithms: a review on the latest milestones of

blockchain consensus algorithms. Cybersecurity,

6(30),2023.

[9] Wangxi Jiang, Xiang Wu, Ming Song, Jie Qin, and

Zhen Jia. Improved pbft algorithm based on

comprehensive evaluation model. Applied

Sciences, 13(2):1117, 2023.

[10] Mohammad Ayoub Khan, Lina Ge, Jie Wang, and

Guifen Zhang. Survey of consensus algorithms for

proof of stake in blockchain. Security and

Communication Networks, 2022:2812526, 2022.

[11] Martin Kleppmann. A critique of the cap theorem.

arXiv preprint arXiv:1509.05393, 2017.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 333–341 | 341

[12] Leslie Lamport, Robert Shostak, and Marshall Pease.

The byzantine generals problem. ACM Transactions

on Programming Languages and

Systems (TOPLAS), 4(3):382–401, 1982.

[13] Leslie Lamport, Robert Shostak, and Marshall Pease.

The part-time parliament. ACM Transactions on

Computer Systems (TOCS),

16(2):133–169, 1998.

[14] Caitie McCaffrey. The verification of a distributed

system: A practi-tioner’s guide to increasing

confidence in system correctness.

[15] Milvus. Raft or not? the best solution to data

consistency in cloud.

https://milvus.io/blog/raft-or-not.md, 2023.

[16] Kara Mostefa, Abdelkader Laouid, Muath Alshaikh,

Mohammad Ham- moudeh, Ahc`ene Bounceur,

Abdelfattah ammamra, and Brahim Laouid. A

compute and wait in pow (cw-pow) consensus

algorithm for preserving energy consumption.

Applied Sciences, 11, 07 2021.

[17] Diego Ongaro and John Ousterhout. In search of an

understandable consensus algorithm. In 2014

USENIX annual technical conference (USENIX ATC

14), pages 305–319, 2014.

[18] Ranjeet Patel. Byzantine fault tolerance (bft) and its

significance in blockchain world.

[19] Deepak Puthal, Saraju P Mohanty, Priyadarsi Nanda,

Elias Kougianos, and Gautam Das. Proof-of-

authentication for scalable blockchain in

resource-constrained distributed systems. IEEE

Transactions on Indus- trial Informatics, 16(9):6083–

6091, 2020.

[20] Raft. Raft consensus algorithm. https://raft.github.io/,

2013.

[21] Robbert Van Renesse and Deniz Altinbuken. Paxos

made moderately

complex. ACM Computing Surveys (CSUR),

47(3):1–36, 2015.

[22] Wenbing Zhao. Building dependable distributed

systems. John Wiley & Sons, 2014.

[23] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping

Chen, and Huaimin Wang. An overview of

blockchain technology: Architecture, consensus, and

future trends. In 2017 IEEE International Congress on

Big Data (BigData Congress), pages 557–564, 2017.

