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Abstract: Consensus algorithms are essential for ensuring the security, reliability, and performance of blockchain systems, which are 

distributed ledgers that store and process transactions among multiple nodes. However, choosing a suitable consensus algorithm for a 

blockchain application is a challenging task, as different algorithms have different trade-offs and limitations in terms of scalability, 

performance, and security. This paper reviews and compares various consensus algorithms, such as Byzantine fault tolerance (BFT), 

practical Byzantine fault tolerance (PBFT), and their improved variants, based on multiple criteria, such as goals, power consumption, 

cost, CAP theorem, application scenarios, and research directions. The paper provides a comprehensive overview of the current state and 

future challenges of consensus algorithms for blockchain technology and offers some guidelines and recommendations for selecting the 

best algorithm for different blockchain applications. 

Index Terms: consensus algorithms, blockchain, Byzantine fault tolerance, scalability, performance, security, CAP theorem. 

1. Introduction 

Blockchain is a new way of storing and sharing data that is 

very secure and transparent. It works by creating a chain of 

blocks, where each block contains some information and a 

link to the previous block. This way, anyone can see the 

history and verify the accuracy of the data. However, to 

make sure that everyone agrees on what data is in each 

block, there is a need for consensus algorithms. These are 

rules that help the different parts of the network, called 

nodes, to decide on the same data and avoid conflicts or 

errors. Consensus algorithms are very important for 

blockchain, and they are the focus of many research 

projects that try to make them better and faster. Distributed 

systems, which form the backbone of blockchain 

technology, consist of intricate components that require 

careful consideration. One of the challenges is to ensure the 

concurrent processing of information by individual nodes, 

each maintaining its own clock without a global time 

reference, while safeguarding against potential component 

failures. Another challenge is to achieve consensus—a 

shared decision-making process wherein nodes 

unanimously converge on a definitive output given a 

specific input. The pioneering work of Leslie Lamport in 

designing the underlying scheme for proving the correctness 

of distributed systems elucidates two essential criteria—

safety and liveness. A robust distributed system must 

neither engage in erroneous behaviors (safety) nor fail to 

make progress towards the intended outcome (liveness). 

Consensus algorithms play a pivotal role in achieving this 

critical objective. They must satisfy three fundamental 

principles: validity, agreement, and termination. Validity 

necessitates that any value agreed upon must be proposed 

by one of the processes involved, underlining the 

importance of a transparent and accountable decision-

making process. Agreement man-dates that all non-faulty 

nodes reach a unanimous consensus, reinforcing the 

significance of reliability and uniformity in the decision-

making mechanism. Termination ensures that all non-faulty 

nodes ultimately arrive at a definitive resolution, 

emphasizing the need for prompt and efficient decision-

making without undue delays or bottlenecks. 

The paper will discuss the following parameters. 

• Goals: The main objectives and design choices of each 

algorithm 

• Power consumption: The amount of energy required to 

run each algorithm 
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• Potential attacks and security: The types and severity of 

threats that each algorithm faces and how they cope with 

them 

• Cost: The monetary and computational expenses involved 

in implementing each algorithm 

• CAP theorem: The trade-offs between consistency, avail- 

ability, and partition tolerance that each algorithm makes 

• Real world performance, adoption and enterprise use: 

The practical outcomes and challenges of deploying each 

algorithm in various scenarios and the suitability and 

applicability of each algorithm for business purposes 

• Scalability: The ability of each algorithm to handle in- 

creasing workloads and network sizes 

• Research: The current state and future directions of 

research on each algorithm. 

Analysing the given parameters can help one to fully 

understand the nature of the specific blockchain and if the 

person happens to work on it this analysis can help to 

decide which type of consensus algorithm to choose based 

on the system requirements. We also need to learn the CAP 

theorem before starting the discussion which is given in the 

next section. 

2. Cap Theorem 

[11] Brewer’s theorem, or the CAP theorem, states that a 

distributed system cannot ensure consistency, availability, 

and partition tolerance simultaneously. Consistency means 

that all nodes have the same data. Availability means that 

all nodes can respond to requests. Partition tolerance means 

that 

the system can function despite network failures. The CAP 

theorem implies that a system must sacrifice one of these 

properties and choose two. 

 

 

 Fig. 1. CAP diagram 

 [11] The CAP theorem is a helpful tool to check the 

accuracy of a consensus algorithm, which is a protocol that 

helps nodes concur on the same data. A consensus 

algorithm must meet validity, agreement, and termination. 

Validity means that the agreed value is proposed by a node. 

Agreement means that all non-faulty nodes reach the same 

value. Termination means that all non-faulty nodes finally 

decide on a value. 

The CAP theorem inspired the NoSQL movement and 

ignited a debate about trade-offs in data systems. It 

questioned the assumption that strong consistency was 

essential for databases. However, the CAP theorem also 

has some drawbacks and criticisms. It has vague and 

conflicting interpretations, and it does not offer a 

comprehensive framework to describe trade-offs. 

Therefore, a better framework is required to reason about 

systems, which should be clear, intuitive, and formal. 

The CAP theorem is still a fundamental constraint for any 

distributed system, and ignoring it may have hidden 

consequences. 

3. Consensus Algorithms 

A. Proof of Work (PoW) 

[15][10] Proof of Work (PoW) is the consensus algorithm 

that is mostly used by cryptocurrencies, including Bitcoin. 

Adding any transaction to the network requires participants, 

known as miners. New transactions are added only after 

being validated by the miners. 

Miners in a Proof of Work (PoW) consensus algorithm 

compete to find a hash value that meets certain criteria by 

solving complex mathematical puzzles to validate and add 

transactions in the blockchain network. The computation 

process requires extensive energy. The work is declared as 

done when the first miner to solve the puzzle broadcasts the 

solution to the network. Other existing nodes verify the 

solution, and a new block is added to the blockchain. 

Miners achieve this by repeatedly attempting to hash the 

contents of the new block while adding a random number, 

known as a nonce, until they find a hash that meets the 

required criteria. As a reward for their efforts, miners 

receive cryptocurrencies and transaction fees from users. By 

maintaining the integrity of the network, miners are 

incentivized to continue participating in it. 

The PoW consensus algorithm is known for its high-

security mechanism due to its high computational energy 

requirements, making it challenging for hackers to 

manipulate the system. 

The implementation of the Proof of Work (PoW) consensus 

algorithm in cryptocurrencies primarily addresses 

Availability and Partition Tolerance in the context of the 

CAP theorem, while it may have an impact on Consistency. 

Cryptocurrencies like Bitcoin prioritize availability. 

Therefore, miners compete constantly to validate and add 

transactions to the blockchain, ensuring that the network 

remains responsive and that transactions continue to be 

processed. It ensures that the network can function even 

when there are network partitions or isolated nodes. The 
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network will continue to function as long as some miners 

can communicate and maintain the blockchain. 

PoW does not ensure that all nodes in the network see the 

same data at the same time, showcasing a lack of 

consistency. Bitcoin, the first cryptocurrency, is based on 

PoW, with miners competing to solve puzzles and secure 

transactions. Ethereum initially used Proof of Work (PoW), 

but with Ethereum 2.0, it is switching to Proof of Stake 

(PoS). The "silver" to Bitcoin's "gold," Litecoin, employs 

Scrypt-based PoW. Bitcoin Cash, a fork of Bitcoin, keeps 

PoW while adjusting block sizes. 

PoW's competitive structure encourages equitable 

cryptocurrency distribution, thwarts attacks, and prohibits 

centralized control. While PoW has been shown to be 

effective, criticism of its high energy consumption has 

prompted ongoing research into more environmentally 

friendly alternatives that balance security. Noteworthy 

drawbacks include excessive power consumption and 

susceptibility to 51 percent attacks. 

One suggested solution involves adding multiple proof 

rounds to improve PoW and lower energy consumption. 

The results show notable improvements, with energy gain 

rates of 15.63 percent for five rounds and 19.91 percent for 

ten rounds. 

In distributed systems, where every computer has a partial 

and constrained view of the system as a whole, diversity is 

essential. These distributed systems, often located in 

different geographic locations, use different hardware and 

software architectures. Decentralized peer-to-peer (P2P) 

networks contribute significantly to this diversity. 

Introduced to address trust-related problems in distributed 

systems, the Byzantine Generals Problem (BGP) focuses on 

issues caused by malicious or untrustworthy nodes sending 

false information. In distributed systems, "fault tolerance" is 

emphasized, particularly in asynchronous environments 

where there is no global clock for synchronization. This is 

crucial in distributed computing and multi-agent systems,  

reaching consensus when dealing with malfunctioning pro- 

cesses is essential. Applications such as blockchain, clock 

synchronization, and cloud computing require this coordina- 

tion of processes to reach a consensus on a common value. 

Blockchain has applications outside of finance, including 

smartcontracts, goods and service exchanges, predictive 

systems, and product traceability in sectors like food. It also 

provides safe, decentralized exchanges and unfalsifiable 

traceability. 

The following are some current and potential paths for pow 

algorithm research: 

• Utilizing Renewable Energy: Research into the 

integration of renewable energy sources and PoW 

algorithms. By 

creating systems that use clean energy, the environmental 

impact of conventional PoW implementations will be 

lessened. 

• Optimizing Incentive Mechanisms: Future studies are 

probably going to concentrate on making PoW-based 

systems’ incentive mechanisms more efficient. The goal 

of the research is to persuade miners to voluntarily 

adopt more energy-efficient practices by better aligning 

incentives. 

• Strengthening Security and Decentralization: Persistent ef- 

forts to improve PoW’s decentralization and security 

features. Researchers will look into ways to keep these 

important characteristics while also lowering the total 

number of resources used by the algorithm. 

• Multidisciplinary Teamwork: Future directions call for 

more interdisciplinary cooperation between specialists in 

computer science, energy engineering, and environmental 

science. The goal of this cooperative strategy is to 

create more sustainable alternatives while addressing the 

problems caused by PoW from all angles 

B. Proof of Stake (PoS) 

[10][15] Proof of Stake (PoS) is an alternative consensus 

algorithm used by cryptocurrencies like Ethereum 2.0 and 

Cardano. This algorithm saves computational work by 

creating stakes and having validators validate transactions, 

contributing to increased scalability. Participants, known as 

validators, put forward stakes of a certain amount of 

cryptocurrencies. This stake serves as collateral to 

participate in block validation. Validators are selected 

based on stake age and the quantity of tokens staked, and 

they are motivated to act honestly as their staked tokens 

may be lost if they act maliciously. 

In the PoS system, consistency is maintained as all 

validators agree on the state of the blockchain. When a 

block is added to the blockchain, it is assumed that all 

validators will reach an agreement on the ledger's state, 

ensuring consistency. The processing of transactions 

continues even in the presence of network partitions or 

isolated nodes, demonstrating system responsiveness and 

availability. Validators are expected to be available to 

validate transactions and create new blocks, ensuring that 

the blockchain continues to function. The blockchain is 

designed to operate even in the event of network partitions 

or connectivity issues, and partition tolerance is achieved 

as long as some validators can communicate and validate 

transactions. 

Proof of Stake (PoS) is a popular consensus algorithm in 

cryptocurrencies and blockchain networks. Ethereum 2.0 is 

transitioning from Proof of Work (PoW) to PoS to improve 

scalability and reduce energy consumption. Cardano's PoS 

model prioritizes security and interoperability, Tezos uses 

on-chain governance, Polkadot employs Nominated Proof 

of Stake, Avalanche uses PoS via the "Snowman" protocol, 

and Algorand uses a variant of PoS for speed and 
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decentralization. Solana utilizes "Proof of History," 

Cosmos and EOS use PoS and Delegated Proof of Stake, 

respectively, for interconnectivity and transaction 

validation. PoS is favored in blockchain projects for its 

energy efficiency and scalability. 

Researchers have addressed challenges such as long-range 

attacks and nothing-at-stake attacks resulting from forks in 

enhanced PoS algorithms. Notable algorithms include 

Ouroboros, Sleepy Consensus, Snow White, and Delegated 

Proof of Stake (DPoS). These algorithms advance 

consensus mechanisms in areas such as encouraging 

voting, ensuring security in dynamic situations, and 

improving verification efficiency. 

Sleepy Consensus (2017), created by researchers at Cornell 

University, questions conventional consensus algorithms 

and addresses their shortcomings in maintaining security in 

dynamic situations. Ouroboros Praos (2017) offers security 

against fully adaptive corruption in a semi-synchronous 

setting, improving the identity verification process for 

block producers and preventing bribery and Distributed 

Denial of Service (DDoS) attacks. 

The dynamic availability of Ouroboros Genesis (2018) is 

intended to handle long-term PoS attacks and 

accommodate 

newly added nodes to the network. In order to choose 

block producers, it uses a verifiable random function 

(VRF), and participants are free to join or exit the system 

whenever they choose. The protocol ensures flexibility in 

the face of fluctuating network conditions by handling 

parties going offline for protracted periods of time. The 

topic of privacy protection in PoS-based blockchain 

protocols is the focus of Ouroboros Crypsinous (2019). 

Because it guarantees privacy consistency and activity, it 

operates independently of other protocols. By fending off 

adaptive attacks, this design seeks to improve PoS-based 

consensus’s overall privacy features.  

A reconfigurable consensus algorithm appropriate for 

proof- 

of-work blockchains is proposed by Snow White (2019). 

With a brief reconfiguration time, it permits nodes to join 

and leave the network at random, thwarting adversarial 

posterior corruption attacks. Snow White’s added 

flexibility guarantees resilience to shifting network 

dynamics. These developments mark a substantial step 

forward for blockchain consensus algorithms, tackling 

important problems with security, privacy protection, and 

dynamic network conditions. The main objective is to 

increase the resilience and adaptability of blockchain 

technology to real-world situations. 

The paragraph goes into more detail about Delegated Proof 

of Stake (DPoS) and how it’s used in EOS and the Bit 

shares 

project. DPoS is defined as a ”accounting method of 

democratic centralism,” addressing concerns expressed by 

Proof of Stake (PoS) participants about not wanting to 

participate in bookkeeping, as well as issues related to 

energy waste and cooperative mining related to PoW. 

C. BFT and PBFT 

BFT is a characteristic of a distributed system that enables 

it to achieve consensus among nodes, even if some of the 

nodes are defective or malicious. Consensus algorithms are 

the principles that determine how nodes in a distributed 

system concur on the same value or state. BFT is crucial 

for ensuring the dependability and security of distributed 

systems, especially in applications such as blockchain, 

where nodes may have opposing or dishonest interests.[12]  

The Byzantine Generals Problem is a well-known problem 

in distributed computing, where a group of generals has to 

concur on a common action, such as attacking or retreating 

from an enemy city, despite the existence of traitors and 

unreliable communication channels. Leslie Lamport and 

his co-authors introduced and solved this problem in 1982 

by presenting two solutions: oral message and digital 

signature. 

The oral message solution utilizes a verified channel and a 

recursive voting scheme. It works if less than one-third of 

the generals are traitors. On the other hand, the digital 

signature solution employs a cryptographic technique and a 

simple majority rule. It works if there are at most m 

traitors, where m is any number less than the total number 

of generals. 

The choice of solution depends on the trade-off between 

performance and reliability, as well as the number of 

traitors. 

 

Fig. 2. Byzantine Generals Problem 

Byzantine Generals Blockchain 

Geographic distance  Distributed Network 

Generals Nodes 

Attack or retreat Transactions 

Traitor Generals Faulty or malicious nodes 

Unreliable Messengers Unreliable network 

TABLE 1. Comparison of Byzantine and Blockchain 
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[9] PBFT (Practical Byzantine Fault Tolerance) is an 

algorithm that replicates a state machine and consists of 

three main parts: the consistency protocol, the view change 

protocol, and the garbage collection protocol. The 

consistency protocol is the key component of the PBFT 

algorithm, ensuring that messages in the blockchain system 

are accurate and coherent. 

The view change protocol is triggered by other nodes when 

the primary node fails, utilizing a timeout mechanism to 

maintain consensus activity. The garbage collection 

protocol is employed to remove old logs and update the 

valid range of request sequence numbers. 

The algorithm operates under the assumption that the total 

number of nodes in the consensus system is n = 3f + 1, 

where f  is the maximum number of Byzantine nodes that 

the system can withstand.[9]  

  The PBFT algorithm has five phases for achieving 

consensus: The request phase, the pre-prepare phase, the 

prepare phase, the commit phase, and the reply phase. The 

algorithm process can be described as follows: 

1) Request phase: The client sends a request to the 

primary 

node. 

2) Pre-prepare phase: The primary node receives the 

request from the client, then packages the transactions into 

blocks in a sequential order and broadcasts them to all 

replicas. 

3) Prepare phase: All replicas verify the validity of the 

preprepared message by broadcasting each other. 

4) Commit phase: Similar to the prepare phase, each node 

verifies the validity of the message again by broadcasting 

each other.  

5) Reply phase: The node that has committed the message 

sends the consensus result to the client. The system 

reaches a consensus if the client receives more than f 

valid reply messages from all nodes.  

 To explain the Goal of the BFT lets compare it with 

Simple 

fault tolerant system or crash fault tolerant (CFT). 

Type of 

System  

Definition Environment Faults 

Handled 

Crash 

Fault 

Tolerant 

(CFT) 

Protects the 

system from 

node(s) 

crashes or 

failures 

in a controlled 

environment 

Controlled Node 

crashes or 

failures 

Byzanti

ne Fault 

Tolerant 

(BFT) 

Ensures system 

operation 

despite 

malicious or 

failing node(s) 

in uncontrolled, 

open. 

permission-less 

environments 

Uncontrolled, 

open, and 

permission-less 

Node 

crashes, 

failures, 

or 

malicious 

behavior 

TABLE 2. CFT VS BFT 

[17] The BFT algorithm aims to ensure the continuation of 

system operations even in scenarios where nodes within an 

open and uncontrolled environment might behave 

maliciously or fail unpredictably. It emphasizes not only 

the resilience against node crashes or failures, as seen in 

Crash Fault Tolerant (CFT) systems, but also guards 

against intentional misbehavior or Byzantine faults, hence 

the name “Byzantine Fault Toler- ant.” Therefore, while 

CFT primarily addresses node crashes, BFT expands its 

scope to include protection against both node-related faults 

and malicious activities that might compromise the 

integrity or consensus within the system. The power 

consumption of BFT depends on various factors, such as 

the number of nodes, the communication over- head, the 

cryptographic operations, and the network latency. One of 

the advantages of BFT is that it does not require intensive 

computational efforts, unlike proof-of-work (PoW) 

consensus algorithms, which involve solving complex 

hashing problems. Therefore, BFT can reduce the electrical 

energy consumption and the environmental impact of 

distributed systems, especially in applications such as 

blockchain.[6] In Bitcoin, each block requires a Proof-of-

Work round, which leads to a rise in miners’ electricity 

consumption. This can surpass the amount of electricity 

used by some small countries annually.[3] India’s per 

capita electricity consumption in 2021-22 was 1255 kWh, 

which is approximately one-third of the global average. 

This implies that India has a low energy consumption 

compared to other countries, and may benefit from using 

BFT consensus algorithms to run distributed systems in a 

more energy-efficient and reliable way. The common 

attacks and security challenges for BFT 

algorithms are discussed below. BFT algorithms are 

designed 

to achieve consensus among distributed nodes, even in the 

presence of faults or attacks. Some of the common threats 

to BFT algorithms are timing attacks, DoS attacks, 

sharding 

attacks, and ARP attacks, which can affect the correctness, 

availability, security, and efficiency of the consensus 

process. 

Different BFT algorithms cope with these attacks and 

security challenges in different ways. Some of the possible 

solutions or countermeasures are: 
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• Using cryptographic techniques, such as digital sig- 

natures, message authentication codes, or hash-based 

proofs, to verify the authenticity and integrity of messages 

and nodes. 

• Using trusted hardware or software components, such as 

trusted platform modules (TPMs) or secure enclaves, to 

enhance the security and trustworthiness of nodes and 

messages. 

• Using dynamic or adaptive mechanisms, such as leader 

rotation, node replacement, or parameter tuning, to cope 

with changing network conditions or fault scenarios. 

• Using advanced or novel protocols, such as hybrid or 

randomized consensus, to improve the resilience and 

performance of BFT algorithms.  

The Cost of implementing BFT algorithm can be estimated 

by using the following formula: 

   C = N ( E + L + S + T )  ………………………………. 

(1)  

where C is the total cost, N is the number of nodes, E is the 

energy consumption per node, L is the network latency per 

node, S is the storage space per node, and T is the time 

complexity per node. The values of E, L, S, and T can vary 

depending on the specific BFT algorithm and the system 

configuration. 

PBFT, Practical Byzantine Fault Tolerance, is one of the 

most common and efficient Byzantine Fault Tolerance 

(BFT) algorithms. It operates in three phases of 

communication and can tolerate up to one-third of the 

nodes being Byzantine. The cost of PBFT can be estimated 

using the formula: 

C = N (E + 3L + S + O(N^2)) …………………………… (2) 

where: 

- E is the energy consumption of cryptographic operations, 

- L is the network latency of message transmission, 

- S is the storage space of message logs, and 

- O(N^2) is the time complexity of message verification. 

In the context of the CAP theorem, BFT algorithms, 

including PBFT, make trade-offs between consistency, 

availability, and partition tolerance depending on the 

design and purpose of the system. PBFT prioritizes 

consistency and availability over partition tolerance. This 

means that it can ensure all nodes have the same view of 

the data and respond to every request as long as the 

network is reliable, and the number of faulty nodes is 

below the threshold. 

However, in cases where the network is partitioned or the 

number of faulty nodes exceeds the threshold, PBFT may 

struggle to reach consensus or provide service. The CAP 

theorem highlights the inherent trade-offs in distributed 

systems, and PBFT's design reflects its emphasis on 

maintaining consistency and availability under normal 

operating conditions.[6]  

BFT and PBFT have been deployed in various 

applications, such as blockchain, cloud computing, and 

IoT, to achieve different practical outcomes. In blockchain, 

they ensure the security and performance of the distributed 

ledger. In cloud computing, they ensure the availability and 

consistency of the cloud services. For IoT, they ensure the 

privacy and authenticity of IoT data and devices. Byzantine 

Fault Tolerance (BFT) and Practical Byzantine Fault 

Tolerance (PBFT) are consensus algorithms suitable and 

applicable for business purposes, especially in scenarios 

requiring high security, reliability, and performance. 

The text mentions scalability issues with BFT and PBFT 

algorithms, which are used to achieve consensus among 

distributed nodes in the presence of faults or attacks. BFT 

algorithms have a high communication complexity of 

O(N^2) or O(N^3), where N is the number of nodes, 

limiting their scalability. PBFT, a specific BFT algorithm, 

has a lower communication complexity of O(N^2) but still 

cannot support very large networks. Techniques and 

methods to improve the scalability of BFT and PBFT 

algorithms include reducing the number of communication 

phases or messages, as seen in Zyzzyva, which reduces 

communication phases from three to two in the best case. 

Other methods involve using sharding or grouping 

techniques to divide nodes into smaller subsets or clusters, 

performing consensus within or across the subsets or 

clusters, and utilizing a mesh-and-spoke network to group 

nodes into different layers. Additionally, hybrid or 

randomized consensus protocols, such as Istanbul BFT, 

combine the advantages of different consensus algorithms 

by merging PBFT with a proof-of-authority algorithm. 

Research on Byzantine Fault Tolerance (BFT) and 

Practical Byzantine Fault Tolerance (PBFT) algorithms is 

an active and important area of study in distributed 

systems, particularly in blockchain applications. BFT and 

PBFT algorithms aim to achieve consensus among nodes, 

even if some nodes are faulty or malicious, ensuring the 

security and performance of the system. However, these 

algorithms face various challenges and limitations, such as 

scalability, performance, and security, which require 

further improvement and optimization.[7][8] 

Some of the current state and future directions of research 

on BFT and PBFT algorithms are: 

- Improving the scalability and throughput of BFT and 

PBFT algorithms by reducing the communication and 

computational complexity, using sharding or grouping 

techniques, or combining different consensus algorithms. 
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- Improving the performance and efficiency of BFT and 

PBFT algorithms by using speculative execution, leader 

rotation, or randomization techniques, or leveraging trusted 

hardware or software components. 

  - Enhancing the security and resilience of BFT and PBFT 

algorithms by employing cryptographic techniques, 

reputation models, or voting mechanisms, or addressing 

various attacks, such as timing attacks, denial of service 

attacks, sharding attacks, and address resolution protocol 

attacks. 

- Applying BFT and PBFT algorithms to various scenarios 

and applications, such as cloud computing, Internet of 

Things, smart contracts, and data analytics, and evaluating 

their feasibility and effectiveness. 

D) Paxos Algorithm 

Paxos is a family of protocols designed to achieve 

consensus in a network of unreliable or error-prone 

processors. It has been a dominant topic in discussions on 

consensus algorithms over the past decade and is 

frequently used to teach students about consensus. 

However, Paxos can be challenging to grasp, despite 

various attempts to make it more accessible. Furthermore, 

implementing Paxos often involves complex changes in 

system architecture, making it a daunting task for both 

system builders and students. 

Paxos operates within a network of nodes, with each node 

providing input as a proposal related to a topic, allowing 

each node to participate in the decision-making and 

agreement process. The Paxos algorithm consists of three 

phases: 

1) Phase 1 (Prepare and Promise): In this phase, a 

proposer node suggests a value for the system to agree 

upon. Subsequently, the proposer node requests other 

nodes to propose their views on the value. Once all nodes 

submit their input, acceptor nodes accept the proposal with 

the highest majority and communicate the result. 

2) Phase 2 (Accept): After the proposal gains approval 

from the majority of acceptors, the proposer sends an 

acceptance request containing the proposed value, and the 

acceptors confirm their agreement. 

3) Phase 3 (Learn): When the proposer receives 

acknowledgments from the majority of nodes, consensus is 

achieved. The value that has been agreed upon is 

considered finalized, and the proposer can inform learners 

of this agreement. 

Several systems have implemented the Paxos algorithm: 

1) Google Chubby: Chubby by Google is a distributed 

lock service that employs Paxos to maintain consistency 

among replicas in case of failures. 

2) Google Spanner and Megastore: Both of these Google 

systems use Paxos internally to achieve consistency. 

3) Open Replica: Open Replica utilizes Paxos to maintain 

its open-access storage system. 

4) Apache Cassandra: Apache Cassandra employs a 

'Paxos-like protocol,' which is a variant of the Paxos 

algorithm. 

The Paxos consensus algorithm, while being a fundamental 

contribution to distributed systems, does face certain 

challenges: 

a) Complexity: The complexity of Paxos can lead to errors 

during implementation, making it challenging to ensure the 

correctness of the system. To improve this, it may be 

beneficial to simplify the process or break it down into 

smaller components that can be tested and verified 

independently. Additionally, implementing thorough 

testing protocols and regularly reviewing and updating the 

code can help catch and prevent errors before they become 

major issues. 

b) Performance: Paxos can experience performance issues 

due to message delays, participant activity, and message 

volume. To improve the performance of Paxos, you may 

want to consider implementing message prioritization, 

optimizing participant activity, and employing message 

compression techniques to reduce message volume. 

Additionally, investigating the possibility of using a more 

powerful server infrastructure or upgrading your network 

capabilities to handle higher message volumes may be 

beneficial. 

c) Non-Byzantine Fault Tolerance: When it comes to the 

Paxos algorithm, Byzantine faults can be a major concern 

due to the potential for faulty nodes to engage in malicious 

behaviour. This is particularly worrisome in scenarios 

where there may be malicious actors seeking to disrupt the 

system. It’s worth noting that the Paxos consensus 

algorithm is not specifically designed to handle Byzantine 

faults, whereas the Raft consensus algorithm is. This is an 

important consideration to keep in mind when deciding 

which algorithm to use in a given scenario.  

E) Raft Algorithm 

The Raft consensus algorithm is a protocol that enables 

members of a distributed system to agree on a sequence of 

values even when there are failures in the system. It was 

designed as an alternative to the Paxos family of 

algorithms, to be simple to understand. In a Raft system, 

there are two parties- The Leader and the Follower or 

candidate, in case the leader is not available or during an 

election. The leader has the duty of log replication to the 

followers and regularly keeps the followers informed about 

the log replication in the form of a heartbeat. In case there 
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is no heartbeat signal, the follower changes its status from 

follower to candidate to start a new election of leader.[20]  

Raft implements consensus with the means of a leader 

approach. One cluster has a single leader who is 

completely responsible for log replication on the cluster’s 

other servers. 

The Raft algorithm was designed to make it easier for 

developers to understand and implement compared to the 

more complex Paxos algorithm. However, like any 

algorithm, Raft is not without its challenges.[16] 

1) One of the main challenges of the Raft algorithm is its 

strong dependency on the leader replica. This means that 

the system’s availability can be compromised, especially 

when dealing with grey failures.[15] Therefore, it is 

crucial to have a reliable leader replica to ensure system 

stability. 

2) Another challenge of the Raft algorithm is its 

performance. Since only the leader server interacts with 

clients, it can become a bottleneck in case of a spike 

in client activity.[19] This can lead to a slower system 

response time and a decrease in overall performance. 

3) Despite being relatively simpler than Paxos, 

implementing the Raft algorithm in a real-world system 

can still be 

complex. There might be several issues to consider, such 

as network partitions, node failures, and message loss. 

Therefore, it is essential to have a thorough understanding 

of the algorithm and how it works to implement it 

effectively.[16] 

Here are some of the systems that have Raft 

implementation: 

1) CockroachDB: They use Raft in the replication layer. 

2) MongoDB: Uses a variant of raft in their replication set. 

3) RabbitMQ: Uses Raft to implement FIFO queues. 

4. Conclusion 

Consensus algorithms are essential for ensuring the 

security, 

reliability, and performance of blockchain systems, which 

are 

distributed ledgers that store and process transactions 

among 

multiple nodes. However, choosing a suitable consensus 

algorithm for a blockchain application is a challenging 

task, 

as different algorithms have different trade-offs and 

limitations in terms of scalability, performance, and 

security. This paper reviewed and compared various 

consensus algorithms, such as PoW, PoS, BFT, PBFT, 

Paxos, Raft and their improved variants, based on multiple 

criteria, such as goals, power consumption, cost, CAP 

theorem, application scenarios, and research directions. 

The paper provided a comprehensive overview of the 

current state and future challenges of consensus algorithms 

for blockchain technology, and offered some guidelines 

and recommendations for selecting the best algorithm for 

different blockchain applications. 
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