
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 378–388 |  378 

Design of an Efficient Cloud Security Model through Federated 

Learning, Blockchain, AI-Driven Policies, and Zero Trust Frameworks 

Sachin A. Kawalkar1*, Dinesh B. Bhoyar2* 

Submitted: 23/10/2023         Revised: 15/12/2023           Accepted: 25/12/2023 

Abstract: In the current era of cloud computing where most of the Organizations are shifting from local Infrastructure to Cloud network 

and  hence Cloud security where most of sensitive data is stored is one of the key concerns for highly scalable and critical network 

deployments. As there is high increase in the use of cloud networks and computing because of simple Virtual machines and containers, the 

necessity for strong and stringent security measures to protect against complex cyber- attacks is very important than it was few years 

before.. Traditional cloud security models often grapple with limitations such as centralized data vulnerabilities, static security policies, 

and inadequate access control mechanisms. Cyber-attacks are getting complex and impacting organization with critical information and 

business loss. Dark Web attacks are more sophisticated and impacting tactically via various ways and mechanisms on cloud. The paper 

surveys the state-of-the-art in cloud n e twork  and  infrastructure security models and essentially evaluates their performance based on 

various risks, threats, vulnerabilities and empirical dataset collection and samples. The paper discusses the advantages and disadvantages 

of each model and highlights their suitability for different types of attacks. To address these challenges, this research introduces a 

groundbreaking complex and stringent security techniques and security framework, synergizing Federated Learning, Blockchain 

technology, AI-Driven Security Policy Management, and Zero Trust Network Access (ZTNA) principles. The proposed model leverages 

Federated Learning to decentralize machine learning processes, thereby safeguarding data privacy and minimizing the risks associated with 

centralized data repositories. Concurrently, the integration of Blockchain technology ensures immutable and transparent transaction 

records, enhancing the integrity and trustworthiness of cloud interactions. Complementing these, AI-Driven Security Policy Management, 

employing algorithms like Reinforcement Learning and Decision Trees, automates the generation and implementation of dynamic security 

policies. This AI-based approach is adept at responding to evolving threats and adapting to changing network conditions in real-time 

scenarios. Furthermore, the adoption of Zero Trust principles, operationalized through Software-Defined Perimeter frameworks, enforces 

a stringent 'never trust, always verify' approach. This paradigm shift is critical in fortifying access controls, effectively mitigating the risks 

of unauthorized access and insider threats. The interplay of these technologies culminates in a robust, resilient cloud security architecture 

sets. Empirical evaluation in varied cloud scenarios showcases notable enhancements in security metrics. The integrated model outperforms 

existing methods, achieving a 3.5% increase in precision, 4.9% in accuracy, 2.4% in recall, 3.5% in Area Under the Curve (AUC), and 

1.9% in specificity, alongside a 4.5% reduction in response delay. These improvements signal a significant leap in cloud network security, 

offering a comprehensive solution to contemporary cyber threats. The impact of this work is profound, paving the way for more secure, 

reliable, and efficient cloud computing environments. 
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1. Introduction 

The advent of cloud computing has revolutionized the 

landscape of data storage, processing, and distribution, 

offering scalable, efficient, and cost-effective solutions for 

organizations and individuals worldwide. However, as 

cloud technologies continue to evolve and permeate various 

sectors, the complexity and frequency of cyber threats 

targeting cloud environments have escalated markedly. This 

surge in security challenges necessitates a paradigm shift in 

cloud security methodologies, driving the need for 

innovative, adaptive, and robust security frameworks. 

Traditional cloud security models predominantly rely on 

centralized data storage and static security policies, making 

them susceptible to a range of cyber attacks including data 

breaches, transactional frauds, and insider threats. 

Centralized data repositories, while convenient, pose 

significant risks as they become prime targets for 

cybercriminals. Additionally, static security policies fail to 

adapt to the ever-changing landscape of cyber threats, 

rendering them ineffective against sophisticated, evolving 

attacks. The limitations of conventional approaches 

underscore the urgency for a more dynamic, decentralized, 

and intelligent security model in the cloud computing 

domain. 

Responding to this imperative, the proposed research 

introduces a comprehensive security framework that 

integrates four cutting-edge technologies: Federated 

Learning, Blockchain-based architectures, AI-Driven 

Security Policy Management, and Zero Trust Network 

Access (ZTNA) principles. Each component of this 

integrated model addresses specific vulnerabilities inherent 
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in traditional cloud security models, offering a multifaceted 

approach to fortify cloud networks. 

Federated Learning is employed to decentralize the machine 

learning process, enabling collaborative model training 

without compromising data privacy. This approach ensures 

that sensitive data remains within its local environment, 

significantly mitigating the risk of central data breaches. 

Blockchain technology complements Federated Learning 

by providing a decentralized, tamper-proof ledger for 

maintaining the integrity of data and transactions within the 

cloud, thus enhancing trust and security. 

AI-Driven Security Policy Management, utilizing 

sophisticated algorithms like Reinforcement Learning and 

Decision Trees, automates the creation and enforcement of 

dynamic security policies. This AI-centric approach enables 

the system to adapt in real-time to emerging threats and 

changing network conditions, thereby maintaining an 

optimal security posture. Finally, the incorporation of Zero 

Trust principles, operationalized through Software-Defined 

Perimeter frameworks, establishes a stringent 'never trust, 

always verify' security paradigm. This model significantly 

elevates access control mechanisms, crucial for 

safeguarding cloud resources against unauthorized access 

and potential insider threats. 

The convergence of these advanced technologies in the 

proposed framework marks a significant leap forward in 

cloud security. By addressing the multifaceted challenges in 

cloud computing environments, this research paves the way 

for a more resilient, secure, and efficient future in cloud 

computing, offering robust protection against a broad 

spectrum of cyber threats. 

Motivation & Contribution: 

The motivation behind this research emanates from the 

critical need to address the escalating security challenges in 

cloud computing. As cloud infrastructures become 

increasingly integral to business operations, the 

ramifications of security breaches have become more 

severe, with consequences ranging from financial losses to 

compromised sensitive data samples. This reality propels 

the quest for advanced security solutions that can keep pace 

with the sophistication and diversity of modern cyber 

threats. 

The primary motivation is to transcend the limitations of 

conventional cloud security models, which are often 

plagued by centralized vulnerabilities, static security 

measures, and inadequate access control strategies. These 

shortcomings highlight the necessity for a more dynamic, 

decentralized, and intelligent approach to cloud security, 

capable of adapting to the evolving threat landscape and the 

intricate nature of cloud networks. 

This research contributes to the field of cloud computing 

security in several significant ways: 

• Decentralization of Data and Learning Processes: 

By implementing Federated Learning, the research 

introduces a novel approach to decentralize data 

processing in the cloud. This methodology not only 

enhances data privacy by retaining sensitive 

information within local nodes but also minimizes the 

risks associated with centralized data storage, a 

common target for cyber attacks. 

• Immutable and Transparent Data Transactions: 

The integration of Blockchain technology provides a 

revolutionary means of securing cloud transactions. 

The decentralized ledger system ensures data integrity, 

transparency, and immutability, thereby fostering trust 

and security in cloud interactions. 

• Dynamic and Intelligent Security Policy 

Management: The adoption of AI-Driven Security 

Policy Management marks a significant advancement 

in the automation and optimization of security policies. 

Leveraging algorithms like Reinforcement Learning 

and Decision Trees, this component of the framework 

enables real-time adaptation to new threats and network 

changes, ensuring a continuously robust security 

posture. 

• Enhanced Access Control through Zero Trust 

Principles: Implementing Zero Trust Network Access 

(ZTNA) principles through Software-Defined 

Perimeter frameworks significantly strengthens access 

control mechanisms. This approach adheres to a 'never 

trust, always verify' philosophy, crucial for mitigating 

unauthorized access and insider threat risks. 

• Empirical Validation and Performance 

Enhancement: The framework's effectiveness is 

empirically validated in multiple cloud scenarios, 

demonstrating superior performance over existing 

methods. Improvements in precision, accuracy, recall, 

AUC, specificity, and reduced response delay attest to 

the efficacy of the proposed model in enhancing cloud 

security. 

In essence, this research contributes a comprehensive and 

multifaceted security framework, tailored to meet the 

complex demands of modern cloud environments. It not 

only addresses the current gaps in cloud security but also 

sets a new benchmark for future research and development 

in this critical field. The confluence of these advanced 

technologies heralds a new era in cloud security, equipping 

organizations with the tools to protect their cloud 

infrastructures against an ever-evolving array of cyber 

threats. 
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2. Literature Review 

The realm of cloud computing security has been a focal 

point of extensive research over the past decade, with 

various models and frameworks proposed to safeguard 

cloud deployments. This literature review critically 

examines the prevailing models, highlighting their strengths 

and limitations, and contrasts them with the proposed 

integrated framework. 

• Centralized Security Models: Traditional cloud 

security models have primarily been centralized, 

relying on a core system to manage security across the 

network. While effective in simpler network structures, 

these models often falter in the face of sophisticated 

cyber attacks. Centralized models present a single point 

of failure, making them susceptible to large-scale 

breaches (Zhang et al., 2019). In contrast, the proposed 

framework's decentralized approach, leveraging 

Federated Learning and Blockchain technology, 

addresses this vulnerability by distributing the security 

mechanisms across multiple nodes, thus enhancing 

resilience against targeted attacks. 

• Static Security Policies: Conventional security 

systems typically utilize static security policies, which, 

once set, remain unchanged unless manually revised 

(Smith and Brooks, 2018). This rigidity renders them 

ineffective against evolving threats. The proposed 

model introduces AI-Driven Security Policy 

Management, utilizing adaptive algorithms that 

dynamically adjust policies in real-time, offering a 

significant advancement over static models. 

• Role-Based Access Control (RBAC) Models: RBAC 

has been widely adopted in cloud security for its 

simplicity and effectiveness in managing user 

permissions (Ferraiolo et al., 2001). However, RBAC's 

limitations become apparent in complex cloud 

environments where user roles and permissions are not 

always clear-cut. The proposed framework's adoption 

of Zero Trust principles, operationalized through 

Software-Defined Perimeter frameworks, offers a more 

nuanced and secure approach, ensuring rigorous 

verification of all access requests. 

• Encryption-Based Security Models: Encryption is a 

cornerstone of many existing cloud security models. 

While encryption effectively protects data at rest and in 

transit, it does not address other aspects of security, 

such as access control or transaction integrity (Hadnagy 

and Wilson, 2020). The proposed framework 

complements encryption with Blockchain technology, 

providing an additional layer of security for data 

transactions, and with Zero Trust principles for 

stringent access control. 

• Hybrid Security Models: Recent trends have seen the 

emergence of hybrid models combining various 

security technologies. For instance, Almulla and Yeun 

(2010) proposed a hybrid model integrating encryption 

and RBAC. While these models offer improved 

security over singular approaches, they often lack the 

comprehensive coverage provided by the proposed 

framework, which integrates multiple cutting-edge 

technologies to address a wider range of security 

challenges in cloud computing. 

In summary, while existing models have laid a solid 

foundation for cloud security, they exhibit limitations in 

addressing the complexity and dynamism of modern cloud 

environments. The proposed framework, with its 

integration of Federated Learning, Blockchain, AI-Driven 

Security Policy Management, and Zero Trust principles, 

offers a more holistic, adaptive, and resilient approach to 

securing cloud deployments. This comprehensive 

framework represents a significant leap forward, addressing 

the multifaceted nature of cloud security in the age of 

sophisticated cyber threats. 

3. Proposed Design of an Efficient Cloud Security 

Model Through Federated Learning, Blockchain, 

AI-Driven Policies, and Zero Trust Frameworks 

To overcome issues of low scalability and low efficiency 

present with existing security models that are applied to 

real-time cloud deployments, this section discusses the 

design of the Federated Learning (FL) component within 

the proposed cloud security framework, which is intricate 

and is predicated on the principles of decentralized data 

processing and collaborative machine learning. As per 

figure 1, the core tenet of FL is to enable multiple cloud 

nodes to collaboratively train a shared model while keeping 

the training data localized, thereby maintaining data privacy 

and security. 

In the FL process, the central server first initializes a global 

model Mg with parameters θg. This model is disseminated 

to a selected subset of participating nodes in the cloud 

network. Each node, indexed as i, possesses a local dataset 

Di which is not shared or transferred across the network, 

addressing privacy concerns. The local model at node i is 

represented as Mi with parameters θi for different cloud 

scenarios. 

Each node trains its local model Mi on its dataset Di for a 

predefined number of epochs. The objective is to minimize 

a local loss function Li(θi), which varies based on the 

application but generally represents the model’s 

performance on the local data samples. The optimization is 

expressed via equation 1, 

𝜃𝑖𝑛𝑒𝑤 = 𝜃𝑖 − 𝜂 ⋅ 𝛻𝐿𝑖(𝜃𝑖) … (1) 
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Where, η is the learning rate and ∇Li(θi) is the gradient of 

the loss function with respect to the model parameters θi for 

different use cases & samples. After local training, each 

node communicates its updated model parameters θinew to 

the central server. Importantly, only model parameters are 

shared, not the data itself, which is a critical aspect of 

preserving data privacy in FL. 

The central server then aggregates these parameters to 

update the global model. The aggregation is done using with 

Federated Averaging (FedAvg) process. In FedAvg, the 

updated global model parameters θgnew are computed as 

the weighted average of the local model parameters via 

equation 2, 

𝜃𝑔𝑛𝑒𝑤 =
1

𝑁
∑ 𝜃𝑖(𝑛𝑒𝑤)

𝑖=1,𝑁

… (2) 

Where, N is the number of participating nodes. This process 

of local training and parameter aggregation continues 

iteratively, with the global model converging over multiple 

iteration sets. The convergence criterion can be defined in 

terms of the improvement in global model accuracy or loss, 

or a pre-set number of training iteration sets. The 

implementation of FL in cloud security is particularly 

advantageous. It allows for the development of a robust, 

generalized model that benefits from diverse data sources 

without compromising the confidentiality of the data 

samples. Moreover, this approach is inherently resilient to 

data breaches at a single point, as the data is never 

centralized. 

These data samples are stored in an efficient Blockchain-

based architecture within the proposed cloud security 

framework, which is meticulously crafted to enhance data 

integrity, transaction security, and trust in the cloud 

environment scenarios. Blockchain technology functions as 

a decentralized ledger that records transactions across a 

network of nodes, ensuring transparency and immutability 

of data samples. 

In this architecture, every transaction within the cloud environment is encapsulated as a block in the Blockchain.  
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Percentage of 

Organizations at 

Risk 

Threat Notes  

40% Dridex 

trojan 

This type of threat typically is supplied through massive spam or phishing email campaigns 

that include malicious links, macros, or attachments in Microsoft Office documents. Dridex 

spam campaigns are often disguised as financial emails, such as invoices, receipts, and orders 

with the objective of stealing banking credentials. 

38% Hidden 

Cobra 

It is because of unsupported versions of Microsoft operating systems, as well as Adobe Flash 

player vulnerabilities. They use DDoS botnets, keyloggers, remote access tools (RATs), and 

wiper malware. The malware implements a custom protocol that allows traffic to be tunneled 

between source and destination IP addresses. 

33% Ryuk 

ransomw

are 

This strain of ransomware has been used in targeted, high profile attacks with ransom demands 

in the six figures. It is typically preceded by malware infections trojans, which lay the 

groundwork for cloud network organization wide compromise and the encryption of critical 

network assets. 

26% Emotet Emotet is an advanced, modular malware it is delivered through malicious download links or 

attachments, such as PDF or macro-enabled Word documents. Recently, a new module 

appeared that exfiltrates email content.  

26% Trickbot It is modular banking trojan. It targets user financial information and acts as a dropper for 

other malware. It uses man- in-the-browser attacks to steal financial information, such as login 

credentials for online banking sessions. When spread by malspam campaigns, it arrives in 

emails with Word or Excel attachments and in branding that is familiar to the recipient. 

 

Figure 1. Architecture of the proposed model for enhancing security cloud deployments 

Each block Bk can be represented as a data structure that 

primarily consists of a block header Hk and a list of 

transactions Tk. The block header includes critical 

information such as the previous block's hash h(k−1), the 

current block's hash h(k), a timestamp, and a nonce value 

used for mining process. 

The block's hash is computed using a cryptographic hash 

function Hash (SHA-256), applied to the block’s content. 

This is represented via equation 3, 

ℎ𝑘 = 𝐻𝑎𝑠ℎ(𝐻𝑘, 𝑇𝑘) … (3) 

The crucial aspect of this hashing process is the creation of 

a chain of blocks, where each block's header contains the 

hash of the previous block, thus linking them securely. This 

chain forms the Blockchain, and the integrity of this chain 

is fundamental to the security of the architecture. 

To add a new block to the Blockchain, nodes in the network 

must reach consensus. One common consensus mechanism 

is Proof of Work (PoW), where nodes, often referred to as 

miners, solve a computational challenge to validate 

transactions and create new blocks. The challenge involves 

finding a nonce value such that the block's hash has a 

specific number of leading zeros for each of the hashes. The 

PoW is represented via equation 4, 

𝐹𝑖𝑛𝑑 𝑁𝑜𝑛𝑐𝑒: 𝐻𝑎𝑠ℎ(𝐻𝑘, 𝑇𝑘

, 𝑛𝑜𝑛𝑐𝑒)𝑏𝑒𝑔𝑖𝑛𝑠 𝑤𝑖𝑡ℎ 𝑁 𝑧𝑒𝑟𝑜𝑠 … (4) 

Once a miner solves the PoW, the new block is broadcast to 

the network. Other nodes then verify the validity of the 

block by checking the PoW and the integrity of the block's 

hash chain. Upon validation, the block is added to the 

Blockchain. Smart contracts, self-executing contracts with 

the terms of the agreement directly written into code, are 

also integrated into the Blockchain architecture process. 

They automate and enforce agreements in the cloud 

environment, ensuring that predefined conditions are met 

before a transaction is recorded on the Blockchain. This 

feature enhances the security and efficiency of cloud 

transactions. 

The integration of Blockchain in the cloud security 

framework offers a robust solution to issues such as data 

tampering, fraudulent transactions, and lack of 

transparency. The decentralized nature of Blockchain 

mitigates the risk of centralized data breaches, while the 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 378–388 |  383 

immutability and transparency of the Blockchain ensure the 

integrity and traceability of transactions within the cloud 

environment sets. 

To further improve efficiency of this model, an AI-Driven 

Security Policy Management is designed in the proposed 

cloud security framework, which is an innovative approach 

that utilizes machine learning algorithms to automate and 

optimize the creation, adaptation, and enforcement of 

security policies. This AI-centric system dynamically 

adjusts its strategies in response to evolving network 

conditions and emerging threats, thereby maintaining a 

robust security infrastructure on the cloud environment 

scenarios. 

This system consists of two primary machine learning 

algorithms: Reinforcement Learning (RL) and Decision 

Trees (DT). The RL component is responsible for learning 

optimal security policy actions through interactions with the 

environment. In this context, the RL agent's objective is to 

learn a policy 𝜋: 𝑆 → 𝐴 that maps states S of the cloud 

environment to actions A that maximize an augmented 

range of cumulative reward R sets. The state space S 

represents various metrics and indicators relevant to cloud 

security, such as network traffic patterns, access requests, 

and threat intelligence levels. The action space A includes 

possible security responses like adjusting firewall rules, 

updating access permissions, or triggering alerts. 

The RL process is formalized through the Bellman 

operations, which describes the value V(s) of a state 𝑠, as 

the expected reward from that state under policy π, plus the 

expected future rewards via equation 5, 

𝑉𝜋(𝑠) = 𝐸[ 𝑅𝑡 + 𝛾𝑉𝜋(𝑆𝑡 + 1) ∣∣ 𝑆𝑡 = 𝑠 ] … (5) 

Where, Rt is the reward at time t, and γ is a discount factor 

that prioritizes immediate rewards over future rewards. The 

RL agent learns the optimal policy through repeated 

interactions with the environment, updating its policy based 

on the observed outcomes. The policy update can be 

represented using the Q-learning algorithm, where the Q 

Value Q(s,a) represents the quality of taking action 𝑎 in 

state 𝑠 via equation 6, 

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)

+ 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′)

− 𝑄(𝑠, 𝑎)] … (6) 

Where, α is the learning rate, s′ is the new state, and a′ is a 

possible action in the new states. 

Complementing RL, Decision Trees are utilized for 

classification and decision-making processes in policy 

management. A Decision Tree is built by iteratively 

partitioning the data set D into subsets based on feature 

values that maximally reduce Gini impurity levels. For a 

binary classification task, the Gini impurity IG for a set D is 

given via equation 7, 

𝐼𝐺(𝐷) = 1 − ∑ 𝑝𝑖2

𝑛

𝑖=1

… (7) 

Where, pi is the proportion of class i instances in D samples. 

The process of building a Decision Tree involves selecting 

the best feature F at each node to segregate the data samples. 

This selection is based on the feature that provides the 

maximum Information Gain IG, calculated via equation 8, 

𝐼𝐺(𝐷, 𝐹) = 𝐼(𝐷) − ∑
𝐷𝑣

𝐷
𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐹)

𝐼(𝐷𝑣) … (8) 

Where, I(D) is the impurity of dataset D, Dv is the subset of 

D for a value v of feature F, and Values(F) is the set of all 

possible values for feature F sets. This Security Policy 

Management system integrates these algorithms to analyze 

cloud security data, make informed decisions, and 

automatically adjust policies. This integration allows for a 

responsive and adaptive security system that can effectively 

handle the dynamic nature of cloud environments and the 

ever-evolving landscape of cyber threats. 

Finally, the implementation of Zero Trust Network Access 

(ZTNA) in the proposed cloud security framework is 

conceptualized as a rigorous and dynamic approach to 

network access control, operating under the principle of 

'never trust, always verify'. ZTNA fundamentally shifts the 

paradigm from traditional perimeter-based security models 

to a more granular, identity- and context-based access 

control system. 

In ZTNA, every access request is treated as if originating 

from an untrusted network, regardless of the user's location 

or device sets. This approach necessitates a continuous and 

comprehensive evaluation of both user credentials and the 

context of each access request to determine access 

permissions. The ZTNA framework can be represented 

through a series of logical steps and associated equations to 

define its operational mechanisms. 

• Identity Verification: The initial step involves 

verifying the identity of the user or entity requesting 

access. This is achieved through authentication 

mechanisms such as Multiple Factor Authentication 

(MFA) process. Let U represent a user, and Cred(U) 

represent the set of credentials provided by U sets. The 

authentication function Auth can be expressed via 

equation 9, 

𝐴𝑢𝑡ℎ(𝑈, 𝐶𝑟𝑒𝑑(𝑈)) → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} … (9) 

Where, Auth returns True if the credentials are valid, else 

False for other cases. 
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• Contextual Analysis: After identity verification, the 

system conducts a contextual analysis of the access 

request, considering factors such as location, time, 

device security status, and network health. Let 

Context(U,Request) represent the contextual 

parameters associated with user U's requests. The 

access decision function Decide takes into account both 

identity verification and contextual analysis via 

equation 10, 

𝐷𝑒𝑐𝑖𝑑𝑒 (𝐴𝑢𝑡ℎ(𝑈, 𝐶𝑟𝑒𝑑(𝑈)), 𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝑈, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡))

→ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦} … (10) 

• Least Privilege Access: ZTNA adheres to the principle 

of least privilege, granting only the minimum necessary 

access rights to each user sets. Let Privileges(U) 

represent the set of access rights assigned to user U, and 

the function AssignPrivileges(U) assign these rights 

based on the user's role and the context of the request 

via equation 11, 

𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑠(𝑈)

= 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑠(𝑈)) … (11) 

• Dynamic Policy Enforcement: ZTNA dynamically 

enforces security policies that adapt to changes in user 

behavior or threat landscapes. Let Policy(U,Request) 

represent the set of policies applicable to user U's 

requests. The enforcement function Enforce applies 

these policies to each access request via equation 12, 

𝐸𝑛𝑓𝑜𝑟𝑐𝑒(𝑃𝑜𝑙𝑖𝑐𝑦(𝑈, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡))

→ {𝑃𝑒𝑟𝑚𝑖𝑡, 𝐷𝑒𝑛𝑦, 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡} … (12) 

• Continuous Monitoring and Adaptation: ZTNA 

involves continuous monitoring of user activities and 

network conditions. Let Monitor(U,Activity) represent 

the monitoring process. The adaptation function Adapt 

adjusts policies and privileges in response to detected 

anomalies or changes via equation 13, 

𝐴𝑑𝑎𝑝𝑡(𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝑈, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦))

→ 𝑈𝑝𝑑𝑎𝑡𝑒(𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑠(𝑈), 𝑃𝑜𝑙𝑖𝑐𝑦(𝑈)) … (13) 

• Micro-Segmentation: ZTNA employs micro-

segmentation to further compartmentalize access 

within the network sets. Let Segment(Network,U) 

represent the function that segments the network based 

on the user's access level. This function ensures that 

users are restricted to specific network segments via 

equation 13, 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝑈) → 𝐷𝑒𝑓𝑖𝑛𝑒(𝑆𝑢𝑏𝑛𝑒𝑡(𝑈)) … (13) 

• Encryption of Data-in-Transit: To safeguard data 

integrity and confidentiality, ZTNA mandates 

encryption for all data transmitted within the network 

sets. Let Encrypt(Data,Key) represent the encryption 

function, where Data is the data being transmitted and 

Key is the encryption key, via equation 14, 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝑎𝑡𝑎, 𝐾𝑒𝑦) → 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎 … (14) 

• Session Termination: Finally, ZTNA ensures that 

each session is securely terminated after use, 

preventing unauthorized access or lingering 

connections. Let Terminate(Session) represent the 

function to securely end a session, which is represented 

via equation 15, 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒(𝑆𝑒𝑠𝑠𝑖𝑜𝑛(𝑈)) → 𝐸𝑛𝑑(𝑆𝑒𝑠𝑠𝑖𝑜𝑛) … (15) 

In conclusion, the ZTNA framework within the proposed 

cloud security model is designed to provide stringent, 

adaptive, and context-aware access control. This 

comprehensive approach ensures that each access request is 

thoroughly evaluated, dynamically controlled, and 

continuously monitored, significantly enhancing the 

security posture of cloud environments in an era where 

traditional perimeter defenses are no longer sufficient for 

different use cases. Efficiency of this model was estimated 

in terms of different metrics, and compared with existing 

methods in the next section of this text. 

4. Results Analysis and Comparison 

The experimental setup for evaluating the proposed cloud 

security framework was meticulously designed to provide a 

comprehensive assessment of its performance. The 

implementation was carried out using Python, a versatile 

programming language well-suited for handling complex 

algorithms and large datasets. This section outlines the key 

components of the experimental setup, including the 

configuration of the Federated Learning, Blockchain 

technology, AI-Driven Security Policy Management, and 

Zero Trust Network Access (ZTNA) components, along 

with their respective parameters. 

Federated Learning Configuration 

• Number of Nodes: 50 cloud nodes were 

simulated, each representing a unique data source 

in the federated network. 

• Local Epochs: Each node performed 10 local 

epochs for training on its dataset. 

• Learning Rate: A learning rate of 0.01 was used 

for local model updates. 

• Optimization Algorithm: Stochastic Gradient 

Descent (SGD) was employed for optimizing local 

models. 

• Data Partitioning: Data was distributed unevenly 

across nodes to simulate a real-world scenario. 

Python libraries such as TensorFlow or PyTorch were used 

to simulate the federated learning environment. 
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Blockchain Configuration 

• Number of Blocks: The Blockchain was 

initialized with 100 blocks. 

• Block Size: Each block was configured to store up 

to 50 transactions. 

• Consensus Algorithm: Proof of Work (PoW) with 

a difficulty level set to find a hash with at least 4 

leading zeros. 

• Hashing Algorithm: SHA-256 cryptographic 

hash function. 

Python's hashlib library facilitated the implementation of 

the Blockchain component. 

AI-Driven Security Policy Management 

• Algorithms Used: Decision Trees and Q-Learning 

for Reinforcement Learning. 

• Feature Set: Network traffic patterns, access 

requests, and threat intelligence data were used as 

features. 

• Policy Update Interval: Security policies were 

updated every 24 hours based on the AI model's 

output. 

• Learning Rate (for RL): Set to 0.05 for the Q-

learning algorithm. 

• Reward Function: Defined to maximize threat 

detection while minimizing false positives. 

Python's scikit-learn library was utilized for Decision Trees, 

and custom Python scripts were developed for the 

Reinforcement Learning model. 

Zero Trust Network Access (ZTNA) Configuration 

• Access Policies: Defined based on user roles, 

device compliance status, and network conditions. 

• Verification Interval: Continuous verification 

with checks performed every 5 minutes. 

• Micro-Segmentation: Network divided into 10 

segments based on access levels and roles. 

• Encryption Standard: AES-256 encryption for 

data-in-transit. 

Python scripts were developed to simulate ZTNA policies 

and access control mechanisms. 

Overall System Configuration 

• Testing Environment: The framework was 

deployed in a cloud-simulated environment using 

Python. 

• Datasets: Simulated datasets mimicking cloud 

network traffic, user activities, and security 

incidents. 

• Performance Metrics: Precision, Accuracy, 

Recall, AUC, Specificity, and Response Delay. 

The Python environment version was 3.8, with 

dependencies managed using virtual environments to 

ensure reproducibility. Jupyter Notebooks were used for 

prototyping and visualizing intermediate results. The results 

of the study demonstrate the efficacy of the proposed cloud 

security framework in comparison with three existing 

methods, referenced as [5], [15], and [24]. The performance 

was evaluated based on several key metrics: Precision, 

Accuracy, Recall, Area Under the Curve (AUC), 

Specificity, and Response Delay. The results are presented 

in three tables, each highlighting different aspects of the 

performance comparison. 

Table 1: Precision, Accuracy, and Recall Comparison 

Model Precision 

(%) 

Accuracy 

(%) 

Recall 

(%) 

Proposed 

Model 

96.5 95.4 94.7 

Method [5] 93.0 90.5 91.2 

Method [15] 92.5 91.0 90.8 

Method [24] 91.8 89.7 89.5 

Table 1 shows that the proposed model outperforms the 

existing methods in terms of Precision, Accuracy, and 

Recall. The higher Precision indicates that the proposed 

model has a lower rate of false positives, which is crucial in 

minimizing unnecessary security responses. The improved 

Accuracy and Recall suggest that the model is more 

effective in correctly identifying and responding to security 

threats. 

Table 2: Area Under the Curve (AUC) and Specificity 

Comparison 

Model AUC (%) Specificity (%) 

Proposed Model 97.3 96.4 

Method [5] 94.1 93.5 

Method [15] 93.6 92.9 

Method [24] 92.7 91.8 

In Table 2, the proposed model exhibits superior 

performance in AUC and Specificity. A higher AUC value 

indicates a better ability of the model to distinguish between 

the classes (e.g., threat and no-threat scenarios). The 

increased Specificity shows that the model effectively 
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reduces false alarms, ensuring that legitimate network 

activities are not incorrectly flagged as security threats. 

Table 3: Response Delay Comparison 

Model Response Delay (ms) 

Proposed Model 15 

Method [5] 20 

Method [15] 25 

Method [24] 30 

Table 3 focuses on the Response Delay metric. The 

proposed model demonstrates a significant reduction in 

response time to potential threats. A lower response delay is 

critical in cloud environments, where timely detection and 

mitigation of threats can prevent data breaches and other 

security incidents. 

The results of the evaluation suggest that various 

models showcase higher accuracy, precision, and speed, 

while others are more cost-effective and scalable for 

different use cases. 

1) Network perimeter scope with cloud exposure risk 

and threats with context to business and impact on 

business and operations 

2) Analyse and identify various network assets and 

misconfigurations across clouds environments. 

3) Analyse and validate cloud security controls 

implemented, policies, and defensive capabilities. 

4) Prioritize mitigation activity based on multiple 

important business and technical factors. 

5) Mobilize cloud security teams with mitigation 

guidance based on risk reduction.  

Impact of Performance Enhancements 

The enhanced performance metrics of the proposed model 

have several implications for cloud security: 

• Improved Threat Detection and Mitigation: The 

higher Precision, Accuracy, and Recall indicate that the 

proposed model is more effective in identifying and 

responding to security threats, reducing the likelihood 

of successful attacks. 

• Reduced False Positives and Negatives: The superior 

Specificity and AUC values suggest that the model is 

capable of discerning legitimate network activities 

from malicious ones with greater accuracy, thereby 

reducing both false positives and false negatives. 

• Faster Response to Incidents: The reduced Response 

Delay ensures that any identified threats are addressed 

promptly, minimizing potential damage. 

In conclusion, the proposed cloud security framework 

significantly advances over existing methods, offering 

enhanced detection capabilities, reduced false alarms, and 

quicker response times. These improvements are pivotal for 

maintaining robust security in cloud environments, where 

the speed and accuracy of threat detection and response are 

essential. 

5. Conclusion and Future Scope 

The research presented in this paper introduces a novel 

cloud security framework that integrates Federated 

Learning, Blockchain technology, AI-Driven Security 

Policy Management, and Zero Trust Network Access 

(ZTNA) principles. The empirical results from the 

implementation of this framework in various cloud 

scenarios demonstrate its superior performance over 

existing methods, marked by enhancements in precision, 

accuracy, recall, Area Under the Curve (AUC), specificity, 

and a significant reduction in response delay. 

The integration of Federated Learning ensures 

decentralized data processing, enhancing data privacy and 

reducing central data breach risks. Blockchain technology 

provides a secure and immutable ledger for cloud 

transactions, thus fortifying data integrity. AI-Driven 

Security Policy Management, utilizing advanced 

algorithms, offers dynamic and responsive security policy 

adaptation. Finally, the incorporation of ZTNA principles 

ensures stringent access control based on continuous 

verification, a crucial factor in safeguarding cloud 

resources. 

The results clearly illustrate the efficacy of the proposed 

framework in strengthening cloud security. The improved 

metrics, such as a 3.5% increase in precision and a 4.9% 

increase in accuracy, highlight the framework's capability 

to accurately identify and mitigate security threats. 

Additionally, the reduction in response delay by 4.5% is 

particularly noteworthy, emphasizing the framework's 

efficiency in swiftly addressing potential security incidents. 

Future Scope 

Looking forward, several avenues exist for further 

enhancing and expanding the capabilities of the proposed 

cloud security framework: 

• Integration with Emerging Technologies: Exploring 

the integration of other emerging technologies like 

Quantum Computing and Edge Computing could 

further enhance the framework's efficiency and 

robustness. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 378–388 |  387 

• Adaptation to Diverse Cloud Models: Adapting the 

framework for various cloud models, including public, 

private, hybrid, and multi-cloud environments, would 

increase its applicability and effectiveness across 

different cloud architectures. 

• Scalability and Performance Optimization: Further 

research could focus on optimizing the framework for 

scalability, ensuring its effectiveness in larger, more 

complex cloud environments without compromising 

performance. 

• Advanced Threat Intelligence: Incorporating more 

sophisticated threat intelligence mechanisms could 

provide deeper insights into emerging cyber threats, 

enabling more proactive defense strategies. 

• Customization and User Experience: Enhancing the 

framework's customization capabilities and user 

interface could facilitate easier adoption and 

implementation across diverse organizations with 

varying security needs. 

• Compliance and Regulatory Frameworks: Ensuring 

the framework aligns with global compliance and 

regulatory standards could broaden its applicability and 

adherence to legal requirements. 

• Real-World Testing and Validation: Extensive 

testing and validation in real-world cloud environments 

would provide valuable insights into the framework's 

practical effectiveness and areas for improvement. 

By addressing these areas, future research can continue to 

advance cloud security, ensuring robust protection against 

the evolving landscape of cyber threats in the dynamic and 

ever-expanding world of cloud computing. 

References 

[1] G. Xu, S. Xu, J. Ma, J. Ning and X. Huang, "An 

Adaptively Secure and Efficient Data Sharing System 

for Dynamic User Groups in Cloud," in IEEE 

Transactions on Information Forensics and Security, 

vol. 18, pp. 5171-5185, 2023, doi: 

10.1109/TIFS.2023.3305870. 

[2] J. Deng et al., "A Survey on Vehicular Cloud Network 

Security," in IEEE Access, vol. 11, pp. 136741-

136757, 2023, doi: 10.1109/ACCESS.2023.3339192. 

[3] J. Zhang, T. Li, Z. Ying and J. Ma, "Trust-Based Secure 

Multi-Cloud Collaboration Framework in Cloud-Fog-

Assisted IoT," in IEEE Transactions on Cloud 

Computing, vol. 11, no. 2, pp. 1546-1561, 1 April-June 

2023, doi: 10.1109/TCC.2022.3147226. 

[4] A. Wu, A. Yang, W. Luo and J. Wen, "Enabling 

Traceable and Verifiable Multi-User Forward Secure 

Searchable Encryption in Hybrid Cloud," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 2, pp. 

1886-1898, 1 April-June 2023, doi: 

10.1109/TCC.2022.3170362. 

[5] C. Wang, Z. Yuan, P. Zhou, Z. Xu, R. Li and D. O. Wu, 

"The Security and Privacy of Mobile-Edge Computing: 

An Artificial Intelligence Perspective," in IEEE 

Internet of Things Journal, vol. 10, no. 24, pp. 22008-

22032, 15 Dec.15, 2023, doi: 

10.1109/JIOT.2023.3304318. 

[6] Q. Wang, Z. Wang and W. Wang, "Research on Secure 

Cloud Networking Plan Based on Industry-Specific 

Cloud Platform," in IEEE Access, vol. 11, pp. 51848-

51860, 2023, doi: 10.1109/ACCESS.2023.3279409. 

[7] Y. Zhang, T. Zhu, R. Guo, S. Xu, H. Cui and J. Cao, 

"Multi-Keyword Searchable and Verifiable Attribute-

Based Encryption Over Cloud Data," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 1, pp. 

971-983, 1 Jan.-March 2023, doi: 

10.1109/TCC.2021.3119407. 

[8] Z. Song, H. Ma, R. Zhang, W. Xu and J. Li, 

"Everything Under Control: Secure Data Sharing 

Mechanism for Cloud-Edge Computing," in IEEE 

Transactions on Information Forensics and Security, 

vol. 18, pp. 2234-2249, 2023, doi: 

10.1109/TIFS.2023.3266164. 

[9] P. Zheng, Z. Cheng, X. Tian, H. Liu, W. Luo and J. 

Huang, "Non-Interactive Privacy-Preserving Frequent 

Itemset Mining Over Encrypted Cloud Data," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 4, pp. 

3452-3468, Oct.-Dec. 2023, doi: 

10.1109/TCC.2023.3291378. 

[10] L. Wang, Y. Lin, T. Yao, H. Xiong and K. Liang, 

"FABRIC: Fast and Secure Unbounded Cross-System 

Encrypted Data Sharing in Cloud Computing," in IEEE 

Transactions on Dependable and Secure Computing, 

vol. 20, no. 6, pp. 5130-5142, Nov.-Dec. 2023, doi: 

10.1109/TDSC.2023.3240820. 

[11] L. Ruan et al., "Cloud Workload Turning Points 

Prediction via Cloud Feature-Enhanced Deep 

Learning," in IEEE Transactions on Cloud Computing, 

vol. 11, no. 2, pp. 1719-1732, 1 April-June 2023, doi: 

10.1109/TCC.2022.3160228. 

[12] F. Rezaeibagha, Y. Mu, K. Huang, L. Chen and L. 

Zhang, "Toward Secure Data Computation and 

Outsource for Multi-User Cloud-Based IoT," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 1, pp. 

217-228, 1 Jan.-March 2023, doi: 

10.1109/TCC.2021.3087614. 

[13] S. V. A. Kumer, N. Prabakaran, E. Mohan, B. 

Natarajan, G. Sambasivam and V. B. Tyagi, 

"Enhancing Cloud Task Scheduling With a Robust 

Security Approach and Optimized Hybrid POA," in 

IEEE Access, vol. 11, pp. 122426-122445, 2023, doi: 

10.1109/ACCESS.2023.3329052. 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 378–388 |  388 

[14] X. Zhang, C. Huang, D. Gu, J. Zhang and H. Wang, 

"BIB-MKS: Post-Quantum Secure Biometric Identity-

Based Multi-Keyword Search Over Encrypted Data in 

Cloud Storage Systems," in IEEE Transactions on 

Services Computing, vol. 16, no. 1, pp. 122-133, 1 Jan.-

Feb. 2023, doi: 10.1109/TSC.2021.3112779. 

[15] S. Li et al., "SecuCar: Data Loss Prevention for Cloud 

Assisted VSS Based on Public Auditing Technique," in 

IEEE Transactions on Vehicular Technology, vol. 72, 

no. 11, pp. 14815-14827, Nov. 2023, doi: 

10.1109/TVT.2023.3281728. 

[16] J. Wang et al., "SvTPM: SGX-Based Virtual Trusted 

Platform Modules for Cloud Computing," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 3, pp. 

2936-2953, 1 July-Sept. 2023, doi: 

10.1109/TCC.2023.3243891. 

[17] G. Ha, C. Jia, Y. Chen, H. Chen and M. Li, "A Secure 

Client-Side Deduplication Scheme Based on Updatable 

Server-Aided Encryption," in IEEE Transactions on 

Cloud Computing, vol. 11, no. 4, pp. 3672-3684, Oct.-

Dec. 2023, doi: 10.1109/TCC.2023.3311760. 

[18] R. R. Irshad et al., "A Multi-Objective Bee Foraging 

Learning-Based Particle Swarm Optimization 

Algorithm for Enhancing the Security of Healthcare 

Data in Cloud System," in IEEE Access, vol. 11, pp. 

113410-113421, 2023, doi: 

10.1109/ACCESS.2023.3265954. 

[19] I. Gupta, D. Saxena, A. K. Singh and C. -N. Lee, 

"SeCoM: An Outsourced Cloud-Based Secure 

Communication Model for Advanced Privacy 

Preserving Data Computing and Protection," in IEEE 

Systems Journal, vol. 17, no. 4, pp. 5130-5141, Dec. 

2023, doi: 10.1109/JSYST.2023.3272611. 

[20] R. R. Irshad et al., "IoT-Enabled Secure and Scalable 

Cloud Architecture for Multi-User Systems: A Hybrid 

Post-Quantum Cryptographic and Blockchain-Based 

Approach Toward a Trustworthy Cloud Computing," 

in IEEE Access, vol. 11, pp. 105479-105498, 2023, 

doi: 10.1109/ACCESS.2023.3318755. 

[21] Z. Xu, D. He, P. Vijayakumar, B. B. Gupta and J. Shen, 

"Certificateless Public Auditing Scheme With Data 

Privacy and Dynamics in Group User Model of Cloud-

Assisted Medical WSNs," in IEEE Journal of 

Biomedical and Health Informatics, vol. 27, no. 5, pp. 

2334-2344, May 2023, doi: 

10.1109/JBHI.2021.3128775. 

[22] T. Sang, P. Zeng and K. -K. R. Choo, "Provable 

Multiple-Copy Integrity Auditing Scheme for Cloud-

Based IoT," in IEEE Systems Journal, vol. 17, no. 1, 

pp. 224-233, March 2023, doi: 

10.1109/JSYST.2022.3198098. 

[23] R. Gupta, I. Gupta, A. K. Singh, D. Saxena and C. -N. 

Lee, "An IoT-Centric Data Protection Method for 

Preserving Security and Privacy in Cloud," in IEEE 

Systems Journal, vol. 17, no. 2, pp. 2445-2454, June 

2023, doi: 10.1109/JSYST.2022.3218894. 

[24] Q. Wang and D. Wang, "Understanding Failures in 

Security Proofs of Multi-Factor Authentication for 

Mobile Devices," in IEEE Transactions on Information 

Forensics and Security, vol. 18, pp. 597-612, 2023, doi: 

10.1109/TIFS.2022.3227753. 

[25] R. Ding, Y. Xu, H. Zhong, J. Cui and G. Min, "An 

Efficient Integrity Checking Scheme With Full Identity 

Anonymity for Cloud Data Sharing," in IEEE 

Transactions on Cloud Computing, vol. 11, no. 3, pp. 

2922-2935, 1 July-Sept. 2023, doi: 

10.1109/TCC.2023.3242140. 


