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Abstract: This research delves into the realm of medical imaging and artificial intelligence to enhance the classification of brain tumors, 

specifically distinguishing between Grade III and Grade IV gliomas. Leveraging the TCGA-GBM dataset, encompassing various image 

modalities such as Flair, T1, T1ce, T2, and Mask, acquired through magnetic resonance imaging (MRI), the study explores the efficacy of 

deep learning techniques. Both early and late fusion strategies are employed to amalgamate information from diverse modalities. The 

convolutional neural network (CNN)-based models exhibit commendable performance in accurately categorizing glioma types, showcasing 

promise for potential applications in clinical diagnostics. 
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1. Introduction 

With gliomas making up 78% of malignant brain tumors, 

gliomas are the most common type of adult brain tumor [2]. 

The four grades of gliomas range from Grade I, which is the 

least aggressive, to Grade IV, which is the most aggressive. 

The two most aggressive glioma forms are anaplastic 

astrocytoma (Grade III) and glioblastoma multiforme (Grade 

IV).In the field of medical imaging, glioma-type 

classification is a significant problem. This is because on 

medical images like magnetic resonance imaging (MRI), the 

two grades of glioma, grade III and grade IV, can be 

challenging to identify from one another. Deep learning (DL) 

techniques have lately gained popularity for creating 

automated systems that can quickly and reliably categorize 

or diagnose brain tumors [3]. Complex patterns in medical 

photos that are challenging for human professionals to see 

can be recognised by DL-based algorithms. In terms of 

diagnosis and preoperative planning, the outcomes of 

classification and segmentation employing DL techniques 

have been highly successful. For instance, it has been 

demonstrated that DL-based algorithms can accurately 

classify brain tumors as benign or malignant with accuracies 

of above 90%. To create DL-based systems that can 

accurately categorize glioma types, there are still several 

issues that need to be resolved. One issue is the dearth of 

sizable databases of expert-labeled glioma images that are 

publically accessible. Glioma tumors can have a wide range 

of appearances based on their locations, sizes, and grades, 

which presents another difficulty.  

Grade III and grade IV gliomas can be hard to tell apart 

on medical images like MRIs, which makes glioma-type 

classification a serious difficulty in medical imaging. The 

similarities in appearance between these two grades of 

glioma and their modest distinctions account for this. 

Because they can learn to recognize intricate patterns in 

medical images that are challenging for human professionals 

to see, deep learning techniques hold promise for the 

categorization of glioma-type tumors. Brain tumors can be 

accurately classified as benign or malignant with accuracy 

rates of over 90% using DL-based algorithms. The absence 

of substantial, openly accessible datasets of expert-labeled 

glioma pictures is a difficulty to the development of DL-

based systems for glioma-type classification. Glioma tumors 

can appear in a variety of ways depending on their location, 

size, and grade, which presents another difficulty. Grade III 

and grade IV gliomas can be accurately identified in brain 

tumors by DL-based algorithms when they have been 

adequately trained and validated. Clinicians can use this 

information to make wiser decisions about patient care. 

Patients with grade IV gliomas, for instance, which are more 

aggressive and have a worse prognosis, may benefit more 

from intensive treatment options including surgery and 

radiation therapy. It's critical to keep in mind that DL-based 

systems cannot take the role of experienced human judgment. 

For patients to receive the greatest care, DL-based solutions 

should be used in conjunction with the expertise of seasoned 

professionals. Overall, using deep learning approaches to 

create automated glioma-type classification systems is a 

promising strategy. Such systems could support doctors in 

making wiser decisions on patient care, resulting in better 

patient outcome. 
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The DL model can categorize brain tumors into grade iii and 

grade iv gliomas with excellent accuracy if it is properly 

trained and validated. Clinicians may be able to make better 

decisions about patient treatment as a result. It's crucial to 

remember that dl-based systems cannot take the role of 

human expertise. To guarantee that patients receive the best 

care possible, dl-based systems should be used in conjunction 

with practitioners' knowledge. 

2. Related Work 

In [1], a new method was developed for predicting the 

prognosis of brain tumors in adults and children. The method 

combines two types of data: images of the tumor and 

information about the tumor's genes. The new method is 

more accurate than previous methods that used only one type 

of data. The researchers also showed that the new method can 

be used to predict the prognosis of rare brain tumors in 

children.  

In [2], a new approach to brain tumor detection and 

classification using a fine-tuned CNN was developed. Their 

CNN achieved an accuracy of 95% in detecting brain tumors 

and 93%in classifying brain tumors as benign or malignant. 

This suggests that their CNN is an effective tool for brain 

tumor detection and classification.  

In [3], The study proposed a new approach to brain tumor 

detection using an ensemble of deep learning models. They 

trained their ensemble of models on a dataset of over 2,000 

brain tumor images, and it achieved an accuracy of 98% in 

detecting brain tumors. The authors concluded that their 

ensemble of deep learning models is an effective tool for 

brain tumor detection.  

In [4], The paper proposed a new decision support system for 

multimodal brain tumor classification using deep learning. 

The system achieved an accuracy of 95% in classifying brain 

tumors into four types, which is higher than the accuracy of 

human radiologists. The system can help radiologists classify 

brain tumors more accurately and efficiently, leading to 

better patient care. 

In [19-22], other brain related diseases are being explored 

with advanced ML/DL approaches.  

3. Dataset Description 

The Centre of Cancer Genomics at the National Cancer 

Institute in the United States provided the TCGA-GBM 

dataset, which we used [1]. Images of glioblastoma 

multiforme (GBM) tumors from more than 500 patients may 

be found in this dataset. The photos were not taken as part of 

a clinical trial or a controlled research study; rather, they 

were taken as part of ordinary medical care. The dataset 

includes the following image modalities: Flair, T1, T1ce, T2 

and Mask These photos will be used to train a deep-learning 

model that will categorize GBM tumors according to their 

grade.  

Because the TCGA dataset contains a sizable and 

comprehensive collection of GBM tumors, we decided to use 

it. Additionally, the dataset includes photographs from 

numerous international websites, which will aid in the 

generalization of our model to new data. We are thrilled to 

use the TCGA dataset to create a deep-learning model that 

will aid physicians in more accurately identifying and 

grading GBM tumors. 

 

Fig. 1. Dataset Overview 

A. Data Volume Used 

Our model has been trained on 1413 image samples of each 

modality i.e flair, t1, t2, t1ce, in GRADE 3 type and on 1443 

image samples of each modality in GRADE 4.  

All the modalities within each grade type have data for the 

same patient IDs taken over certain period of time. Also 

every image in each modalities corresponds to the image in 

other modalities in same grade type. In other words, say first 

few images in all modalities belong to patient A and next few 

images in all modalities belong to patient B and so on. 

Although patient IDs across GRADE 3 and GRADE 4 are 

completely different.  

We also have the ‘mask’ data for both grade types which 

further provides us with the scope for segmentation 

application for tumor area detection within the image. But for 

the sake of this study we have limited us to the classification 

of grade types only.   

TABLE I.  DATA VOLUME 

Grade Type Modality No. Of 

Samples 

GRADE 3 Flair 1413 

T1 

T2 

T1ce 

GRADE 4 Flair 1443 

T1 

T2 

T1ce 
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B. Data Pre-processing  

The original data acquired had data for all the patients that 

were examined for possibility of having any glioma (brain 

tumor). Thus many of the images in the dataset belonged to 

the patient IDs that were not detected with any presence of 

glioma. Therefore, such images served no purpose in this 

study and thus have been trimmed out of the dataset leaving 

us with the volume of data as mentioned in the previous 

section. 

4. Methodology 

The TCGA image data will be divided into training and test 

sets. This is a typical split for machine learning datasets, and 

it makes sure we have enough information to build our model 

and assess how well it works. We made an 80% and 20% 

split for training and testing data respectively. 

Since this study aims to find out the best performing model 

across all possible combinations of modality and the best 

performing deep learning model: 

• Firstly, we trained a CNN model for each modality i.e. 

flair, t1, t2, t1ce one by one and analyze the 

performance for classification using each modality. 

• Then we created all possible combinations of two 

modalities and analyzed the performance for 

classification using each combination. The 

combinations were flair + t1, flair + t2, flair + t1ce, t1 + 

t2, t1 + t1ce, t2 + t1ce. 

• Next, we created all possible combinations of three 

modalities and analyzed the performance for 

classification using each combination. The 

combinations were flair + t1 + t2, flair + t1 + t1ce, t1 + 

t2 +t1ce. 

• Finally, we combined all four modalities and analyzed 

the performance for classification between GRADE 3 

and GRADE 4 types. 

An early fusion model and a late fusion model will both be 

trained for all modality combination tasks. The features from 

all modalities are concatenated in an early fusion model 

before being supplied into the model. A model processes the 

characteristics from each modality independently in a late 

fusion model before combining the results of the models. A 

general CNN model with a ReLU activation function will be 

employed. ReLU is a well-liked activation function for 

CNNs, and they are excellent in image classification tasks. 

The model will be trained for 20 epochs, 32 batch size. 

The test dataset will be used to evaluate the models. This will 

enable us to predict how effectively the models will function 

with fresh data. 

C. Early Fusion 

In this technique we first fuse all the different modalities 

and then apply model over this fused data for feature 

extraction and then perform classification. 

 

Fig. 2. Early Fusion 

D. Late Fusion 

In this technique we apply individual model over each 

modality and extract their features separately and then fuse 

them for classification.  

 

Fig. 3. Late Fusion 

Thus, using these two techniques, the results could be 

compared and optimum technique could be chosen. 

E. Training Over Single Modality 

For Single Modality Training we took each modality one 

after one and then first combined GRADE-3 and GRADE-4 

data of each modality along with their respective labels. 

Then the 80% of this set was trained on a simple CNN 

architecture for 20 epochs and batch size of 32. This process 

was repeated for all the modalities. The results of each 

modality and the CNN architecture have been described in 

coming sections.  
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Fig. 4. Training Single Modality 

F. Process of Fusing Modalities for Early Fusion 

 

Fig. 5. Training Early Fusion for two modalities 

Fusing Two Modalities: Similar as for training single 

modality we first combined GRADE-3 and GRADE-4 data 

of each modality along with their respective labels. Then all 

the possible combinations of two modalities i.e., flair+t1, 

flair+t2, flair+t1ce, t1+t2, t1+t1ce, t2+t1ce are created by 

concatenating original modalities. This each of the 

concatenated or fused combinations are trained using the 

CNN model, hence creating an early fusion result for two 

modalities.  

Fusing Three Modalities: Same process as double fusion, 

only difference is the combinations to be made and they are 

flair+t1+t2, flair+t1+t1ce, flair+t2_t1ce, t1+t2+t1ce. All 

these modalities are created using concatenating original 

modalities. 

 

Fig. 6. Training Early Fusion for three modalities 

Four Fusion: Same process as double and triple fusion but 

only we have one combination, flair+t1+t2+t1ce which is 

made by concatenating all four original modalities and then 

training this with a CNN model. 

 

 

Fig. 7. Training Early Fusion for four modalities 

G. Process of Fusing Modalities for Late Fusion 

First, as before we combine GRADE-3 and GRADE-4 data 

for each modality. Then for each modality in all possible 

combinations of two modalities, three modalities and four 

modalities, we apply a separate CNN to extract the features 

then finally the outputs of these CNNs are concatenated into 

one dense layer and finally the output is acquired using a 

sigmoid activation function on the output layer, since it is a 

binary classification.  
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Fig. 8. Training Late Fusion for two modalities 

 

Fig. 9. Training Late Fusion for three modalities 

 

Fig. 10. Training Late Fusion for four modalities 

H. The CNN Model 

A simple CNN architecture has been used to train all 

different combinations and both fusion techniques. It was 

important to keep the architecture as consistent as possible 

throughout the process to generate unbiased results. Model 

Definition is shown in figure below: 

 

Fig. 11. Model Definition 

Single architecture and Early Fusion: 

 

Fig. 12. CNN architecture for single modality and Early 

Fusion 
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For Single modality and Early Fusion similar architecture 

has been used. While for late fusion, for all two, three and 

four modality combinations the architecture is different. 

Two modalities in Late Fusion: 

 

Fig. 13. CNN architecture for Two modalities in Late 

Fusion 

Three modalities in Late Fusion: 

 

Fig. 14. CNN architecture for Three modalities in Late 

Fusion 

Four modalities in Late Fusion: 

 

Fig. 15. CNN architecture for Four modalities in Late 

Fusion 

5. Results 

Following are the results obtained after performing all the 

process as mentioned in ‘Methodology’ section. 

I. Individual Modality 

TABLE II.  INDIVIDUAL MODALITY RESULTS 

Modality 

Metrics 

Accuracy Precision Recall F1 

Score 

Flair 99.65% 100% 99.30% 99.65% 

T1 98.60% 99.64% 97.57% 98.60% 

T2 99.12% 99.65% 98.61% 99.13% 

T1ce 97.55% 97.57% 97.57% 97.57% 

 

Flair: 

 

Fig. 16. AUC Curve for Flair 

 

 

T1: 
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Fig. 17. AUC Curve for Flair 

 

T2: 

 

Fig. 18. AUC Curve for Flair 

T1ce: 

 

Fig. 19. AUC Curve for Flair 

J. Early Fusion 

TABLE III.  EARLY FUSION RESULTS OF TWO 

MODALITIES 

Modality 

Combinatio

n 

Metrics 

Accurac

y 

Precisio

n 

Recall F1 

Score 

Flair+T1 99.47% 98.97% 100% 99.48

% 

Flair+T2 99.47% 99.65% 99.30

% 

99.48

% 

Flair+T1ce 99.30% 98.96% 99.65

% 

99.31

% 

T1+T2 99.65% 99.31% 100% 99.65

% 

T1+T1ce 99.65% 99.65% 99.65

% 

99.65

% 

T2+T1ce 98.95% 97.96% 100% 98.97

% 

 

Flair + T1: 

 

Fig. 20. AUC Curve for Flair + T1 

Flair + T2: 
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Fig. 21. AUC Curve for Flair + T2 

Flair + T1ce: 

 

Fig. 22. AUC Curve for Flair + T1ce 

T1 + T2: 

 

Fig. 23. AUC Curve for T1 + T2 

T1 + T1ce: 

 

Fig. 24. AUC Curve for T1 + T1ce 

T2 + T1ce: 

 

Fig. 25. AUC Curve for T2 + T1ce 

TABLE IV.  EARLY FUSION RESULTS OF THREE 

MODALITIES 

Modality 

Combination 

Metrics 

Accurac

y 

Precisio

n 

Recall F1 

Score 

Flair+T1+T2 99.47% 100% 98.96

% 

99.47

% 

Flair+T1+T1

ce 

99.12% 98.96% 99.30

% 

99.13

% 

Flair+T2+T1

ce 

99.30% 99.65% 98.96

% 

99.30

% 

T1+T2+T1ce 99.65% 99.31% 100% 99.65

% 
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Flair + T1 + T2: 

 

Fig. 26. AUC Curve for Flair + T1 + T2 

Flair + T1 + T1ce: 

 

Fig. 27. AUC Curve for Flair + T1 + T1ce 

Flair + T2 + T1ce: 

 

Fig. 28. AUC Curve for Flair + T2 + T1ce 

 

 

T1 + T2 + T1ce: 

 

Fig. 29. AUC Curve for T1 + T2 + T1ce 

TABLE V.  EARLY FUSION RESULTS OF ALL 

MODALITIES 

Modality 

Combination 

Metrics 

Accura

cy 

Precisi

on 

Recall F1 

Score 

Flair+T1+T2+T

1ce 

99.12% 98.63% 99.65

% 

99.13

% 

 

Flair + T1 + T2 + T1ce: 

 

Fig. 30. AUC Curve for Flair+T1+T2+T1ce 

K. Late Fusion 

TABLE VI.  LATE FUSION RESULTS OF TWO MODALITIES 

Modality 

Combinatio

n 

Metrics 

Accurac

y 

Precisio

n 

Recall F1 

Score 

Flair+T1 99.65% 100% 99.30

% 

99.65

% 
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Flair+T2 99.65% 100% 99.30

% 

99.65

% 

Flair+T1ce 98.77% 99.64% 97.92

% 

98.77

% 

T1+T2 99.12% 98.96% 99.30

% 

99.13

% 

T1+T1ce 98.77% 99.30% 98.26

% 

98.78

% 

T2+T1ce 99.30% 99.30% 99.30

% 

99.30

% 

 

Flair + T1: 

 

Fig. 31. AUC Curve for Flair + T1 

Flair + T2: 

 

Fig. 32. AUC Curve for Flair + T2 

 

 

 

 

 

Flair + T1ce: 

 

Fig. 33. AUC Curve for Flair + T1ce 

T1 + T2: 

 

Fig. 34. AUC Curve for T1 + T2 

T1 + T1ce: 

 

Fig. 35. AUC Curve for T1 + T1ce 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 402–414 |  412 

T2 + T1ce: 

 

Fig. 36. AUC Curve for T2 + T1ce 

TABLE VII.  LATE FUSION RESULTS OF THREE 

MODALITIES 

Modality 

Combination 

Metrics 

Accurac

y 

Precisio

n 

Recall F1 

Score 

Flair+T1+T2 99.47% 99.65% 99.30

% 

99.48

% 

Flair+T1+T1

ce 

99.47% 100% 98.96

% 

99.47

% 

Flair+T2+T1

ce 

99.47% 99.65% 99.30

% 

99.48

% 

T1+T2+T1ce 99.30% 99.30% 99.30

% 

99.30

% 

 

Flair + T1 + T2: 

 

Fig. 37. AUC Curve for Flair + T1 + T2 

 

 

Flair + T1 + T1ce: 

 

Fig. 38. AUC Curve for Flair + T1 + T1ce 

Flair + T2 + T1ce: 

 

Fig. 39. AUC Curve for Flair + T2 + T1ce 

T1 + T2 + T1ce: 

 

Fig. 40. AUC Curve for T1 + T2 + T1ce 
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TABLE VIII.  LATE FUSION RESULTS OF ALL 

MODALITIES 

Modality 

Combination 

Metrics 

Accura

cy 

Precisi

on 

Recall F1 

Score 

Flair+T1+T2+T

1ce 

99.30% 99.65% 98.96

% 

99.30

% 

 

Flair + T1 + T2 + T1ce: 

 

Fig. 41. AUC Curve for Flair+T1+T2+T1c 

6. Conclusion 

Our investigation successfully navigates the intricate 

landscape of brain tumor classification using advanced 

technologies. Individual modalities and their amalgamations 

through early and late fusion methodologies were 

systematically evaluated. The findings underscore the 

models' high accuracy, precision, recall, and F1 scores 

across various configurations. While both early and late 

fusion proved effective, early fusion demonstrated a slight 

advantage. This study not only contributes insights into 

optimal fusion strategies but also presents a noteworthy 

advancement in leveraging deep learning for improved brain 

tumor diagnostics. The implications extend beyond 

technology, aiming to enhance the precision and efficacy of 

clinical decision-making in neuro-oncology. 
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