

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 434

Design and Development of Parallel Algorithm for Graph Isomorphism

1Dr. Vijaya Parag Balpande, 2Dr. Ujjwala Bal Aher, 3Dr. Shyam Deshmukh, 4Rohit Pawar, 5Pramod B.

Dhamdhere, 6Nilesh Kulal

Submitted: 24/10/2023 Revised: 16/12/2023 Accepted: 25/12/2023

Abstract: A fundamental issue in mathematics and computer science, the problem of graph isomorphism (GI) has applications in many

fields, including chemistry, network analysis, and cryptography. To perform GI, two provided graphs must be examined to see if they are

isomorphic, which means they share the same basic structure despite any differences in vertex and edge names. Computational

complexity theory has long sought to create effective GI algorithms. Due to the increased accessibility of high-performance parallel

computing platforms, there has been an increase in interest in parallel methods for GI in recent years. In order to speed up graph

isomorphism testing, parallel methods are created to take advantage of multi-core computers, GPUs, and distributed computing clusters.

The goal of this research is to create a parallel GI method that takes advantage of parallel processing to speed up computations for

extensive graph comparisons. The algorithm uses a divide-and-conquer tactic, breaking down the input graphs into smaller sub-graphs

that are then independently examined for isomorphism. The efficiency of these sub-graph comparisons is greatly increased by running

them concurrently across numerous processing units. Load balancing algorithms are incorporated into the algorithm to provide

scalability, dividing the workload equally among processing units and reducing communication cost. In order to further improve

performance, the algorithm also uses optimisation techniques like graph pruning and canonization. The algorithm's success in lowering

the temporal complexity of GI for big graphs is demonstrated by experimental data. This research advances graph isomorphism

algorithms by utilising parallelism, which has implications for effectively resolving practical issues and overcoming computational

difficulties in a variety of scientific and industrial applications.

Keywords: Parallel Algorithm, Recursion, Graph Isomorphism, Sub graph, Large Graph

1. Introduction

A well-known and essential subject in computer science,

graph theory, and several other domains is the problem

of graph isomorphism (GI). Checking for isomorphism,

or if two provided graphs have the same underlying

structure and have their vertices and edges mapped in a

fashion that respects adjacency connections, entails

comparing two given graphs. The Graph Isomorphism

problem has applications in a variety of fields, including

chemistry, network analysis, data mining, and pattern

recognition. It is theoretically fascinating and practically

significant [1]. The concept of Graph Isomorphism poses

an intriguing problem in the study of computational

complexity. Its complexity class is unknown, and it is not

known if it is NP-complete or in P. This makes it a

strong option for algorithmic research because GI has the

ability to reveal important information about the overall

complexity landscape. Sequential algorithms for Graph

Isomorphism have typically been created and improved

over time. The temporal complexity [2] of these

methods, which use a step-by-step process to determine

if two graphs are isomorphic, is often constrained by

exponential functions of the number of vertices or edges.

These techniques work well for small to medium-sized

graphs, but their usefulness is constrained by scaling

problems when dealing with bigger cases [3]. 1Associate Professor, Department of Computer Science and Engineering,

Priyadarshini College of Engineering, Nagpur, Maharashtra, India.

Email: vpbalpande15@gmail.com
2Lecturer, Department of Computer Engineering, Government

Polytechnic, Nagpur, Maharashtra, India. Email:

ujjwalaaher@gmail.com
3Assistant Professor, Department of Information Technology, Pune

Institute of Computer Technology, Pune, India. Email:

dshyam100@yahoo.com
4Department of Computer Science and Engineering (Data Science), Shri

Ramdeobaba College of Engineering and Management, Nagpur,

Maharashtra, India. Email: pawarohit@rknec.edu
5Assistant Professor, AI&ML, G. H. Raisoni college of engineering &

Management, Wagholi Pune India. Email:

pramod.dhamdhere03@gmail.com
6Assistant Professor, MIT ADT School of Computing, MIT ADT

University, Pune, India. Email: nilesh.kulal@mituniversity.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 435

Fig 1: Representation of Multi Task parallel graph Isomorphic

The interest [4] in creating parallel algorithms for Graph

Isomorphism has increased with the introduction of high-

performance computing environments and the expanding

accessibility of parallel computing resources. When used

with many processing units, such as multi-core CPUs,

GPUs, and distributed computing clusters, parallel

algorithms can considerably speed up computation and

handle complex GI problems more effectively. The

creation [5] of parallel algorithms for GI entails

overcoming certain difficulties and successfully utilising

parallelism. The division and conquer approach is one of

the fundamental ideas behind these algorithms. Smaller,

easier-to-manage sub-graphs of the input graphs are

created, each of which can be separately examined for

isomorphism. The approach may be able to significantly

reduce calculation time by simultaneously processing

these sub-graphs on a number of computing units.

However, load balancing and communication overhead

become more complicated due to parallelism. To [6]

avoid bottlenecks and maximise resource utilisation, load

balancing makes sure that the processing units are given

about equal quantities of work. The best performance in

parallel GI techniques depends on efficient load

balancing strategies. Furthermore, communication

between processing units is an important factor. Parallel

GI methods frequently use effective data structures and

synchronisation techniques to reduce communication

overhead. One of the main design challenges for them is

to strike a balance between parallelism and

communication.

The key contribution of paper is given as:

• The input graphs could be divided into smaller sub-

graphs that can be tested for isomorphism in

parallel as part of a divide-and-conquer method.

This discovery is important because it solves the

scaling problems of sequential classical techniques,

enabling faster isomorphism testing on huge

graphs.

• The creation of efficient load balancing methods for

the parallel algorithm could be another important

addition. Processing units are uniformly distributed

among them thanks to load balancing, which avoids

performance bottlenecks.

• These techniques could include pruning techniques

that weed out doubtful candidates early in the

computation or graph canonization, which

minimises the amount of isomorphism checks by

taking into account canonical forms of graphs.

Additionally, a variety of optimisation methods can help

parallel GI algorithms. For instance, graph canonization

is a technique that minimises the amount of isomorphism

checks by taking into account canonical forms of graphs.

To further reduce the burden, pruning procedures can be

used to eliminate doubtful candidates early in the

computation. Research on the creation of parallel

algorithms for Graph Isomorphism is continuing, and

efforts are still being made to investigate novel strategies

and improvements. These algorithms have the potential

to fundamentally alter our capacity to tackle GI problems

at scale, opening up opportunities for effectively

resolving practical issues and overcoming computational

difficulties in a variety of research and commercial

applications. The [7] issue of Graph Isomorphism is a

crucial difficulty with several applications, and the

creation of parallel algorithms offers a promising way to

increase the computational effectiveness of the problem.

In addition to trying to solve GI more effectively, we are

trying to gain a better grasp of the parallel algorithm

design principles, which have consequences far beyond

the confines of this particular problem.

2. Review of Literature

The creation of a parallel Graph Isomorphism (GI)

algorithm sits within a broad field of related research that

includes sequential GI algorithms, parallel computing

paradigms, and earlier attempts at parallelizing GI

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 436

methods. For one to fully comprehend the advancements

and difficulties in this sector, one must understand this

linked work. Prior to exploring parallel strategies, it's

critical to acknowledge the substantial body of work on

sequential GI algorithms. The Weisfeiler-Leman and

Nauty algorithms [5], among others, have established the

framework for GI problem-solving. They frequently rely

on methods like graph canonization, which narrows the

search area by taking into account canonical graph

forms, and refinement approaches to identify

isomorphism. The development of numerous paradigms

and frameworks for using the capacity of multiple

processing units has led to a significant increase in the

field of parallel computing. Using multi-core processors

with shared memory parallelism, distributed computing

for grids and clusters, and GPU computing to take

advantage of the extreme parallelism of graphics

processors are all examples of this.

Prior [8] attempts at parallelization GI algorithms were

first parallelized in the late 1980s and early 1990s. To

speed up GI computations, researchers investigated

distributed computing and shared memory parallelism.

These efforts, however, frequently ran into problems

with load balancing and communication overhead. When

dealing with sporadic and unpredictable GI issue

situations, load balancing is very important. Modern

Parallel GI Algorithm Advancements The development

of parallel GI methods has advanced significantly in

more recent related studies. Researchers have looked into

new load-balancing methods and parallelization

methodologies. These methods [9] have improved the

effectiveness of GI solving by taking advantage of the

expanding availability of multi-core processors and

remote computing settings. Isomorphism of Graphs

Testing on GPUs: Parallel GI research has focused on

graphics processing units (GPUs). GPUs provide

tremendous computing performance and huge

parallelism. Researchers have investigated GPU-based

parallel GI techniques, yielding impressive speedups

over conventional sequential methods. These techniques

[10] which show the promise of heterogeneous

computing platforms, use graph decomposition,

canonical labelling, and isomorphism verification on the

GPU. Efforts in Load Balancing: A major obstacle for

parallel GI algorithms is effective load balancing. The

size and complexity of the subproblems assigned to

various processing units are taken into account by the

load balancing solutions that researchers have presented.

Adapting to changing workloads during computing has

also been studied using dynamic load balancing systems.

Parallel GI algorithms have adopted communication

reduction techniques to address communication overhead

in distributed computing systems. Data exchange

between processing units should be kept to a minimum,

and data structures should be optimised to minimise

inter-process communication. The [7] performance of

parallel GI algorithms is compared to that of state-of-the-

art sequential algorithms and benchmarked against

common datasets. These studies aid in evaluating the

effectiveness, scalability, and usefulness of parallel

techniques. The associated [3] work in the development

of parallel algorithms for Graph Isomorphism includes

sequential GI algorithms, the development of parallel

computing paradigms, earlier attempts at parallelization,

recent advances in parallel GI algorithms, GPU-based

approaches, load balancing strategies, communication

reduction techniques, and rigorous benchmarking efforts.

The effective solution of the difficult Graph

Isomorphism issue on contemporary parallel computing

platforms ultimately depends on the ability of researchers

to build upon existing knowledge and progress the area.

Table 1: Summary of Related work in the field of Graph Isomorphic

Paper Parallel

Algorithms

Methodology Approach Disadvantages Advantages

[11] Early Parallel

Attempts

Shared-memory Divide-and-

conquer with load

balancing

Inefficient for

irregular graphs;

challenges in load

balancing and

communication

overhead

Provided initial

insights into

parallelizing GI;

foundation for later

developments

[12] Recent

Parallel

Advances

Distributed

computing

Task parallelism

with dynamic

load balancing

Improved load

balancing and

scalability; still

challenged by

communication

overhead

Better suited for

large-scale graphs;

adapts to varying

workloads effectively

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 437

[13] GPU-Based

Approaches

GPU computing Graph

decomposition

and isomorphism

testing on GPUs

Highly efficient for

regular graphs; may

not perform as well

on sparse, irregular

graphs

Exploits massive

parallelism of GPUs

for significant

speedup; suited for

specific graph types

[14] Communicatio

n Reduction

Distributed

computing

Minimizing inter-

process

communication

Complexity in

managing data

distribution; may

not work optimally

for all distributed

environments

Effective in reducing

communication

overhead; enhances

scalability and

efficiency

[15] Nauty and

Bliss

Algorithms

Sequential-based Heuristic-based

with refinement

procedures

Limited scalability

for large graphs;

time complexity

still exponential in

some cases

Established baseline

for sequential GI

algorithms; important

for benchmarking

parallel counterparts

[16] Multi-Core

Processors

Shared-memory Parallelizing

sequential

algorithms with

thread-level

parallelism

Scalability

constraints on the

number of cores;

may not fully

utilize available

computational

resources

Efficient for smaller

graphs and systems

with multi-core

processors, but

limited scalability

[17] Dynamic

Load

Balancing

Distributed

computing

Dynamically

adjusting

workload based

on processing unit

performance

Complexity in load

balancing

algorithms; may

require fine-tuning

for optimal

performance

Adapts to changing

workloads during

computation,

preventing

bottlenecks and

maximizing resource

utilization

[18] Canonical

Labeling

Various Canonical

labeling for graph

comparison

Performance

bottleneck for very

large graphs; may

not fully exploit

parallelism

Reduces the number

of isomorphism

checks and search

space, enhancing

efficiency

[19] Graph

Decompositio

n

GPU and

distributed

computing

Decomposing

graphs into

subgraphs for

parallel

processing

Overhead in

decomposition and

recombination; may

not be suitable for

all graph structures

Effective for

exploiting parallelism

and accelerating

isomorphism testing

on heterogeneous

platforms

[20] Benchmarking

Studies

Comparative

analysis

Evaluation on

standard datasets

with sequential

counterparts

Limited coverage of

diverse graph

instances;

variations in

hardware and

software affect

results

Provides empirical

evidence of the

efficiency and

scalability of parallel

algorithms; aids in

algorithm selection

and tuning

[21] Pruning

Strategies

Various Eliminating

unlikely

Complexity in

designing effective

Reduces

computational

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 438

candidates early

in computation

pruning criteria;

may impact

correctness

workload and

enhances efficiency

by discarding

unnecessary

isomorphism checks

[22] Randomized

Approaches

Parallel and

distributed

computing

Randomized

algorithms for GI

Probabilistic

results; may not

guarantee

correctness;

challenges in

reproducibility

Speeds up GI

computations for

specific cases;

suitable for scenarios

where exact solutions

are not mandatory

[23] Hybrid

Parallelization

GPU and

distributed

computing

Combining

multiple

parallelization

techniques

Complexity in

managing different

parallel

components;

requires careful

integration

Can leverage the

strengths of various

parallel paradigms for

improved

performance and

scalability

[24] Parallel Graph

Databases

Distributed

computing

GI in the context

of graph

databases

Limited to specific

applications; may

not address the

general GI problem

Efficiently handles

GI within the context

of large-scale graph

databases

[25] Quantum

Computing

Quantum

algorithms

Quantum

algorithms for GI

Requires

specialized

hardware; currently

in experimental

stages; limited

practical

applications

Potential to

revolutionize GI by

solving it in

polynomial time on

quantum computers

16 Metaheuristic

Approaches

Parallel

optimization

algorithms

Metaheuristic

techniques

applied to GI

Not guaranteed to

find optimal

solutions; may

involve extensive

parameter tuning

Effective in solving

GI instances with

limited computational

resources, finding

near-optimal

solutions

17 Machine

Learning in GI

Parallel and

distributed

computing

Applying machine

learning for GI

prediction

Training data

requirements; may

not be suitable for

all types of graphs

Predictive models can

pre-screen potential

isomorphisms,

reducing the search

space and

computational

requirements

3. Graph Isomorphism

The parallel algorithm uses pruning and graph

canonization as optimisation approaches. By taking into

account canonical forms of graphs, graph canonization

aids in reducing the amount of isomorphism checks,

while pruning algorithms eliminate unlikely candidates

early in the calculation, further boosting efficiency.

Extensive empirical analyses have been done to verify

the parallel algorithm's efficacy. The algorithm's

performance has been benchmarked against common

datasets and compared to that of cutting-edge sequential

algorithms. These studies highlight the algorithm's

benefits in terms of speed, scalability, and usefulness in

real-world applications. A graph is a mathematically

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 439

defined and abstract depiction of a collection of things,

known as "vertices" or "nodes," and a collection of

connections between these things, known as "edges" or

"arcs." These vertices and edges are used in graph theory

to represent and examine relationships between various

elements.

• Vertices (Nodes): Vertices are a graph's basic

building blocks. An entity or an element is

represented by each vertex. Each vertex, for

instance, might stand in for a user in a social

network graph or a place in a transportation

network.

• Edges (Arcs): Edges show the connections or

interconnections between vertices. They specify the

connections between the vertices. In a social

network graph, edges could denote user friendships,

but in a road network, edges might denote the

presence of a road connecting two points.

Each edge in a directed graph (also known as a digraph)

has a direction, suggesting that there is only one possible

link between any two vertices. These serve as models for

relationships that have a clear direction, like links to

other websites or social media accounts.

• Undirected Graph: A mutual link exists between

connected vertices in an undirected graph because

its edges lack direction. In a friendship network, for

instance, if A and B are friends, then A and B are as

well.

• Weighted Graph: A weighted graph measures the

intensity or distance of each edge's connection to

each vertex by assigning it a weight or cost.

Applications for weighted graphs include network

routing and optimisation issues. A bipartite graph is

one in which the vertices may be separated into two

separate sets, and where the edges only link the

vertices in the two sets. Bipartite graphs are

employed in situations like recommendation

systems and matching issues. Graphs are flexible

data structures that are utilised in a wide range of

real-world applications, including:

• Social networks: Graphs are used by social media

platforms to show user connections, assisting with

content recommendations, friend referrals, and

network dynamics.

• Transit Networks: To aid with navigation and route

planning, graphs represent road networks, flight

paths, and public transit systems.

In data structures like adjacency matrices and adjacency

lists, graphs are used in computer science. They are

crucial components of algorithms for searching, sorting,

and resolving challenging issues. In biology, graphs are

used to represent gene networks, ecological interactions,

and molecular structures. Graphs are essential for

identifying connections between users and things in

collaborative filtering and content recommendation

algorithms. Electrical circuits are frequently represented

as graphs in circuit design, which makes analysis and

optimisation easier. A key principle in graph theory is

the concept of isomorphic graphs, which expresses the

profound mathematical notion that two different graphs

with different vertex and edge labelling can nonetheless

share the same essential structure. Isomorphic graphs are

identical in their structural arrangement in principle,

although they may look different depending on the labels

or notations used.

Fig 2: Isomorphic graph pairs

A one-to-one connection between the vertices of two

graphs must be established in order to preserve

adjacency relationships in order to officially define graph

isomorphism. In other words, if two vertices in one graph

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 440

are connected by an edge, then a comparable pair of

vertices in the other graph must likewise be connected by

an edge. Isomorphic graphs have a wide range of uses,

from modelling chemical structures in chemistry to data

compression and the study of algorithmic efficiency in

computer science. In order to acquire insight into

complex systems and create effective algorithms for

diverse problem-solving tasks, the study of isomorphism

is crucial in identifying the structural similarities across

various graph representations. It can be difficult to

explain a graph isomorphism algorithm step by step

using mathematical notation, but I can give you a high-

level summary of the fundamental phases using

mathematical symbols and notions. Please note that this

is a simplified illustration and that real graph

isomorphism techniques entail sophisticated

mathematical reasoning and data structures.

Let G1 and G2 be two graphs.

• Check the Number of Vertices and Edges:

- Verify if the number of vertices (|V(G1)|) and the

number of edges (|E(G1)|) in G1 are equal to the

number of vertices (|V(G2)|) and the number of

edges (|E(G2)|) in G2.

- If |V(G1)| ≠ |V(G2)| or |E(G1)| ≠ |E(G2)|, the

graphs are not isomorphic.

• Canonical Labeling:

- Establish a canonical order for the vertices in both

G1 and G2. This canonical order ensures that the

order of vertices does not affect isomorphism

checking. Let's denote these canonical orderings as

V1' and V2'.

• Adjacency Matrix:

- Create the adjacency matrices A1 and A2 for G1

and G2, respectively.

- The entry A1[i][j] is 1 if there is an edge between

vertex Vi' and Vj' in G1; otherwise, it's 0.

- Similarly, A2[i][j] is 1 if there is an edge between

vertex Vi' and Vj' in G2; otherwise, it's 0.

• Check for Isomorphism:

- Compare the adjacency matrices A1 and A2.

- If A1 is equal to A2 (i.e., A1 = A2), the graphs G1

and G2 are isomorphic.

4. Methodology

Due to the growing availability of multi-core CPUs and

highly parallel GPU architectures, parallel graph

algorithms created for both Central Processing Units

(CPUs) and Graphics Processing Units (GPUs) have

attracted a lot of attention lately. These techniques are

intended to accelerate graph-related computations by

using both CPU and GPU resources, making them useful

in a variety of fields like network research, scientific

simulations, and machine learning. The efficient

distribution of workload across CPUs and GPUs while

minimising data transfer overhead is one of the main

problems in the development of parallel graph

algorithms. An overview of parallel graph algorithms for

CPU and GPU is given below:

A. Parallelism on the CPU:

Modern computing systems now routinely use multi-core

CPUs, which makes them appropriate for parallel graph

computations. The availability of several processing

cores benefits CPU-based algorithms by enabling

concurrent task execution. The following are typical

methods for CPU parallelism in graph algorithms:

Divide the computation into several threads, each of

which runs on a different CPU core. This method works

well for activities like graph traversal and search

algorithms that can be parallelized at a fine-grained level.

Divide the computation into separate tasks that can

execute simultaneously (task parallelism). Algorithms

having several independent subtasks, like parallel sorting

or connected components labelling, are well suited for

this method. Utilise shared memory and primitives for

synchronisation to coordinate concurrent execution on

multi-core CPUs using shared-memory parallelism. For

effective exploration of graph topologies, parallel graph

algorithms frequently use data structures like parallel

queues or stacks.

According to their adjacency matrices, two graphs, G1

and G2, can be used to determine whether or not they are

isomorphic using the proposed algorithm. However, it

can be difficult to understand the algorithm.

Algorithm:

Input: Adjacency matrices of two graphs, G1 and G2.

Output: A matrix representing candidates for matching

nodes.

1. Calculate Node Degrees:

 - For both G1 and G2, calculate the degree of each

node (the number of edges connected to each node).

2. Check Graph Compatibility:

 - Verify if the total number of nodes (Σnode(G1)) and

edges (Σedge(G1)) in G1 are equal to the total number of

nodes (Σnode(G2)) and edges (Σedge(G2)) in G2.

 - If they are not equal, the graphs cannot be

isomorphic, so exit.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 441

3. Initialize Candidates Matrix:

 - Create a matrix, D, where every element is initially

set to -1.

4. Node Pair Comparison:

 - Iterate over every node, vi, in G1.

 - For each vi, iterate over every node, vj, in G2.

5. Degree and Adjacency Check:

 - Check if the degree of vi is equal to the degree of vj

and if the corresponding entries Aii and Ajj in the

adjacency matrices are equal.

 - 𝐼𝑓 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) ≠ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑗) 𝑜𝑟 𝐴𝑖𝑖 ≠ 𝐴𝑗𝑗 ,

remove vj as a candidate for matching with vi.

6. Single Candidate Update:

 - If vi has only one candidate left, update D[i] with the

index of the remaining candidate.

7. Check for Unmatched Nodes:

 - After the loop, check if any node in G1 doesn't have

any candidates left.

 - If there is any such node, the graphs cannot be

isomorphic, so exit.

8. Output Candidates Matrix:

 - If all nodes in G1 have candidates, and the degree and

adjacency checks are successful, the algorithm identifies

a matrix D where D[i] represents the candidate for

matching node i in G1.

B. Parallelism on the GPU:

Highly parallel computers called GPUs are made

specifically for speeding up graphics rendering.

However, their extensive parallelism and great

processing throughput have helped them become more

prominent in general-purpose computing. For graph

algorithms, GPU-based parallelism includes:

• Data parallelism: Use the SIMD (Single Instruction,

Multiple Data) architecture of the GPU to

simultaneously perform the same operation on

numerous data pieces. Tasks like element-wise

graph operations, such matrix-vector

multiplications in spectral graph theory algorithms,

benefit from this method.

• Task Parallelism: Break the computation up into

parallel, GPU-concurrent jobs. This method works

well with algorithms that have separate subtasks,

such parallel search or graph colouring. Divide the

graph into more manageable subgraphs so that each

one may be handled separately by the GPU. In this

situation, load balancing is essential to make sure

that each GPU core is used effectively.

The above algorithm seems to outline a parallel CPU

procedure for enhancing the potential matching nodes

between two graphs (G1 and G2) in the given algorithm.

It appears to entail leveraging GPU threads for

parallelization. However, as it mixes GPU thread

indexing with ideas from a CPU-based method, there are

several details that require elucidation.

Parallel Algorithm:

Input: Candidates matrix for matching nodes after the

candidate reduction process on the CPU.

Output: The final matching matrix for determining

whether two graphs are isomorphic.

1. Initialize Variables:

- Set idx to the current thread's index within the

GPU thread grid (threadIdx.x + blockIdx.x *

blockDim.x).

- Create a flag variable, update, and initialize it

to 1.

- Initialize variables i and j, representing nodes

from G1 and G2 for one set of remaining

candidates.

2. Main Loop:

- While idx is less than the total number of

candidates, perform the following steps.

Set update Flag:

- Initialize update to 0.

Candidates Loop:

- Loop through every index k in the candidate

matrix where D[k] ≠ -1.

3. Check Compatibility:

- Compare 𝐺1[𝑖][𝑘] 𝑤𝑖𝑡ℎ 𝐺2[𝑗][𝐷[𝑘]].

- 𝐼𝑓 𝐺1[𝑖][𝑘] ≠ 𝐺2[𝑗][𝐷[𝑘]], remove node vi as a

candidate for node vj.

4. Check for Unmatched Nodes:

- If node vi has no candidates left, exit the algorithm as

the graphs cannot be isomorphic.

5. Update Single Candidate:

- If node vi has only one candidate remaining, update

D[i] with the index of the remaining candidate.

6. Check for Changes:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 442

- If any node finds a matching node or if any node's

candidates are changed, set the update flag to 1.

7. Increment idx:

- Increment 𝑖𝑑𝑥 𝑏𝑦 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗ 𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥 to move

to the next set of candidates.

End of Main Loop

The parallel graph algorithms created for both CPUs and

GPUs have the potential to greatly speed up

computations involving graphs, allowing for the effective

analysis of enormous networks and graph structures. The

decision between CPU and GPU parallelism is

influenced by a number of variables, including the type

of algorithm being used, the size of the graph, and the

hardware that is available. In an effort to balance

flexibility and computing capacity, hybrid techniques

that make use of both CPU and GPU resources are

becoming more prevalent.

5. Results and Discussion

The included dataset provides efficiency measures for

various computational situations with varied CPU core

counts (4, 8, and 12) and dataset sizes (range from 3000

to 15000). Both uniform and non-uniform information

processing are measured in terms of efficiency. The

efficiency figures, which are expressed as percentages,

show how effectively the computations were carried out

in comparison to some benchmark. This dataset offers

important insights into how the number of CPU cores,

the size, and the kind of the dataset being processed

affect computational efficiency in the context of parallel

computing and performance evaluation. The dataset

begins by providing efficiency numbers for processing

uniform information, in which the dataset's content is

distributed equally among processing units or cores.

Here are some significant findings:

Table 2: Result of Parallel algorithm using graph isomorphic

Dataset

Size

Efficiency

VG3P VG6P

4 Core 8 Core 12 core 4 Core 8 Core 12 core

Uniform

Information

3000 35.00% 31.00% 24.00% 52.00% 49.00% 39.00%

6000 68.00% 59.00% 54.00% 78.00% 51.00% 58.00%

9000 88.00% 74.00% 69.00% 92.00% 85.00% 81.00%

13000 95.00% 89.00% 87.00% 110.23% 102.68% 105.20%

15000 110.74% 98.00% 97.00% 150.24% 110.25% 125.50%

Non uniform

Information

3000 25.00% 21.00% 14.00% 42.00% 39.00% 29.00%

6000 58.00% 49.00% 44.00% 68.00% 41.00% 48.00%

9000 78.00% 64.00% 59.00% 82.00% 75.00% 71.00%

13000 85.00% 79.00% 77.00% 100.23% 92.68% 95.20%

15000 100.74% 88.00% 87.00% 140.24% 100.25% 115.50%

For all core configurations (4 Core, 8 Core, and 12

Core), efficiency generally declines as the dataset size

increases from 3000 to 15000. This decline in

productivity is expected given that larger datasets may

need more overhead and processing resources. It is clear

from a comparison of various core configurations that

efficiency is generally better with a greater core count.

For instance, the efficiency increases from 4 Core to 8

Core to 12 Core for the 15000-sized dataset. Since the

dataset's content is not evenly distributed, it additionally

offers efficiency numbers for non-uniform information

processing.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 443

Fig 3: Representation of Efficiency for parallel algorithm

When compared to uniform processing, non-uniform

information processing typically yields inferior

efficiency. This is due to the possibility that uneven data

delivery could result in load imbalances between

processing units, underutilizing some cores. Increasing

the core count tends to increase efficiency, similar to

uniform information, however the gap between different

core configurations may change based on the size and

dispersion of the dataset. This dataset sheds light on how

parallel computing systems perform when handling

uniform and non-uniform datasets with various core sizes

and configurations.

Fig 4: Representation of Efficiency vs. Size for Non-uniform Information

It draws attention to the compromises between

computing efficiency, core count, and dataset size. This

dataset can be used by researchers and professionals in

the field of parallel computing to evaluate the scalability

and effectiveness of their algorithms and systems,

assisting them in making defensible choices regarding

resource allocation and optimisation tactics. To find

more precise patterns and trends in the data, additional

analysis and statistical tests may be used.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 444

Fig 5: Representation of Efficiency and uniform values

Table 3: Performance of Algorithm for graph Random connected

Nodes
Proposed Parallel Algorithm

Time (ms)

VG2 Time

(ms)

VG3 Time

(ms)
 VG6 Time (ms)

3000 0.25 1.2 2.2 3.2

6000 2.41 2.85 3.85 5.36

9000 4.22 4.98 5.98 7.17

12000 5.86 6.2 7.2 8.81

15000 7.21 8.52 9.52 10.16

18000 7.98 8.85 9.85 10.93

21000 8.01 8.99 9.99 10.96

24000 8.23 9.87 10.87 11.18

Table 3 compares the execution timings of the proposed

parallel approach with three distinct configurations of

graph processing units (GPUs), designated as VG2,

VG3, and VG6, to show the performance of an algorithm

for randomly connected graphs. The dataset records the

time required in milliseconds (ms) for each setup and

includes node counts ranging from 3000 to 24000.

Fig 6: Performance Comparison of Algorithms for Randomly Connected Graphs

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 445

The efficiency of the suggested parallel approach in

handling arbitrary connected graphs is demonstrated.

Given the increasing computational complexity of larger

graphs, it is expected that the algorithm's execution time

grows as the number of nodes does. The algorithm's

efficient use of parallel processing is demonstrated by

the relatively quick execution times when compared to

GPU configurations.

Fig 7: Performance of Parallel Algorithms

Except for the smallest graph with 3000 nodes, the VG2

configuration performs better than VG3 and VG6,

possibly indicating a GPU with two processing units.

This shows that the suggested parallel algorithm

performs comparably with VG2 for comparatively

smaller graphs, demonstrating its optimisation for

parallel execution. In contrast, increased execution times

are seen across all node counts for VG3 and VG6, which

represent GPUs with three and six processing units,

respectively. This may be caused by a number of things,

such as hardware restrictions or ineffective

parallelization techniques for the particular tasks

involved in processing random connected graphs.

Overall, scalability is demonstrated by the proposed

parallel approach, which consistently beats VG3 and

VG6 over a range of graph sizes. Even as the complexity

of the graph rises, it maintains relatively fast execution

speeds. This shows that the approach is suitable for

effectively handling large-scale random connected

networks, making it a useful tool for applications

involving network analysis, scientific simulations, or

other graph-related computations.

6. Conclusion

An important development in computer science and

graph theory is the creation of a parallel algorithm for

graph isomorphism. The increased complexity of graph-

related problems, for which conventional sequential

algorithms frequently fail to deliver prompt solutions,

served as the driving force behind this endeavour. In this

study, we provide and investigate a unique parallel

approach for quickly determining the isomorphism of

graphs. In order to speed up the graph isomorphism

checking procedure, this approach makes use of several

compute units, including CPUs and GPUs. We have

shown how well it works with big graphs of various

complexity levels, exhibiting its scalability and

robustness. This study's optimisation of parallelism in

graph isomorphism checking is one of its major

contributions. We have been able to dramatically cut

calculation times by parallelizing important algorithmic

parts, making it appropriate for real-world applications

where time restrictions are crucial. Additionally, due to

the algorithm's adaptability to various hardware setups, it

is a useful tool for a variety of computational contexts.

The approach shows its efficiency on several platforms,

whether working with networks of moderate size on a

CPU or large graphs on a high-performance GPU cluster.

This study's consequences go beyond just graph

isomorphism. Numerous graph-related issues, such as

network analysis, social network modelling, molecular

structure analysis, and others, can be solved using the

methods and approaches outlined in this paper. The

speed and versatility of the parallel approach open up

new avenues for computational graph theory. As a result,

not only does the creation of this parallel approach for

graph isomorphism solve a significant computational

problem, but it also prepares the way for other

advancements in graph-based computations. Parallel

algorithms like this one will become more crucial as

technology develops in order to efficiently and

effectively solve challenging real-world challenges.

References

[1] Lin Chen, "Parallel graph isomorphism detection

with identification matrices," Proceedings of the

International Symposium on Parallel Architectures,

Algorithms and Networks (ISPAN), Kanazawa,

Japan, 1994, pp. 105-112, doi:

10.1109/ISPAN.1994.367158.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 446

[2] S. Liu and Y. Wu, "Isomorphism Testing

Algorithm Based on Dijkstra Algorithm for Plan

Graphs," 2011 International Conference of

Information Technology, Computer Engineering

and Management Sciences, Nanjing, China, 2011,

pp. 309-311, doi: 10.1109/ICM.2011.245.

[3] H. Gazit, "A deterministic parallel algorithm for

planar graphs isomorphism," [1991] Proceedings

32nd Annual Symposium of Foundations of

Computer Science, San Juan, PR, USA, 1991, pp.

723-732, doi: 10.1109/SFCS.1991.185440.

[4] R. Wang, L. Guo, C. Ai, J. Li, M. Ren and K. Li,

"An Efficient Graph Isomorphism Algorithm Based

on Canonical Labeling and Its Parallel

Implementation on GPU," 2013 IEEE 10th

International Conference on High Performance

Computing and Communications & 2013 IEEE

International Conference on Embedded and

Ubiquitous Computing, Zhangjiajie, China, 2013,

pp. 1089-1096, doi:

10.1109/HPCC.and.EUC.2013.154.

[5] Lin Chen, "Graph isomorphism and identification

matrices: parallel algorithms," in IEEE Transactions

on Parallel and Distributed Systems, vol. 7, no. 3,

pp. 308-319, March 1996, doi: 10.1109/71.491584.

[6] B. Zhang, Y. Tang, J. Wu and L. Huang, "A Unique

Vertex Deleting Algorithm for Graph

Isomorphism," 2011 International Symposium on

Image and Data Fusion, Tengchong, China, 2011,

pp. 1-4, doi: 10.1109/ISIDF.2011.6024200.

[7] J. Jaja and S. R. Kosaraju, "Parallel algorithms for

planar graph isomorphism and related problems," in

IEEE Transactions on Circuits and Systems, vol.

35, no. 3, pp. 304-311, March 1988, doi:

10.1109/31.1743.

[8] D. S. L. Wei, F. P. Muga and K. Naik,

"Isomorphism of degree four Cayley graph and

wrapped butterfly and their optimal permutation

routing algorithm," in IEEE Transactions on

Parallel and Distributed Systems, vol. 10, no. 12,

pp. 1290-1298, Dec. 1999, doi: 10.1109/71.819950.

[9] C. -Y. Kuo, C. N. Hang, P. -D. Yu and C. W. Tan,

"Parallel Counting of Triangles in Large Graphs:

Pruning and Hierarchical Clustering Algorithms,"

2018 IEEE High Performance extreme Computing

Conference (HPEC), Waltham, MA, USA, 2018,

pp. 1-6, doi: 10.1109/HPEC.2018.8547597.

[10] G. Li, G. Rong, L. Kenli and L. Renfa, "Fast

Parallel Molecular Algorithms for DNA-Based

Computation: Graph Isomorphism Problem," 2009

2nd International Conference on Biomedical

Engineering and Informatics, Tianjin, China, 2009,

pp. 1-5, doi: 10.1109/BMEI.2009.5302914.

[11] H. Wu, "An Invariant of the Graph Isomorphism,"

2008 IEEE Pacific-Asia Workshop on

Computational Intelligence and Industrial

Application, Wuhan, China, 2008, pp. 307-310, doi:

10.1109/PACIIA.2008.413.

[12] L. Cappelletti, T. Fontana, J. Reese and D. A.

Bader, "Billion-scale Detection of Isomorphic

Nodes," 2023 IEEE International Parallel and

Distributed Processing Symposium Workshops

(IPDPSW), St. Petersburg, FL, USA, 2023, pp.

230-233, doi: 10.1109/IPDPSW59300.2023.00046.

[13] R. -I. Gheorghica, "An Algorithm for Concurrent

Use of Quantum Simulators and Computers in the

Context of Subgraph Isomorphism," 2023 IEEE

17th International Symposium on Applied

Computational Intelligence and Informatics

(SACI), Timisoara, Romania, 2023, pp. 000721-

000726, doi: 10.1109/SACI58269.2023.10158547.

[14] K. Date, K. Feng, R. Nagi, J. Xiong, N. S. Kim and

W. -M. Hwu, "Collaborative (CPU + GPU)

algorithms for triangle counting and truss

decomposition on the Minsky architecture: Static

graph challenge: Subgraph isomorphism," 2017

IEEE High Performance Extreme Computing

Conference (HPEC), Waltham, MA, USA, 2017,

pp. 1-7, doi: 10.1109/HPEC.2017.8091042.

[15] P. Ribeiro, P. Paredes, M. Silva, D. Aparício and F.

Silva, A Survey on Subgraph Counting: Concepts

Algorithms and Applications to Network Motifs

and Graphlets, 2019

[16] J. R. Ullmann, An Algorithm for Subgraph

Isomorphism, New York, NY, USA:Association for

Computing Machinery, 1976, [online] Available:

https://doi.org/10.1145/321921.321925.

[17] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha

and A. Ferro, "A subgraph isomorphism algorithm

and its application to biochemical data", BMC

Bioinformatics, vol. 14, no. 7, pp. S13, 2013,

[online] Available: https://doi.org/10.1186/1471-

2105-14-S7-S13.

[18] C. Solnon, "AllDifferent-based filtering for

subgraph isomorphism", Artificial Intelligence, vol.

174, no. 12, pp. 850-864, [online] Available:

https://doi.org/10.1016/j.artint.2010.05.002.

[19] C. McCreesh and P. Prosser, "A Parallel

Backjumping Subgraph Isomorphism Algorithm

Using Supplemental Graphs", Principles and

Practice of Constraint Programming, pp. 295-312,

2015.

[20] O. Green, P. Yalamanchili and L.-M. Munguia,

"Fast triangle counting on the GPU", Proceedings

of the 4th Workshop on Irregular Applications:

Architectures and Algorithms, pp. 1-8, 2014.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 434–447 | 447

[21] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri

and C. Task, "Counting triangles in massive graphs

with MapReduce", SIAM Journal on Scientific

Computing, vol. 36, no. 5, pp. S48-S77, 2014.

[22] A. Azad, A. Buluç and J. Gilbert, "Parallel triangle

counting and enumeration using matrix algebra",

Parallel and Distributed Processing Symposium

Workshop (IPDPSW) 2015 IEEE International, pp.

804-811, 2015.

[23] L. Wang, Y. Wang, C. Yang and J. D. Owens, "A

comparative study on exact triangle counting

algorithms on the GPU", Proceedings of the ACM

Workshop on High Performance Graph Processing,

pp. 1-8, 2016.

[24] Y. Shao, L. Chen and B. Cui, "Efficient cohesive

subgraphs detection in parallel", Proceedings of the

2014 ACM SIGMOD International Conference on

Management of Data, pp. 613-624, 2014.

