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Abstract: A fundamental issue in mathematics and computer science, the problem of graph isomorphism (GI) has applications in many 

fields, including chemistry, network analysis, and cryptography. To perform GI, two provided graphs must be examined to see if they are 

isomorphic, which means they share the same basic structure despite any differences in vertex and edge names. Computational 

complexity theory has long sought to create effective GI algorithms. Due to the increased accessibility of high-performance parallel 

computing platforms, there has been an increase in interest in parallel methods for GI in recent years. In order to speed up graph 

isomorphism testing, parallel methods are created to take advantage of multi-core computers, GPUs, and distributed computing clusters. 

The goal of this research is to create a parallel GI method that takes advantage of parallel processing to speed up computations for 

extensive graph comparisons. The algorithm uses a divide-and-conquer tactic, breaking down the input graphs into smaller sub-graphs 

that are then independently examined for isomorphism. The efficiency of these sub-graph comparisons is greatly increased by running 

them concurrently across numerous processing units. Load balancing algorithms are incorporated into the algorithm to provide 

scalability, dividing the workload equally among processing units and reducing communication cost. In order to further improve 

performance, the algorithm also uses optimisation techniques like graph pruning and canonization. The algorithm's success in lowering 

the temporal complexity of GI for big graphs is demonstrated by experimental data. This research advances graph isomorphism 

algorithms by utilising parallelism, which has implications for effectively resolving practical issues and overcoming computational 

difficulties in a variety of scientific and industrial applications. 
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1. Introduction 

A well-known and essential subject in computer science, 

graph theory, and several other domains is the problem 

of graph isomorphism (GI). Checking for isomorphism, 

or if two provided graphs have the same underlying 

structure and have their vertices and edges mapped in a 

fashion that respects adjacency connections, entails 

comparing two given graphs. The Graph Isomorphism 

problem has applications in a variety of fields, including 

chemistry, network analysis, data mining, and pattern 

recognition. It is theoretically fascinating and practically 

significant [1]. The concept of Graph Isomorphism poses 

an intriguing problem in the study of computational 

complexity. Its complexity class is unknown, and it is not 

known if it is NP-complete or in P. This makes it a 

strong option for algorithmic research because GI has the 

ability to reveal important information about the overall 

complexity landscape. Sequential algorithms for Graph 

Isomorphism have typically been created and improved 

over time. The temporal complexity [2] of these 

methods, which use a step-by-step process to determine 

if two graphs are isomorphic, is often constrained by 

exponential functions of the number of vertices or edges. 

These techniques work well for small to medium-sized 

graphs, but their usefulness is constrained by scaling 

problems when dealing with bigger cases [3]. 1Associate Professor, Department of Computer Science and Engineering, 
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Fig 1: Representation of Multi Task parallel graph Isomorphic 

The interest [4] in creating parallel algorithms for Graph 

Isomorphism has increased with the introduction of high-

performance computing environments and the expanding 

accessibility of parallel computing resources. When used 

with many processing units, such as multi-core CPUs, 

GPUs, and distributed computing clusters, parallel 

algorithms can considerably speed up computation and 

handle complex GI problems more effectively. The 

creation [5] of parallel algorithms for GI entails 

overcoming certain difficulties and successfully utilising 

parallelism. The division and conquer approach is one of 

the fundamental ideas behind these algorithms. Smaller, 

easier-to-manage sub-graphs of the input graphs are 

created, each of which can be separately examined for 

isomorphism. The approach may be able to significantly 

reduce calculation time by simultaneously processing 

these sub-graphs on a number of computing units. 

However, load balancing and communication overhead 

become more complicated due to parallelism. To [6] 

avoid bottlenecks and maximise resource utilisation, load 

balancing makes sure that the processing units are given 

about equal quantities of work. The best performance in 

parallel GI techniques depends on efficient load 

balancing strategies. Furthermore, communication 

between processing units is an important factor. Parallel 

GI methods frequently use effective data structures and 

synchronisation techniques to reduce communication 

overhead. One of the main design challenges for them is 

to strike a balance between parallelism and 

communication. 

The key contribution of paper is given as: 

• The input graphs could be divided into smaller sub-

graphs that can be tested for isomorphism in 

parallel as part of a divide-and-conquer method. 

This discovery is important because it solves the 

scaling problems of sequential classical techniques, 

enabling faster isomorphism testing on huge 

graphs. 

• The creation of efficient load balancing methods for 

the parallel algorithm could be another important 

addition. Processing units are uniformly distributed 

among them thanks to load balancing, which avoids 

performance bottlenecks. 

• These techniques could include pruning techniques 

that weed out doubtful candidates early in the 

computation or graph canonization, which 

minimises the amount of isomorphism checks by 

taking into account canonical forms of graphs.  

Additionally, a variety of optimisation methods can help 

parallel GI algorithms. For instance, graph canonization 

is a technique that minimises the amount of isomorphism 

checks by taking into account canonical forms of graphs. 

To further reduce the burden, pruning procedures can be 

used to eliminate doubtful candidates early in the 

computation. Research on the creation of parallel 

algorithms for Graph Isomorphism is continuing, and 

efforts are still being made to investigate novel strategies 

and improvements. These algorithms have the potential 

to fundamentally alter our capacity to tackle GI problems 

at scale, opening up opportunities for effectively 

resolving practical issues and overcoming computational 

difficulties in a variety of research and commercial 

applications. The [7] issue of Graph Isomorphism is a 

crucial difficulty with several applications, and the 

creation of parallel algorithms offers a promising way to 

increase the computational effectiveness of the problem. 

In addition to trying to solve GI more effectively, we are 

trying to gain a better grasp of the parallel algorithm 

design principles, which have consequences far beyond 

the confines of this particular problem. 

2. Review of Literature 

The creation of a parallel Graph Isomorphism (GI) 

algorithm sits within a broad field of related research that 

includes sequential GI algorithms, parallel computing 

paradigms, and earlier attempts at parallelizing GI 
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methods. For one to fully comprehend the advancements 

and difficulties in this sector, one must understand this 

linked work. Prior to exploring parallel strategies, it's 

critical to acknowledge the substantial body of work on 

sequential GI algorithms. The Weisfeiler-Leman and 

Nauty algorithms [5], among others, have established the 

framework for GI problem-solving. They frequently rely 

on methods like graph canonization, which narrows the 

search area by taking into account canonical graph 

forms, and refinement approaches to identify 

isomorphism. The development of numerous paradigms 

and frameworks for using the capacity of multiple 

processing units has led to a significant increase in the 

field of parallel computing. Using multi-core processors 

with shared memory parallelism, distributed computing 

for grids and clusters, and GPU computing to take 

advantage of the extreme parallelism of graphics 

processors are all examples of this. 

Prior [8] attempts at parallelization GI algorithms were 

first parallelized in the late 1980s and early 1990s. To 

speed up GI computations, researchers investigated 

distributed computing and shared memory parallelism. 

These efforts, however, frequently ran into problems 

with load balancing and communication overhead. When 

dealing with sporadic and unpredictable GI issue 

situations, load balancing is very important. Modern 

Parallel GI Algorithm Advancements The development 

of parallel GI methods has advanced significantly in 

more recent related studies. Researchers have looked into 

new load-balancing methods and parallelization 

methodologies. These methods [9] have improved the 

effectiveness of GI solving by taking advantage of the 

expanding availability of multi-core processors and 

remote computing settings. Isomorphism of Graphs 

Testing on GPUs: Parallel GI research has focused on 

graphics processing units (GPUs). GPUs provide 

tremendous computing performance and huge 

parallelism. Researchers have investigated GPU-based 

parallel GI techniques, yielding impressive speedups 

over conventional sequential methods. These techniques 

[10] which show the promise of heterogeneous 

computing platforms, use graph decomposition, 

canonical labelling, and isomorphism verification on the 

GPU. Efforts in Load Balancing: A major obstacle for 

parallel GI algorithms is effective load balancing. The 

size and complexity of the subproblems assigned to 

various processing units are taken into account by the 

load balancing solutions that researchers have presented. 

Adapting to changing workloads during computing has 

also been studied using dynamic load balancing systems. 

Parallel GI algorithms have adopted communication 

reduction techniques to address communication overhead 

in distributed computing systems. Data exchange 

between processing units should be kept to a minimum, 

and data structures should be optimised to minimise 

inter-process communication. The [7] performance of 

parallel GI algorithms is compared to that of state-of-the-

art sequential algorithms and benchmarked against 

common datasets. These studies aid in evaluating the 

effectiveness, scalability, and usefulness of parallel 

techniques. The associated [3] work in the development 

of parallel algorithms for Graph Isomorphism includes 

sequential GI algorithms, the development of parallel 

computing paradigms, earlier attempts at parallelization, 

recent advances in parallel GI algorithms, GPU-based 

approaches, load balancing strategies, communication 

reduction techniques, and rigorous benchmarking efforts. 

The effective solution of the difficult Graph 

Isomorphism issue on contemporary parallel computing 

platforms ultimately depends on the ability of researchers 

to build upon existing knowledge and progress the area. 

Table 1: Summary of Related work in the field of Graph Isomorphic  

Paper Parallel 

Algorithms 

Methodology Approach Disadvantages Advantages 

[11] Early Parallel 

Attempts 

Shared-memory Divide-and-

conquer with load 

balancing 

Inefficient for 

irregular graphs; 

challenges in load 

balancing and 

communication 

overhead 

Provided initial 

insights into 

parallelizing GI; 

foundation for later 

developments 

[12] Recent 

Parallel 

Advances 

Distributed 

computing 

Task parallelism 

with dynamic 

load balancing 

Improved load 

balancing and 

scalability; still 

challenged by 

communication 

overhead 

Better suited for 

large-scale graphs; 

adapts to varying 

workloads effectively 
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[13] GPU-Based 

Approaches 

GPU computing Graph 

decomposition 

and isomorphism 

testing on GPUs 

Highly efficient for 

regular graphs; may 

not perform as well 

on sparse, irregular 

graphs 

Exploits massive 

parallelism of GPUs 

for significant 

speedup; suited for 

specific graph types 

[14] Communicatio

n Reduction 

Distributed 

computing 

Minimizing inter-

process 

communication 

Complexity in 

managing data 

distribution; may 

not work optimally 

for all distributed 

environments 

Effective in reducing 

communication 

overhead; enhances 

scalability and 

efficiency 

[15] Nauty and 

Bliss 

Algorithms 

Sequential-based Heuristic-based 

with refinement 

procedures 

Limited scalability 

for large graphs; 

time complexity 

still exponential in 

some cases 

Established baseline 

for sequential GI 

algorithms; important 

for benchmarking 

parallel counterparts 

[16] Multi-Core 

Processors 

Shared-memory Parallelizing 

sequential 

algorithms with 

thread-level 

parallelism 

Scalability 

constraints on the 

number of cores; 

may not fully 

utilize available 

computational 

resources 

Efficient for smaller 

graphs and systems 

with multi-core 

processors, but 

limited scalability 

[17] Dynamic 

Load 

Balancing 

Distributed 

computing 

Dynamically 

adjusting 

workload based 

on processing unit 

performance 

Complexity in load 

balancing 

algorithms; may 

require fine-tuning 

for optimal 

performance 

Adapts to changing 

workloads during 

computation, 

preventing 

bottlenecks and 

maximizing resource 

utilization 

[18] Canonical 

Labeling 

Various Canonical 

labeling for graph 

comparison 

Performance 

bottleneck for very 

large graphs; may 

not fully exploit 

parallelism 

Reduces the number 

of isomorphism 

checks and search 

space, enhancing 

efficiency 

[19] Graph 

Decompositio

n 

GPU and 

distributed 

computing 

Decomposing 

graphs into 

subgraphs for 

parallel 

processing 

Overhead in 

decomposition and 

recombination; may 

not be suitable for 

all graph structures 

Effective for 

exploiting parallelism 

and accelerating 

isomorphism testing 

on heterogeneous 

platforms 

[20] Benchmarking 

Studies 

Comparative 

analysis 

Evaluation on 

standard datasets 

with sequential 

counterparts 

Limited coverage of 

diverse graph 

instances; 

variations in 

hardware and 

software affect 

results 

Provides empirical 

evidence of the 

efficiency and 

scalability of parallel 

algorithms; aids in 

algorithm selection 

and tuning 

[21] Pruning 

Strategies 

Various Eliminating 

unlikely 

Complexity in 

designing effective 

Reduces 

computational 
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candidates early 

in computation 

pruning criteria; 

may impact 

correctness 

workload and 

enhances efficiency 

by discarding 

unnecessary 

isomorphism checks 

[22] Randomized 

Approaches 

Parallel and 

distributed 

computing 

Randomized 

algorithms for GI 

Probabilistic 

results; may not 

guarantee 

correctness; 

challenges in 

reproducibility 

Speeds up GI 

computations for 

specific cases; 

suitable for scenarios 

where exact solutions 

are not mandatory 

[23] Hybrid 

Parallelization 

GPU and 

distributed 

computing 

Combining 

multiple 

parallelization 

techniques 

Complexity in 

managing different 

parallel 

components; 

requires careful 

integration 

Can leverage the 

strengths of various 

parallel paradigms for 

improved 

performance and 

scalability 

[24] Parallel Graph 

Databases 

Distributed 

computing 

GI in the context 

of graph 

databases 

Limited to specific 

applications; may 

not address the 

general GI problem 

Efficiently handles 

GI within the context 

of large-scale graph 

databases 

[25] Quantum 

Computing 

Quantum 

algorithms 

Quantum 

algorithms for GI 

Requires 

specialized 

hardware; currently 

in experimental 

stages; limited 

practical 

applications 

Potential to 

revolutionize GI by 

solving it in 

polynomial time on 

quantum computers 

16 Metaheuristic 

Approaches 

Parallel 

optimization 

algorithms 

Metaheuristic 

techniques 

applied to GI 

Not guaranteed to 

find optimal 

solutions; may 

involve extensive 

parameter tuning 

Effective in solving 

GI instances with 

limited computational 

resources, finding 

near-optimal 

solutions 

17 Machine 

Learning in GI 

Parallel and 

distributed 

computing 

Applying machine 

learning for GI 

prediction 

Training data 

requirements; may 

not be suitable for 

all types of graphs 

Predictive models can 

pre-screen potential 

isomorphisms, 

reducing the search 

space and 

computational 

requirements 

 

3. Graph Isomorphism 

The parallel algorithm uses pruning and graph 

canonization as optimisation approaches. By taking into 

account canonical forms of graphs, graph canonization 

aids in reducing the amount of isomorphism checks, 

while pruning algorithms eliminate unlikely candidates  

 

 

early in the calculation, further boosting efficiency. 

Extensive empirical analyses have been done to verify 

the parallel algorithm's efficacy. The algorithm's 

performance has been benchmarked against common 

datasets and compared to that of cutting-edge sequential 

algorithms. These studies highlight the algorithm's 

benefits in terms of speed, scalability, and usefulness in 

real-world applications. A graph is a mathematically 
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defined and abstract depiction of a collection of things, 

known as "vertices" or "nodes," and a collection of 

connections between these things, known as "edges" or 

"arcs." These vertices and edges are used in graph theory 

to represent and examine relationships between various 

elements. 

• Vertices (Nodes): Vertices are a graph's basic 

building blocks. An entity or an element is 

represented by each vertex. Each vertex, for 

instance, might stand in for a user in a social 

network graph or a place in a transportation 

network. 

• Edges (Arcs): Edges show the connections or 

interconnections between vertices. They specify the 

connections between the vertices. In a social 

network graph, edges could denote user friendships, 

but in a road network, edges might denote the 

presence of a road connecting two points. 

Each edge in a directed graph (also known as a digraph) 

has a direction, suggesting that there is only one possible 

link between any two vertices. These serve as models for 

relationships that have a clear direction, like links to 

other websites or social media accounts. 

• Undirected Graph: A mutual link exists between 

connected vertices in an undirected graph because 

its edges lack direction. In a friendship network, for 

instance, if A and B are friends, then A and B are as 

well. 

• Weighted Graph: A weighted graph measures the 

intensity or distance of each edge's connection to 

each vertex by assigning it a weight or cost. 

Applications for weighted graphs include network 

routing and optimisation issues. A bipartite graph is 

one in which the vertices may be separated into two 

separate sets, and where the edges only link the 

vertices in the two sets. Bipartite graphs are 

employed in situations like recommendation 

systems and matching issues. Graphs are flexible 

data structures that are utilised in a wide range of 

real-world applications, including: 

• Social networks: Graphs are used by social media 

platforms to show user connections, assisting with 

content recommendations, friend referrals, and 

network dynamics. 

• Transit Networks: To aid with navigation and route 

planning, graphs represent road networks, flight 

paths, and public transit systems. 

In data structures like adjacency matrices and adjacency 

lists, graphs are used in computer science. They are 

crucial components of algorithms for searching, sorting, 

and resolving challenging issues. In biology, graphs are 

used to represent gene networks, ecological interactions, 

and molecular structures. Graphs are essential for 

identifying connections between users and things in 

collaborative filtering and content recommendation 

algorithms. Electrical circuits are frequently represented 

as graphs in circuit design, which makes analysis and 

optimisation easier. A key principle in graph theory is 

the concept of isomorphic graphs, which expresses the 

profound mathematical notion that two different graphs 

with different vertex and edge labelling can nonetheless 

share the same essential structure. Isomorphic graphs are 

identical in their structural arrangement in principle, 

although they may look different depending on the labels 

or notations used.  

 

 

Fig 2: Isomorphic graph pairs 

A one-to-one connection between the vertices of two 

graphs must be established in order to preserve 

adjacency relationships in order to officially define graph 

isomorphism. In other words, if two vertices in one graph 
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are connected by an edge, then a comparable pair of 

vertices in the other graph must likewise be connected by 

an edge. Isomorphic graphs have a wide range of uses, 

from modelling chemical structures in chemistry to data 

compression and the study of algorithmic efficiency in 

computer science. In order to acquire insight into 

complex systems and create effective algorithms for 

diverse problem-solving tasks, the study of isomorphism 

is crucial in identifying the structural similarities across 

various graph representations. It can be difficult to 

explain a graph isomorphism algorithm step by step 

using mathematical notation, but I can give you a high-

level summary of the fundamental phases using 

mathematical symbols and notions. Please note that this 

is a simplified illustration and that real graph 

isomorphism techniques entail sophisticated 

mathematical reasoning and data structures. 

Let G1 and G2 be two graphs. 

• Check the Number of Vertices and Edges: 

- Verify if the number of vertices (|V(G1)|) and the 

number of edges (|E(G1)|) in G1 are equal to the 

number of vertices (|V(G2)|) and the number of 

edges (|E(G2)|) in G2. 

- If |V(G1)| ≠ |V(G2)| or |E(G1)| ≠ |E(G2)|, the 

graphs are not isomorphic. 

• Canonical Labeling: 

- Establish a canonical order for the vertices in both 

G1 and G2. This canonical order ensures that the 

order of vertices does not affect isomorphism 

checking. Let's denote these canonical orderings as 

V1' and V2'. 

• Adjacency Matrix: 

- Create the adjacency matrices A1 and A2 for G1 

and G2, respectively. 

- The entry A1[i][j] is 1 if there is an edge between 

vertex Vi' and Vj' in G1; otherwise, it's 0. 

- Similarly, A2[i][j] is 1 if there is an edge between 

vertex Vi' and Vj' in G2; otherwise, it's 0. 

• Check for Isomorphism: 

- Compare the adjacency matrices A1 and A2. 

- If A1 is equal to A2 (i.e., A1 = A2), the graphs G1 

and G2 are isomorphic. 

4. Methodology 

Due to the growing availability of multi-core CPUs and 

highly parallel GPU architectures, parallel graph 

algorithms created for both Central Processing Units 

(CPUs) and Graphics Processing Units (GPUs) have 

attracted a lot of attention lately. These techniques are 

intended to accelerate graph-related computations by 

using both CPU and GPU resources, making them useful 

in a variety of fields like network research, scientific 

simulations, and machine learning. The efficient 

distribution of workload across CPUs and GPUs while 

minimising data transfer overhead is one of the main 

problems in the development of parallel graph 

algorithms. An overview of parallel graph algorithms for 

CPU and GPU is given below: 

A. Parallelism on the CPU: 

Modern computing systems now routinely use multi-core 

CPUs, which makes them appropriate for parallel graph 

computations. The availability of several processing 

cores benefits CPU-based algorithms by enabling 

concurrent task execution. The following are typical 

methods for CPU parallelism in graph algorithms: 

Divide the computation into several threads, each of 

which runs on a different CPU core. This method works 

well for activities like graph traversal and search 

algorithms that can be parallelized at a fine-grained level. 

Divide the computation into separate tasks that can 

execute simultaneously (task parallelism). Algorithms 

having several independent subtasks, like parallel sorting 

or connected components labelling, are well suited for 

this method. Utilise shared memory and primitives for 

synchronisation to coordinate concurrent execution on 

multi-core CPUs using shared-memory parallelism. For 

effective exploration of graph topologies, parallel graph 

algorithms frequently use data structures like parallel 

queues or stacks. 

According to their adjacency matrices, two graphs, G1 

and G2, can be used to determine whether or not they are 

isomorphic using the proposed algorithm. However, it 

can be difficult to understand the algorithm.  

Algorithm: 

Input: Adjacency matrices of two graphs, G1 and G2. 

Output: A matrix representing candidates for matching 

nodes. 

1. Calculate Node Degrees: 

   - For both G1 and G2, calculate the degree of each 

node (the number of edges connected to each node). 

2. Check Graph Compatibility: 

   - Verify if the total number of nodes (Σnode(G1)) and 

edges (Σedge(G1)) in G1 are equal to the total number of 

nodes (Σnode(G2)) and edges (Σedge(G2)) in G2. 

   - If they are not equal, the graphs cannot be 

isomorphic, so exit. 
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3. Initialize Candidates Matrix: 

   - Create a matrix, D, where every element is initially 

set to -1. 

4. Node Pair Comparison: 

   - Iterate over every node, vi, in G1. 

   - For each vi, iterate over every node, vj, in G2. 

5. Degree and Adjacency Check: 

   - Check if the degree of vi is equal to the degree of vj 

and if the corresponding entries Aii and Ajj in the 

adjacency matrices are equal. 

   - 𝐼𝑓 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)  ≠  𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑗) 𝑜𝑟 𝐴𝑖𝑖 ≠  𝐴𝑗𝑗 , 

remove vj as a candidate for matching with vi. 

6. Single Candidate Update: 

   - If vi has only one candidate left, update D[i] with the 

index of the remaining candidate. 

7. Check for Unmatched Nodes: 

   - After the loop, check if any node in G1 doesn't have 

any candidates left. 

   - If there is any such node, the graphs cannot be 

isomorphic, so exit. 

8. Output Candidates Matrix: 

   - If all nodes in G1 have candidates, and the degree and 

adjacency checks are successful, the algorithm identifies 

a matrix D where D[i] represents the candidate for 

matching node i in G1. 

B. Parallelism on the GPU: 

Highly parallel computers called GPUs are made 

specifically for speeding up graphics rendering. 

However, their extensive parallelism and great 

processing throughput have helped them become more 

prominent in general-purpose computing. For graph 

algorithms, GPU-based parallelism includes: 

• Data parallelism: Use the SIMD (Single Instruction, 

Multiple Data) architecture of the GPU to 

simultaneously perform the same operation on 

numerous data pieces. Tasks like element-wise 

graph operations, such matrix-vector 

multiplications in spectral graph theory algorithms, 

benefit from this method. 

• Task Parallelism: Break the computation up into 

parallel, GPU-concurrent jobs. This method works 

well with algorithms that have separate subtasks, 

such parallel search or graph colouring. Divide the 

graph into more manageable subgraphs so that each 

one may be handled separately by the GPU. In this 

situation, load balancing is essential to make sure 

that each GPU core is used effectively. 

The above algorithm seems to outline a parallel CPU 

procedure for enhancing the potential matching nodes 

between two graphs (G1 and G2) in the given algorithm. 

It appears to entail leveraging GPU threads for 

parallelization. However, as it mixes GPU thread 

indexing with ideas from a CPU-based method, there are 

several details that require elucidation. 

Parallel Algorithm: 

Input: Candidates matrix for matching nodes after the 

candidate reduction process on the CPU. 

Output: The final matching matrix for determining 

whether two graphs are isomorphic. 

1. Initialize Variables: 

- Set idx to the current thread's index within the 

GPU thread grid (threadIdx.x + blockIdx.x * 

blockDim.x). 

- Create a flag variable, update, and initialize it 

to 1. 

- Initialize variables i and j, representing nodes 

from G1 and G2 for one set of remaining 

candidates. 

2. Main Loop: 

- While idx is less than the total number of 

candidates, perform the following steps. 

Set update Flag: 

- Initialize update to 0. 

Candidates Loop: 

- Loop through every index k in the candidate 

matrix where D[k] ≠ -1. 

3. Check Compatibility: 

- Compare 𝐺1[𝑖][𝑘] 𝑤𝑖𝑡ℎ 𝐺2[𝑗][𝐷[𝑘]]. 

- 𝐼𝑓 𝐺1[𝑖][𝑘]  ≠  𝐺2[𝑗][𝐷[𝑘]],  remove node vi as a 

candidate for node vj. 

4. Check for Unmatched Nodes: 

- If node vi has no candidates left, exit the algorithm as 

the graphs cannot be isomorphic. 

 

5. Update Single Candidate: 

- If node vi has only one candidate remaining, update 

D[i] with the index of the remaining candidate. 

6. Check for Changes: 
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- If any node finds a matching node or if any node's 

candidates are changed, set the update flag to 1. 

7. Increment idx: 

- Increment 𝑖𝑑𝑥 𝑏𝑦 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 ∗  𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥 to move 

to the next set of candidates. 

End of Main Loop 

The parallel graph algorithms created for both CPUs and 

GPUs have the potential to greatly speed up 

computations involving graphs, allowing for the effective 

analysis of enormous networks and graph structures. The 

decision between CPU and GPU parallelism is 

influenced by a number of variables, including the type 

of algorithm being used, the size of the graph, and the 

hardware that is available. In an effort to balance 

flexibility and computing capacity, hybrid techniques 

that make use of both CPU and GPU resources are 

becoming more prevalent. 

5. Results and Discussion 

The included dataset provides efficiency measures for 

various computational situations with varied CPU core 

counts (4, 8, and 12) and dataset sizes (range from 3000 

to 15000). Both uniform and non-uniform information 

processing are measured in terms of efficiency. The 

efficiency figures, which are expressed as percentages, 

show how effectively the computations were carried out 

in comparison to some benchmark. This dataset offers 

important insights into how the number of CPU cores, 

the size, and the kind of the dataset being processed 

affect computational efficiency in the context of parallel 

computing and performance evaluation. The dataset 

begins by providing efficiency numbers for processing 

uniform information, in which the dataset's content is 

distributed equally among processing units or cores. 

Here are some significant findings: 

Table 2: Result of Parallel algorithm using graph isomorphic 

Dataset 

  

  

Size 

Efficiency 

VG3P VG6P 

4 Core 8 Core 12 core 4 Core 8 Core 12 core 

Uniform 

Information 

  

3000 35.00% 31.00% 24.00% 52.00% 49.00% 39.00% 

6000 68.00% 59.00% 54.00% 78.00% 51.00% 58.00% 

9000 88.00% 74.00% 69.00% 92.00% 85.00% 81.00% 

13000 95.00% 89.00% 87.00% 110.23% 102.68% 105.20% 

15000 110.74% 98.00% 97.00% 150.24% 110.25% 125.50% 

Non uniform 

Information 

3000 25.00% 21.00% 14.00% 42.00% 39.00% 29.00% 

6000 58.00% 49.00% 44.00% 68.00% 41.00% 48.00% 

9000 78.00% 64.00% 59.00% 82.00% 75.00% 71.00% 

13000 85.00% 79.00% 77.00% 100.23% 92.68% 95.20% 

15000 100.74% 88.00% 87.00% 140.24% 100.25% 115.50% 

 

For all core configurations (4 Core, 8 Core, and 12 

Core), efficiency generally declines as the dataset size 

increases from 3000 to 15000. This decline in 

productivity is expected given that larger datasets may 

need more overhead and processing resources. It is clear 

from a comparison of various core configurations that 

efficiency is generally better with a greater core count. 

For instance, the efficiency increases from 4 Core to 8 

Core to 12 Core for the 15000-sized dataset.  Since the 

dataset's content is not evenly distributed, it additionally 

offers efficiency numbers for non-uniform information 

processing.  
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Fig 3: Representation of Efficiency for parallel algorithm 

When compared to uniform processing, non-uniform 

information processing typically yields inferior 

efficiency. This is due to the possibility that uneven data 

delivery could result in load imbalances between 

processing units, underutilizing some cores. Increasing 

the core count tends to increase efficiency, similar to 

uniform information, however the gap between different 

core configurations may change based on the size and 

dispersion of the dataset. This dataset sheds light on how 

parallel computing systems perform when handling 

uniform and non-uniform datasets with various core sizes 

and configurations. 

 

 

Fig 4: Representation of Efficiency vs. Size for Non-uniform Information 

It draws attention to the compromises between 

computing efficiency, core count, and dataset size. This 

dataset can be used by researchers and professionals in 

the field of parallel computing to evaluate the scalability 

and effectiveness of their algorithms and systems, 

assisting them in making defensible choices regarding 

resource allocation and optimisation tactics. To find 

more precise patterns and trends in the data, additional 

analysis and statistical tests may be used. 
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Fig 5: Representation of Efficiency and uniform values 

Table 3: Performance of Algorithm for graph Random connected 

Nodes 
Proposed Parallel Algorithm 

Time (ms) 

VG2 Time 

(ms) 

VG3 Time 

(ms) 
 VG6 Time (ms) 

3000 0.25 1.2 2.2 3.2 

6000 2.41 2.85 3.85 5.36 

9000 4.22 4.98 5.98 7.17 

12000 5.86 6.2 7.2 8.81 

15000 7.21 8.52 9.52 10.16 

18000 7.98 8.85 9.85 10.93 

21000 8.01 8.99 9.99 10.96 

24000 8.23 9.87 10.87 11.18 

 

Table 3 compares the execution timings of the proposed 

parallel approach with three distinct configurations of 

graph processing units (GPUs), designated as VG2, 

VG3, and VG6, to show the performance of an algorithm 

for randomly connected graphs. The dataset records the 

time required in milliseconds (ms) for each setup and 

includes node counts ranging from 3000 to 24000.  

 

Fig 6: Performance Comparison of Algorithms for Randomly Connected Graphs 
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The efficiency of the suggested parallel approach in 

handling arbitrary connected graphs is demonstrated. 

Given the increasing computational complexity of larger 

graphs, it is expected that the algorithm's execution time 

grows as the number of nodes does. The algorithm's 

efficient use of parallel processing is demonstrated by 

the relatively quick execution times when compared to 

GPU configurations. 

 

Fig 7: Performance of Parallel Algorithms 

Except for the smallest graph with 3000 nodes, the VG2 

configuration performs better than VG3 and VG6, 

possibly indicating a GPU with two processing units. 

This shows that the suggested parallel algorithm 

performs comparably with VG2 for comparatively 

smaller graphs, demonstrating its optimisation for 

parallel execution. In contrast, increased execution times 

are seen across all node counts for VG3 and VG6, which 

represent GPUs with three and six processing units, 

respectively. This may be caused by a number of things, 

such as hardware restrictions or ineffective 

parallelization techniques for the particular tasks 

involved in processing random connected graphs. 

Overall, scalability is demonstrated by the proposed 

parallel approach, which consistently beats VG3 and 

VG6 over a range of graph sizes. Even as the complexity 

of the graph rises, it maintains relatively fast execution 

speeds. This shows that the approach is suitable for 

effectively handling large-scale random connected 

networks, making it a useful tool for applications 

involving network analysis, scientific simulations, or 

other graph-related computations. 

6. Conclusion 

An important development in computer science and 

graph theory is the creation of a parallel algorithm for 

graph isomorphism. The increased complexity of graph-

related problems, for which conventional sequential 

algorithms frequently fail to deliver prompt solutions, 

served as the driving force behind this endeavour. In this 

study, we provide and investigate a unique parallel 

approach for quickly determining the isomorphism of 

graphs. In order to speed up the graph isomorphism 

checking procedure, this approach makes use of several 

compute units, including CPUs and GPUs. We have 

shown how well it works with big graphs of various 

complexity levels, exhibiting its scalability and 

robustness. This study's optimisation of parallelism in 

graph isomorphism checking is one of its major 

contributions. We have been able to dramatically cut 

calculation times by parallelizing important algorithmic 

parts, making it appropriate for real-world applications 

where time restrictions are crucial. Additionally, due to 

the algorithm's adaptability to various hardware setups, it 

is a useful tool for a variety of computational contexts. 

The approach shows its efficiency on several platforms, 

whether working with networks of moderate size on a 

CPU or large graphs on a high-performance GPU cluster. 

This study's consequences go beyond just graph 

isomorphism. Numerous graph-related issues, such as 

network analysis, social network modelling, molecular 

structure analysis, and others, can be solved using the 

methods and approaches outlined in this paper. The 

speed and versatility of the parallel approach open up 

new avenues for computational graph theory. As a result, 

not only does the creation of this parallel approach for 

graph isomorphism solve a significant computational 

problem, but it also prepares the way for other 

advancements in graph-based computations. Parallel 

algorithms like this one will become more crucial as 

technology develops in order to efficiently and 

effectively solve challenging real-world challenges. 
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