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Abstract: In the realm of skin cancer-related fatalities, early detection of malignant lesions is the key to effective treatment and saving 

lives. While deep learning approach have shown promise in cancer detection, the effectiveness of individual models can be limiting. In this 

article, we explore the potential of ensemble models to enhance the performance of skin cancer detection. We present an ensemble model 

designed to identify skin cancer, leveraging the power of three well-established deep learning design: VGG-16, VGG-19, and Inception 

V3. By comparing the performance of these models, we shed light on their strengths and weaknesses in this critical domain. Our findings 

reveal that the suggested ensemble model, with a particular emphasis on VGG-16, exhibits an impressive average accuracy of 92%. 

Notably, when compared to VGG-19 and Inception V3, the suggested VGG-16 model outperforms in various crucial aspects. It excels in 

terms of sensitivity, accuracy, F-Score, specificity, false-positive rate, and precision, create it a promising choice for accurate and genuine 

skin cancer detection. In the pursuit of improving early cancer diagnosis, this research underscores the potential of ensemble models and 

highlights the pivotal role played by the VGG-16 architecture. These results provide valuable insights for the medical community and deep 

learning practitioners, with the ultimate goal of enhancing skin cancer detection methods and saving lives. 
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1. Introduction 

Cells in the human body normally replicate in a 

predictable manner. To ensure proper bodily function, its 

birth, effective phase, and death should take place in the 

correct order. The disruption of the natural order causes 

the emergence of numerous disorders, including cancer. 

Anywhere among the billions of cells that make up the 

human structure, Cancer can occur. When a human being 

gets cancer, certain biological cells initiate to divide 

uncontrollably and disperse into the tissues around them. 

Human cells typically divide and increase in number to 

create new cells as needed by the body. The method 

causes cells to develop, age, or get tainted; as a result, 

new, healthy cells grow in its place after it dies. Once 

cancer takes hold, the methodical, precise cell-breaking 

mechanism is destroyed. The threshold for cell 

irregularity and damage consequently rises dramatically. 

New tissues are only created when they are necessary, and 

cell viability only occurs when the previous ones die. If 

the embryonic cells are not needed, they will continue to 

divide unabated and might lead to the development of a 

tumour [1]. 

Both benign and malignant tumours are brought on by 

cancer. Malignant tumours are those that primarily 

contain cancerous cells. Malignancy denotes a cell's 

ability to invade or spread to nearby tissues. When 

malignant tumours divide, a few tumour-causing cells 

travel via the blood or lymph system to distant areas of the 

body, where they form secondary tumours that are 

separated from the original tumour. Benign tumours do 

not divide inside the body or seize tissues, in comparison 

to malignant tumours. It is noted that benign tumours 

typically have a larger size. However, once benign 

tumours are take away, they cannot come back, although 

malignant tumours may do so following surgery. The 

benign tumour in the brain poses a serious constraint  to 

life, in contrast to many benign tumours throughout the 

body that are often not harmful [2]. Figures 1 and 2 

display examples of benign and malignant dermoscopy 

images, respectively. 
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Fig 1: Malignant skin lesion diagnosis. 

 

Fig 2: Benign dermoscopic image sample. 

The human body can be shielded by the skin from UV 

rays, heat, damage, and bacterial or viral diseases. The 

skin stores fat and water while also assisting the body in 

regulating body temperature. Skin cancer, an extremely 

frequent kind of cancer, is regarded as the biggest problem 

in terms of public health. Skin cancer can begin anywhere 

on a human's skin, although it typically begins on skin that 

has been exposed to sunlight. There are several skin 

layers. However, skin cancer often starts in the epidermis 

layer, which is one of the outermost layers. 

Non-melanoma skin tumours, which include basal cells 

and squamous cells, are among the many diverse types of 

skin cancer. Non-melanoma skin cancer responds closely 

to therapy and seldom widen to other parts of the body. 

Among the various skin cancer, melanoma is the most 

threatening. Malignant skin lesions come in two different 

varieties: melanocytic lesions, like melanoma, and 

nonmelanocytic lesions, such as basal cell carcinoma. 

Melanoma is the mass severe, aggressive, but least 

common kind of skin cancer [2]. If skin cancer caused by 

melanoma is not detected in a timely manner, it will likely 

spread to other regions of the body and engulf nearby 

tissues. Each year, there is a rise in the number of 

melanoma cases. 9730 fatalities from melanoma were 

anticipated in the United States, according to the 

Melanoma Foundation [3], a renowned cancer institute. 

Furthermore, it predicted a rise of 87,110 documented 

cases, or 200%, since 1973. 

In the literature, machine learning and deep learning 

operated to build process for detecting cancer using 

protein sequences and image data. Machine learning 

algorithms require behaviours that have been human-

engineered. The lengthy, labor-intensive, and subjective 

manual feature extraction process depends on the expert's 

subjective judgment. Deep learning techniques have 

somewhat solved this problem. Deep learning techniques 

enable automated feature engineering. Deep 

convolutional neural networks (DCNN) [4], which have 

been more popular recently because of this characteristic, 

are being used by academics to tackle issues across 

various fields, including the categorization of medical 

images. To increase classification performance, however, 

ensemble learning techniques have recently been 

proposed [5], [6], and [7]. 

The goal of transfer learning is to apply information 

acquired while resolving one problem to another that is 

related to it [8]. Additionally, Individual learning is 

limited to choosing between delicate options like cancer 

detection. The solution to this issue can be found by 

integrating the choices made by several students. In 

comparison to the individual learners, the homogenize 

choice is anticipated to be correct. Merging the decisions 

of separate learners can improve the accuracy of skin 

cancer diagnosis. The work that is being presented has 

used an ensemble models like VGG16, VGG19, and 

InceptionV3. The outcomes show that the VGG-16 

ensemble model outperformed than the VGG-19 and 

Inception V3.  

Further paper is divided into the following sections: 

Section II depict related work; Section III describes 

datasets; Section IV describes the proposed system; 
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Section V presents results and discussion; and Section VI 

reviews the conclusion and future work. 

2. Literature Survey 

Detecting skin cancer is a critical aspect of early detection 

and therapy, and extensive research has been conducted to 

improve detection procedure. The detection of skin cancer 

has made extensive use of machine learning and deep 

learning approach. By removing the manual elements 

from dermoscopy pictures, machine learning approach 

detect skin lesions. The author, Waheed et al., developed 

a machine learning technique for melanoma detection in 

dermoscopic images [9]. By using distinguishing data 

from altered genes in protein amino acid patterns, Mohsin 

et al. conducted cancer diagnosis [10]. A cancer prediction 

method was created by Abdul M. et al., utilising closest 

neighbour and SVM [11]. A support vector machine [12] 

has been used to identify melanoma [13]. They classified 

cancer using segmented pictures. These ML methods are 

constrained by the knowledge of dermatologists and need 

handmade characteristics. 

Deep learning, AI-driven systems, and non-invasive 

imaging techniques have all contributed to improving the 

accuracy and accessibility of skin cancer diagnosis, 

potentially transfigure the field of dermatology. Utilising 

deep learning technique, mostly convolutional neural 

networks (CNNs), is one popular strategy, which have 

shown remarkable promise in automating skin cancer 

detection. Esteva et al. presented A significant 

improvement in the field of skin cancer detection by 

leveraging deep neural networks, more precisely 

convolutional neural networks (CNNs) [14]. They trained 

a CNN model using a vast dataset of dermoscopic images, 

which are high-resolution images of skin lesions captured 

through a specialized tool. The results were astonishing, 

as the CNN achieved classification accuracy on par with 

that of dermatologists. The study demonstrated the 

potential of artificial intelligence to provide reliable and 

rapid skin cancer diagnosis, with implications for 

improving patient outcomes through early detection and 

intervention. Haenssle et al. organize a pivotal study that 

not only validated capabilities of CNNs in skin cancer 

diagnosis but also compared their performance directly to 

that of dermatologists [15]. Their research revealed that 

deep learning convolutional neural network could match 

diagnostic accuracy of a large group of dermatologists. 

This work underscored the potential of AI systems to 

assist healthcare professionals, reduce diagnostic errors, 

and provide accessible and consistent skin cancer 

screening, especially in areas with limited access to 

dermatological expertise. Tschandl et al. introduced a 

novel AI system called "HIDEX," which goes beyond 

traditional dermoscopic image analysis. HIDEX 

incorporates both dermoscopy and clinical information, 

enhancing diagnostic accuracy [16]. This approach 

illustrates the power of combining different data sources 

to improve skin cancer detection, taking into account not 

only image features but also clinical context. The research 

represents a step forward in developing AI tools that can 

integrate various data streams for more comprehensive 

and precise medical diagnoses. Halicek et al. delved into 

hyperspectral imaging of skin, a technique that captures 

the spectral signatures of skin lesions [17]. This non-

invasive method has shown promise in distinguishing 

between benign and malignant skin conditions. By 

analyzing the unique spectral characteristics of tissues, 

hyperspectral imaging provides valuable diagnostic 

information, expanding the toolkit for skin cancer 

detection beyond traditional visual assessments and 

imaging modalities. Rajadhyaksha et al. pioneered using 

confocal laser scanning microscopy to image human skin 

in real time [18]. This innovative approach provided high-

resolution in real-time images of skin lesions, allowing 

dermatologists to examine cellular and structural details 

non-invasively. Their work contributed to precise 

diagnosis and laid the foundation for advanced imaging 

techniques that offer insights into skin conditions at the 

microscopic level. 

Another notable development is the integration of 

smartphone apps equipped with AI algorithms for skin 

cancer detection, such as "SkinVision" and 

"DermEngine," which empower users to perform 

preliminary self-assessments [19]. These smartphone 

apps, SkinVision and DermEngine, represent the growing 

trend of making skin cancer detection accessible to the 

general public. They utilize AI algorithms to analyze 

images of skin lesions captured with smartphone cameras. 

Users can perform preliminary self-assessments, with the 

apps providing risk assessments and recommendations for 

further evaluation by healthcare professionals. These apps 

are a testament to the potential of AI-driven technology to 

empower individuals to take control of their health and 

encourage early detection and intervention for skin 

cancer. 

Ensemble networks are a common technique used by 

researchers today to improve classification performance. 

Typically, each model is trained separately, and then 

predictions from several models are combined using 

maximum voting and stacking procedures to generate 

results. An ensemble network was suggested by 

Aboulmira et al. [20] for classifying skin lesions. The 

separate models are used to extract the features, and the 

several models are then integrated to increase the 

classication rate. The publicly accessible ISIC-2018 

dataset has been used to test the suggested ensemble of 

seven predictors, which performs better than previous 

approaches. FixCaps, a more effective capsule network, 

has been utilised in [21] for the early identification of skin 
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cancer. In comparison in the direction of baseline CapsNet 

with a huge kernel size of 31*31, the suggested method 

gained a larger receptive field, which improved its 

detection efficiency while lowering computational 

overhead. By retaining the short and long-term 

correlations, Cao et al. [22] presented a special network  

inter pixel correlation learning (ICL)  for the initial 

detection of skin lesions. The suggested Pyramid 

transformer inter-pixel correlations (PTIC) are used to 

record global information in the model's encoder-decoder 

architecture, and local neighbourhood metric learning 

(LNML) is used to improve local semantic correlations. 

With the use of a two-stage methodology, segmentation 

performance may be improved, as measured by public 

challenge datasets, by increasing both intra-class 

consistency and inter-class variance. Using dermoscopic 

pictures, Javaid et al. [23] presented segmentation and 

classification of skin cancer by machine learning. Image 

is segmented using the OTSU thresholding method, and 

then a grey level co-occurrence matrix (GLCM), a 

histogram of oriented gradient (HoG), and colour 

characteristics are retrieved for use in the ML model 

classification. In a different ML-based study, skin 

imaging data was used to detect skin cancer [24]. First, the 

skin is identified by using a median filter, and then the 

skin has been segmented using a mean shift algorithm. 

Individual learners' performance only involves decision-

making, but this limitation are solved by merging the 

individual learners' decisions.  

3. Dataset 

According to the survey, there are numerous datasets with 

images of both cancer and non-cancerous tissue that are 

available for additional research. The detailed information 

of various dataset is discussed in table 1 as below,

 

Table 1: Various DataSets for Skin Cancers 

Dataset Name Year 
Number of 

Images 
Image Types Skin Lesion Types Metadata Information 

ISIC 2017 2017 13,000+ Dermoscopy 
Melanoma, Nevus, 

Keratosis 

Patient info, Image acquisition 

details, Diagnoses 

ISIC 2019 2019 25,000+ Dermoscopy 
Melanoma, Nevus, 

Keratosis 

Clinical data, Diagnostic annotations, 

Image metadata 

HAM10000 2018 10,000+ 
Clinical and 

Dermoscopic 

Melanoma, Nevus, 

Keratosis 

Patient characteristics, Diagnostic 

information, Lesion metadata 

PH2 Dataset 2014 200+ Dermoscopy 
Melanoma, Nevus, 

Keratosis 

Clinical data, Image acquisition 

details, Ground truth 

BCN20000 2017 20,000+ 
Dermoscopic and 

Clinical 

Melanoma, Nevus, 

Keratosis 

Patient data, Lesion annotations, 

Image characteristics 

DermoFit 2010 1,300+ Dermoscopy 
Melanoma, Nevus, 

Keratosis 

Patient information, Diagnosis, Image 

metadata 

SKINLIFE 2015 200+ 
Clinical and 

Dermoscopic 

Melanoma, Nevus, 

Keratosis 

Clinical data, Lesion characteristics, 

Diagnostic annotations 

 

As per survey it has been found that The "ISIS-2017" and 

"ISIS-2019" datasets are referring to are datasets related 

to skin cancer research. These datasets were released as 

part of the International Skin Imaging Collaboration 

(ISIC) initiative, which aims to enhance the early 

diagnosis of melanoma and other skin diseases through 

the use of dermatology images. The dataset includes 

Melanoma, Nevus, Basal Cell Carcinoma, Actinic 

Keratosis, and Benign Keratosis categories of dataset. The 

brief description of these datasets: 

a. ISIC 2017 Dataset: - The ISIC 2017 dataset 

containing  high-quality dermoscopy images of 

various skin lesions, including melanoma, nevus, 

and seborrheic keratosis. It contains over 13,000 

labeled images, with a focus on melanoma, a 

potentially deadly form of skin cancer [25]. Each 

image in the dataset is accompanied by metadata 

such as patient information, image acquisition 

details, and diagnostic annotations. Researchers and 

data scientists use this dataset for tasks like skin 
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lesion classification and melanoma detection using 

machine learning and computer vision techniques. 

b. ISIC 2019 Dataset: This dataset is a continuation of 

the ISIC initiative, featuring a larger and more 

diverse set of skin images. It includes over 25,000 

labeled images, making it one of the largest publicly 

available skin cancer image datasets. Like  ISIC 

2017 dataset, it contains various types of skin 

lesions, with a strong emphasis on melanoma images 

[26]. This dataset also provides detailed metadata for 

each image, including clinical information and 

diagnostic annotations. Researchers and healthcare 

professionals use these datasets to develop and 

evaluate algorithms for the automated detection and 

classification of skin lesions, aiding in initial 

diagnosis and treatment of skin cancer. They are 

valuable resources for training and testing ML 

models for skin cancer detection and related tasks. 

Based on above datasets ISIC 2017 and ISIC 2019 

datasets are utilized for proposed work.  

4. Proposed Methodology 

Figure 3 shows the proposed framework. The dataset used 

is different images from ISIC 2017 and ISIC 2019. Data 

preprocessing such as reshaping normalization is 

performed on dataset. Than dataset is splited into 80:20 

ratio such as 80% data for training the model and 20% 

data for testing the model are used. Three different 

ensemble models are used for training like VGG-16, 

VGG-19 and inception V3. Various stages involved in 

model development is explained in detail as follow, 

 

Fig 3. Proposed Framework 

4.1 Preprocessing - In the data preprocessing phase for 

the skin cancer detection system, All images had to be 

altered to a standard resolution of 224 x 224 pixels, which 

was an important step. This uniform size ensures 

consistency across the dataset, simplifying the subsequent 

steps of model development and analysis. By resizing the 

images, we reduce computational complexity and create a 

foundation for efficient model training and evaluation. 

Furthermore, data normalization was performed on the 

cancer dataset. In order to do this, the image's pixel values 

had to be scaled to a standard variate, between 0 and 1. 

Normalization is essential for ensuring that the model 

converges faster during training and is not influenced by 

variations in pixel intensity among the images. These 

preprocessing steps collectively establish a solid 

groundwork for the development of a robust and accurate 

skin cancer detection model, enhancing its ability to make 

reliable predictions based on the resized and normalized 

data.3000 malignant and 2800 benign pictures were used 

to accomplish binary class classification utilising the 

ensemble technique that has been presented. Since there 

are only 2800 benign photos in this dataset, malignant 

images are divided by 2800 to keep the algorithm from 

being biassed. 80% of the total number of photos is used 

as training data, which makes up the dataset. The test data 

has been created using the remaining photos. Images of 

various sizes design the dataset. In the suggested 

technique, images have been downsized to 224x224x3. 

4.2 Deep Neural Network - Three separate VGG 16, 

VGG 19, and Inception V3 convolution-based deep 

neural network models had been created in order to 

create suggested ensemble. The models' architectural 

progress is explained in detail below: 

4.2.1 VGG 16: VGGNet is one of the most often applied 

CNN models. The VGG model's ease of use, its popularity 

as a deep learning model can be attributed to its clarity and 

utilisation of tiny convolutional kernels. The VGGNet 

architecture uses a 3x3 convolution kernel with max-

pooling and ReLU layers, additionally three fully 

connected layers, for the extraction and classication of 

features. Smaller kernels are used in the creation, which 

results in some parameters and more effective training and 

testing. A series of 3x3-sized kernels may also be stacked 

to provide larger effective receptive fields (for example, 

5x5 with two layers, 7x7 working with three layers. Much 
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importantly, smaller filters make it possible to stack more 

layers, which creates a deeper network, improves 

profitability on vision-related tasks. This clearly expresses 

the basic idea of the design, which promotes the usage of 

deeper networks for improved feature learning. After the 

input layer comes the VGG model layer, which is 

composed of five blocks. Proposed model reads pre-

processed pictures with a size of 224x224 at the input 

layer using a VGG model. Following the input layer, the 

layer's first block begins with two convolutional layers, 

accompanied by the pooling layer. 64 filters make up the 

first convolutional layer. After polling, the final picture 

shrinks to 112x112 pixels in size. Each block of layers has 

a nearly identical layering pattern. In the second block, 

features are shrunk to a size of 56x56, and the first and 

second convolutional layers each have 128 filters. The 

feature map is shrunk to 28x28 in the third block, which 

consists of three convolutional layers with 256 filters and 

max-pooling. The feature map is reduced to a size of 

14x14 by the pooling layer in the fourth block, which also 

comprises three convolutional layers with 512 filters. The 

feature map is further condensed to 7x7 in the final, fifth 

block, which consists of 3 convolutional layers with 512 

filters. Fig. 4 depicts the precise architecture of the 

VGG16 [27]. 

 

Fig. 4 VGG 16 based Cancer Detection System 

4.2.2 VGG-19:- VGG19, an extension of the VGG16 

model, is a significant advancement in deep learning for 

image analysis and classification tasks. Much like its 

predecessor, VGG19 is celebrated for its simplicity and 

practicality. It adopts the use of small 3x3 convolutional 

kernels, complemented by max-pooling layers and 

Rectified Linear Unit (ReLU) activations, which are the 

hallmark features of the VGGNet family. The rationale 

behind this design philosophy is to employ smaller filters 

that facilitate a deeper network, resulting in more effective 

feature learning. In the VGG19 architecture, the input 

layer is succeeded by five distinct blocks, each 

characterized by a consistent layering pattern. As we 

progress through the blocks, the count of filters in each 

convolutional layer incremented, enhancing the network's 

capability to extract increasingly complex and abstract 

features. The final block further reduces the spatial 

dimensions of the feature maps, accompanied in a highly 

compact representation of the input image. VGG19's deep 

and consistent architecture underlines the notion that 

deeper networks excel in vision-related tasks, further 

solidifying the legacy of the VGGNet family within the 

field of deep learning for computer vision. Fig. 5 depicts 

precise architecture of the VGG19 [28]. 
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Fig. 5 VGG 19 based Cancer Detection System 

4.2.3 InceptionV3:- The Inception v3 architecture has 

proven to be highly effective in the realm of computer 

vision, and it stands as a robust foundation for developing 

a skin cancer detection system. In this specific 

implementation, the model is tailored to work with images 

of size 224x224x3, which is a common resolution for 

many deep learning applications. The Inception v3 

architecture, characterized by its multiple branches and 

the efficient use of various filter sizes within its inception 

modules, is employed to capture intricate features in skin 

lesion images. The multi-scale approach allows the model 

to detect patterns of varying sizes and complexities, which 

is crucial for identifying potential malignancies. The 

System is trained on a dataset of skin images, which had 

been pre-processed to ensure consistency and accuracy. In 

this skin cancer detection system, Inception v3 excels at 

extracting relevant features from the images, facilitating 

the differentiation between benign and malignant lesions. 

The deep layers of the network, along with the residual 

connections, enable it to capture subtle patterns that may 

indicate the presence of cancerous cells. The model is 

trained to categorize skin lesions as either benign or 

malignant, providing a valuable tool for early diagnosis 

and intervention. With its deep architecture and multi-

scale feature extraction, Inception v3 proves to be a 

powerful asset in the ongoing battle against skin cancer. 

It's worth noting that in practice, clinical validation and 

continuous model improvement are essential to ensure the 

system's effectiveness in real-world healthcare scenarios. 

Fig. 6 depicts the precise architecture of the InceptionV3 

[29]. 
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Fig 6. InceptionV3 based Cancer Detection System 

5. Results and Discussion 

5.1 Factors Used to Measure Performance 

The effectiveness of the provided approach was evaluated 

using the subsequent quality indicators: 

1) ACCURACY - The caability of the classifier to 

accurately predict the class of labels is known as accuracy. 

It is calculable as follows:                                                          

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝑇𝑛+𝐹𝑝+𝐹𝑛
                                                            

(1) 

2) SENSITIVITY - The criteria that are most frequently 

used in epidemiological and medical research are 

sensitivity and specificity, however the majority of 

statisticians in mathematical domains are not familiar with 

them. It evaluates the classifier's aptitude for making 

accurate assumptions about the positive class. The 

following formula is used to calculate sensitivity. 

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                                                      

(2) 

3) SPECIFICITY - Specificity measures how well the 

classifier can predict the negative class. The following 

definition of the word "specificity" 

         𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑛

𝑇𝑛+𝐹𝑝
                                                                        

(3) 

 

 

4) F-SCORE - The F-score assess statistics exams. 

Prediction accuracy is determined by F-score using Recall 

and Precision. It is also possible to determine the F-score 

by weighing recall and accuracy. The recall is calculated 

by dividing the total number of forecasts by the number of 

correct guesses. Precision is calculated by dividing the 

total number of forecasts by the number of forecasts that 

were accurate. The value of the F-score is determined by,      

  𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                             

(4) 

Where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝
        and  𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑝

𝑇𝑝+𝐹𝑛
 

 

5) CONFUSION MATRIX - The truth and fiction of the 

machine learning method are depicted in a confusion 

matrix. The size of the confusion matrix is inversely 

proportional to the number of items that must be 

anticipated. The rows of the confusion matrix show the 

machine learning algorithm's forecast, and the columns of 

the confusion matrix show the actual value of the known 

truth. As a result, the top left and bottom right corners of 

Figure 7 each contain a genuine positive and a genuine 

negative.  The False Positive is located in the top right-

hand corner of Fig. 8, while the False Negative is in the 

bottom left-hand corner. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 502–514 |  510 

 

Fig 7: Confusion Matrix 

 

5.2 Result Analysis 

The Table 2 shows the performance analysis of the 

proposed learners based ensemble system. It has resulted 

from Table 1 that VGG-16, VGG-19, and inception V3 

provide the accuracy values of 92%, 87%, and 78% 

respectively. Table 1 also shows that the sensitivity values 

of VGG-16, VGG-19, and inception V3 are 86%, 80% and 

69%, respectively. By considering mentioned values, the 

proposed VGG-16 ensemble model classifies the 

cancerous images even more accurately in comparison to 

the VGG-19 and inception V3. However, it is discovered 

that the specificity values of VGG-16, VGG-19, and 

inception V3 are 90%, 74% and 62%, respectively. While 

at the same time, it is noticed from table that the proposed 

ensemble model has a higher F- Score, lower False-

positive, and higher precision values as compared to 

VGG-19 and inception V3. To add further,  It can be 

notify from the table that the proposed ensemble performs 

better than the ensemble approach developed in [27] in 

terms of accuracy, sensitivity, and specificity. 

 

Table 2: Comparison of performance between VGG-16, VGG-19 and inception V3 

Models Accuracy Sensitivity Specificity F-Score Precision 

VGG-16 92% 0.86 0.90 0.91 0.96 

VGG-19 87% 0.80 0.74 0.85 0.86 

Inception V3 78% 0.69 0.62 0.79 0.76 

 

Fig. 8 the test and training accuracies and loss of the 

individual learners. The accuracy of the VGG-16 model is 

shown in Fig. 8(A). It is observed from the figure that the 

training Accuracy of VGG-16 is up to 98% and test 

accuracy 92%. The accuracy of the VGG-19 model is 

shown in Fig. 8 A. It is observed from the figure that the 

training accuracy of the VGG-19 model is 89% and test 

accuracy is 87%. Fig. 8 A shows that the training accuracy 

of the Inception V3 model is 88% and test accuracy is 

78%. Fig 8 part B shows the loss plot of training and 

validation of VGG-16, VGG-19 and inception V3. 
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Fig 8. Training and Validation Accuracy and Loss plots 

The confusion matrix is a crucial tool for assessing the 

performance of a classification model that aims to 

distinguish between cancer and non-cancer cases. In this 

scenario, VGG-16 model achieved an overall accuracy of 

92%, which is an impressive result. Breaking down the 

confusion matrix, we find that there are 250 cancer cases 

(actual positives) and 320 non-cancer cases (actual 

negatives) in the dataset. Out of the 250 actual cancer 

cases, the model correctly predicted 230 of them (True 

Positives, TP), which reflects the model's ability to 

accurately identify cancer cases. However, it also 

incorrectly classified 20 actual cancer cases as non-cancer 

(False Negatives, FN). This indicates instances where the 

model missed identifying cancer. On the non-cancer side, 

out of the 320 actual non-cancer cases, the model correctly 

predicted 295 as non-cancer (True Negatives, TN), 

showcasing its proficiency in accurately recognizing non-

cancer cases. Unfortunately, it also made 25 incorrect 

predictions, classifying non-cancer cases as cancer (False 

Positives, FP) as shown in figure 9. This confusion matrix 

enables a more nuanced assessment of the model's 

performance. The 92% accuracy figure indicates the 

overall proportion of correct predictions, but the 

individual TP, TN, FP, and FN values offer insights into 

the model's strengths and weaknesses.  

 

Fig 9. VGG-16 Confusion Matrix 

The confusion matrix for VGG-19 model with 87% 

accuracy, using 250 cancer data and 320 non-cancer data 

points is as shown in figure 10. The confusion matrix 

offers a detailed assessment of VGG-19 model's 

performance in classifying cancer and non-cancer cases. 

With an accuracy of 87%, the model has achieved a 
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commendable overall performance. However, to delve 

deeper into its strengths and limitations, the confusion 

matrix provides a more nuanced perspective. Out of the 

250 actual cancer cases (actual positives), the model 

correctly identified 217 of them (True Positives, TP). This 

reflects the model's ability to accurately detect cancer 

cases. Conversely, it also misclassified 33 actual cancer 

cases as non-cancer (False Negatives, FN), highlighting 

instances where the model missed identifying cancer. On 

the non-cancer side, out of the 320 actual non-cancer cases 

(actual negatives), the model correctly predicted 278 as 

non-cancer (True Negatives, TN), showcasing its 

proficiency in recognizing non-cancer cases. However, it 

also made 42 incorrect predictions, classifying non-cancer 

cases as cancer (False Positives, FP). These individual TP, 

TN, FP, and FN values enable a more detailed evaluation 

of the model's performance. Metrics like sensitivity, 

specificity, precision, and the F1-Score can provide a 

comprehensive understanding of its ability to correctly 

classify cancer and non-cancer cases. This insight is 

essential for fine-tuning the model and improving its 

performance, especially in critical healthcare applications 

like cancer detection. 

 

Fig 10. VGG-19 Confusion Matrix 

The confusion matrix for an Inception V3 model with 

78% accuracy, using 250 cancer data and 320 non-cancer 

data points is shown in Figure 11. The confusion matrix 

for this Inception V3 model provides an insightful 

perspective on its classification performance, specifically 

in the context of distinguishing between cancer and non-

cancer cases. While the model attains a 78% overall 

accuracy, the matrix unveils a more nuanced 

understanding of its capabilities. With 250 actual cancer 

cases (true positives) in the dataset, the model correctly 

identifies 195 of them (True Positives, TP), reflecting its 

competence in accurately recognizing cancer cases. 

However, there are instances where the model misses 

cancer cases, resulting in 55 false negatives (False 

Negatives, FN). On the non-cancer side, out of 320 actual 

non-cancer cases, the model effectively classifies 249 as 

non-cancer (True Negatives, TN), illustrating its 

proficiency in identifying non-cancer cases. Nonetheless, 

the model also commits 71 incorrect predictions, labeling 

non-cancer cases as cancer (False Positives, FP). These 

individual TP, TN, FP, and FN values enable a more 

thorough evaluation of the Inception V3 model's 

performance. Metrics such as sensitivity, specificity, 

precision, and the F1-Score provide a comprehensive 

overview of its ability to correctly distinguish between 

cancer and non-cancer cases. In the domain of healthcare 

applications, particularly cancer detection, this detailed 

assessment is critical for ensuring the model's accuracy, 

reliability, and potential for saving lives through early 

diagnosis and intervention. 

 

Fig 11. Inception V3 Confusion Matrix 
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The graphical illustration of various models, including 

VGG16, VGG19, and Inception V3, reveals an interesting 

trade-off between accuracy and training time, with VGG-

16 standing out as a particularly weighted option due to 

its notable performance difference. 

A. VGG16: VGG16, part of the VGGNet 

architecture family, is celebrated for its 

simplicity and remarkable accuracy in image 

classification tasks. The model consists of 16 

weight layers, hence the name. Its design 

emphasizes stacking small-sized 3x3 

convolutional kernels with max-pooling layers 

and ReLU activations, creating a deep and 

powerful network. Due to its relatively shallower 

structure compared to VGG-19, it generally 

offers faster training times. However, this slight 

trade-off in terms of the model's depth results in 

a subtle accuracy difference. 

B. VGG19: VGG19, an extension of VGG16, takes 

the depth concept even further, employing 19 

weight layers. This architectural evolution 

enhances feature learning capabilities, making it 

more proficient in capturing intricate image 

details. However, this comes at the cost of longer 

training times, given the additional layers. The 

trade-off here is a slight boost in accuracy due to 

its deeper architecture. 

C. Inception V3: Inception V3, designed by Google, 

presents an intriguing alternative in this trade-off 

scenario. It follows a different architectural 

philosophy, with multiple branches and an 

efficient use of various filter sizes. This design 

allows it to capture multi-scale features 

effectively, resulting in competitive accuracy. 

Training times for Inception V3 are typically 

between VGG16 and VGG19, striking a balance 

between model depth and computational 

efficiency. 

Despite the accuracy and training time trade-offs, VGG-

16 emerges as the heavyweight in this comparison due to 

its significant performance difference. It offers impressive 

accuracy while requiring less training time than VGG-19 

or Inception V3, making it a preferred choice for real-time 

or resource-constrained applications where speed is 

essential. On the other hand, VGG-19 and Inception V3, 

with their deeper architectures, shine when the highest 

levels of accuracy are required, and training time is not a 

critical factor. The choice among these models ultimately 

hinges on the specific task, available resources, and the 

desired balance between speed and accuracy. 

6. Conclusion 

The most common reason for skin cancer-related deaths is 

a malignant lesion. It could be treatable if discovered in 

its early stages. Deep learning techniques have been used 

for cancer detection in the literature; however, the 

effectiveness of the individual learners is constrained. For 

decision-making on delicate subjects like cancer, 

ensemble models can improve performance. An ensemble 

model to identify skin cancer was created in this article. It 

is demonstrated how vgg-16, vgg-19, and inception v3 are 

compared. The findings show that the suggested 

ensemble, VGG-16, has an average accuracy of 92%. 

Compared to VGG-19 and Inception V3, the suggested 

VGG-16 model performs better in terms of sensitivity, 

accuracy, F-Score, specificity, false-positive rate, and 

precision. We plan to investigate the effectiveness of 

reinforcement learning-based methods for skin cancer 

diagnosis in the future. 
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