

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |556

A Parallel Rank Based Multi-Class Ensemble Classification Framework

on ISOT Cyber Threat Detection

Lakshmi Prasanna B. 1*, M. Saidi Reddy 2

Submitted: 23/10/2023 Revised: 17/12/2023 Accepted: 24/12/2023

Abstract:A group of internet-connected compromised devices forming a network is called a Botnet. This network can consist of

personal computers, servers, IoT devices, and mobile devices. Botnets are one of the most common network security threats, used for

malicious activities such as data theft, spamming, collecting personal information from users, and launching Distributed Denial of

Service (DDoS) attacks. The growing popularity of IoT and mobile devices has made them an attractive target for attackers, as they often

have unpatched security vulnerabilities. In today's world, computer networks play a crucial role in the information and communication

technology era, connecting heterogeneous devices for data communication and sharing. However, the large number of Internet-connected

devices makes them vulnerable to massive security attacks. Most widely-used IoT devices lack security design, making them vulnerable

to recent attacks that exploit these weaknesses and recruit the devices to cause severe harm. Parallel multi-class classification refers to the

process of performing classification tasks simultaneously on multiple classes or categories of data using parallel computing techniques.

In traditional multi-class classification, a model is trained to classify data into one of several mutually exclusive classes. However, in

some scenarios, it may be advantageous to perform these classifications in parallel, especially when dealing with a large number of

classes or when speed and efficiency are crucial. Parallel multi-class classification can be implemented using parallel processing or

distributed computing frameworks to train and evaluate multiple classifiers concurrently.

Keywords: Multi-class classification, data filtering, outlier detection, cyber-attack detection.

1. Introduction

Intrusion represents an abnormal activity that poses a threat to

computer or network systems. Such intrusions can be categorized

as either internal or external. Internal intrusions originate from

within the target network and involve acquiring unauthorized

access to harm the system. On the other hand, external intrusions

come from outside the network, where individuals gain illicit

access to the network's information. Malicious and compromised

nodes typically initiate internal attacks, while third parties initiate

external ones.IoT, short for the Internet of Things, comprises a

network of interconnected devices, objects, and systems via the

internet. It interacts with its environment both internally and

externally, detecting and responding to environmental

changes[1]. IoT introduces innovative approaches to various

aspects of life, ultimately enhancing the quality of human living

standards. It enables real-time or remote communication between

objects. With IoT's integration, the environment becomes smarter

and can connect to virtually any device at any time. IoT collects

and interprets data from a variety of sensors and devices,

transmitting it wirelessly to smartphones or computers. Its

applications are diverse, impacting areas such as household

appliances, energy efficiency, environmental monitoring, and

commercial enterprises, all contributing to a more comfortable

living environment. IoT finds utility in distribution, logistics,

automation, robotics, and surveillance systems, enhancing their

modernization.IoT plays a pivotal role in enhancing people's lives

by facilitating the exchange of data among a network of devices,

thus creating a conducive environment for application

development while anticipating market trends in advance. In

today's fast-paced world, IoT has the capability to meet people's

needs and desires.IoT technology also supports Industrial Internet

of Things (IIoT), enhancing manufacturing operations and

industrial processes[2]. It captures, shares, and interprets data

across a distributed system interconnected by communication

networks, enabling quicker decision-making. For instance, IIoT

can predict and rectify equipment flaws in industrial settings

before they lead to breakdowns, thereby saving time, resources,

and costs. These small devices are commonly employed within

conventional Industrial Control Systems (ICS).The Internet of

Medical Things (IoMT) offers numerous advantages for both

patients and healthcare professionals. Many IoMT devices are

designed to meticulously monitor critical patient parameters,

enabling physicians to make more accurate diagnoses and

develop personalized treatment plans based on real-time data.

IoMT facilitates remote healthcare and guidance, allowing

devices to collect data from patients' homes and securely transmit

it to healthcare providers, eliminating the need for frequent clinic

visits. Patients can now monitor their health in real-time, rather

than relying solely on annual check-ups.While IoMT devices

provide numerous benefits such as convenience, enhanced patient

care, and cost reduction, they also bring certain risks, making

security a critical concern[3-5]. One of the most significant

threats is the potential theft of sensitive medical information,

which, if exposed, could be embarrassing or harmful to

1 Research Scholar, Department of Computer Science and Engineering,
Koneru Lakshmaiah Education Foundation, Hyderabad, Telangana,

India

Assistant Professor, Department of IT, AnuragUniversity, Hyderabad,
Telangana, India.

lakshmiprasanna.byrapuneni@gmail.com
2 Associate Professor, Department of Computer Science and
Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad,

Telangana, India.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |557

individuals. Hackers are not solely interested in consumer health

data.In the context of data analysis, there are various strategies

for determining the best features to split instructional datasets,

including the Gini index and Information Gain. Decision trees are

commonly used to classify unknown samples based on distinctive

features. These trees are constructed by creating a path from the

root node to a leaf node, following a top-down recursive division

and conquer strategy. Decision trees offer advantages such as

intuitive knowledge representation, accurate classification, and

ease of implementation[6]. However, they have limitations,

including a bias toward features with higher values when dealing

with continuous attributes with varying strata. Support Vector

Machine (SVM): SVM is a technique used to classify data by

identifying the optimal line that separates data points into

different categories. This separation is achieved by maximizing

the margins between the categories, resulting in equal spacing

between the lines. When provided with labeled training data, the

SVM algorithm constructs an ideal hyperplane that can be used to

label new data points. Random Forest: The Random Forest

system consists of multiple trees that are constructed randomly

and then collectively used to vote for a category. The category

with the most votes is selected as the final classification.

Although Random Forest methods are derived from decision

trees, they differ significantly. In traditional Decision Trees, a

series of rules is generated and applied to classify new data when

a test dataset is fed into the system. On the other hand, Random

Forest employs decision trees to create a set of rules and then

selects a category, effectively addressing overfitting issues. K-

Nearest Neighbors (KNN): KNN represents a method of

categorizing samples based on their proximity in an n-

dimensional space. When classifying an unknown sample, the

algorithm identifies k training samples in the pattern space that

are nearest to the unknown sample and assigns the category based

on the majority among its k closest neighbors. KNN is considered

a slow learner because it retains all training data and constructs a

classification system only when needed. This method is suitable

for use with labeled, noise-free, and small datasets.Naïve Bayes:

Naïve Bayes Classification estimates the likelihood of an event

based on prior knowledge of that event, making it particularly

relevant in scenarios like DoS threat detection using network

traffic data. It relies on Bayes' theorem and strict independence

assumptions, meaning the presence or absence of one attribute

does not influence the presence or absence of another. Bayesian

classifiers perform well in large databases in terms of execution

time and accuracy, especially when used in conjunction with big

data[7].

Logistic Regresion: Logistic regression is a mathematical

technique used to analyze data, where the outcome is determined

by one or more independent factors. It aims to find the best-fit

line between dependent and independent variables. Logistic

regression can be used for projecting values, such as predicting

income based on various factors. It is also used for forecasting

trends when time is considered an independent factor. Machine

learning technologies offer valuable insights into safety across

various practical challenges and scenarios. Automatic machine

learning methods provide a systematic and adaptable approach to

addressing the complexities of emerging production connectivity

platforms, ensuring stability and reliability[].For instance,

SCADA platforms often exhibit repetitive communication

patterns, with a limited set of commands repeated frequently.

Such patterns can be used by ML techniques to build models for

detecting anomalies and improving cybersecurity. However, the

integration of IoT, cloud technology, and other technologies in

SCADA networks can pose significant security challenges, as

discussed in [9].Another approach involves a hazard analysis

technique prioritizing confidentiality, security, adaptability, and

consistency in the context of IT and IIoT sectors [10]. This

method assesses the likelihood of a hazard exploiting

vulnerabilities and its impact on various stakeholders.

Additionally, [11] presents a comprehensive examination of ML

algorithms and their application to IoT data, emphasizing the

need for suitable information prototypes and the challenges of

scale and real-time data processing.Cybersecurity in IIoT is a

critical concern, [11] discusses effective cybersecurity options for

IIoT design, considering data breaches and security

measures.[12] focuses on deep learning methods for intrusion

detection, such as convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), highlighting the importance of

accurate detection of intrusions in wideband communication

systems.This type of Intrusion Detection System (IDS)

overcomes the limitations of Signature-Based Intrusion Detection

Systems (SIDS) by focusing on network behavior. Anomaly

Intrusion Detection System (AIDS) incorporates machine

learning, knowledge-based techniques, and statistical-based

techniques to create a robust intrusion detection system. AIDS

identifies anomalies, intrusions, or unknown threats in a network

by detecting even slight deviations from the typical network

behavior, triggering alerts when danger is detected. The

development process of AIDS involves both a training phase and

a testing phase. During training, AIDS learns the network's

normal behavior, and during testing, it uses a dataset with unseen

intrusions to detect and classify threats. AIDS is particularly

advantageous as it can detect zero-day attacks, making it a

valuable addition to network security. Additionally, it has the

capability to identify internal threats. In a Distributed Intrusion

Detection System (DIDS), multiple Intrusion Detection Systems

(IDS) are employed to monitor an extensive network. Each node

in the network is equipped with an IDS agent, and these IDS

agents collaborate with each other or a centralized server to

observe network activities. The IDS agents perform event

scrutiny, intrusion detection, and take appropriate actions when

necessary. DIDS offers the benefit of avoiding a single point of

failure and is highly scalable. It can be implemented individually,

where each node monitors the behavior of others and alerts a

reporting agent if unusual behavior is detected. Alternatively, in a

cooperative approach, nodes collaborate to determine whether a

monitored node is under attack.

2. Related Works

Smart metering applications encompass a variety of use cases,

including monitoring the stock of goods in the retail sector,

controlling electricity usage in smart grids, and monitoring water,

oil, and gas levels. Smart meters play a crucial role in improving

the efficiency of solar energy plants by adjusting the angles of

solar panels. However, these applications face both physical and

cyber threats, with analog meters being more vulnerable to

physical attacks. In the context of smart homes, electronic

devices are interconnected with smart meters in the Smart Home

Area Network, enabling cost and load management. Ensuring the

security of data collected from these devices is crucial, as

attackers may attempt to tamper with data, resulting in financial

losses[13].Smart medical care systems rely on three essential

components: hospital organization, lab administration, and

clinical findings. By embedding sensors and actuators in medical

devices and instruments accessible via the internet, smart

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |558

hospitals are created. This connectivity facilitates the

communication of information between doctors, patients, test

results, and medical devices. In the retail sector, IoT applications

are developed to monitor and manage goods in warehouses and

enhance the shopping experience. However, retail companies face

security challenges, with adversaries attempting to manipulate

product information to boost sales or gain unauthorized access to

customer data, such as credit card details.Smart homes leverage

IoT technology to remotely control and regulate electronic

appliances, enhance security through sensors on doors and

windows, and monitor energy and water supply. Logic-based

security techniques, as proposed by [14], can enhance safety by

comparing user activities with standard actions to detect

intrusions.IoT applications in the smart environment domain

cover various areas, including fire detection, snow monitoring,

landslide prevention, earthquake detection, and pollution

monitoring. The data gathered by these applications is crucial for

government organizations. However, false negatives and false

positives in smart environment applications can have disastrous

consequences, emphasizing the need for robust data integrity and

security measures.Booters, a form of Distributed-Denial-of-

Service (DDoS) threat, are employed by malicious users to

disrupt network speeds. The dataset related to booter threats

comprises nine different types of threats executed against IP

addresses, each consisting of data packets exceeding 250 GB.

The dataset is openly accessible, although individual packets are

not labeled. Instead, various booter threats are grouped into

files.The Botnet dataset combines existing datasets through

overlay techniques, including ISOT, ISCX 2012, and CTU-13,

capturing both normal and botnet behavior. It offers a testing

dataset of 8.5 GB and a training dataset of 5.3 GB, both in packet

form.The Canadian Institute for Cybersecurity provides the CIC

Dos dataset, focusing on denial-of-service attacks at the

application layer[16]. This dataset includes eight distinct DoS

threats and captures network traffic data over a 24-hour period in

packet form.The CIDDS-002 port scan dataset is derived from the

base CIDDS-001 dataset, encompassing network flow data

observed over two weeks. It includes port scan attacks and

normal network behavior, with metadata available in a technical

report.Ambusaidi et al. (2016) employ the Mutual Information

(MI) feature selection technique to select optimal features for an

intrusion detection system (IDS). They combine multiple

classifiers, including the Least Square-Support Vector Machine

(LS-SVM), to differentiate between various attack classes based

on computed relevance scores between class labels and

instances.[17] propose an anomaly-based IDS using Recurrent

Neural Networks (RNN), a deep learning technique. They

evaluate the RNN-based IDS model using the NSL-KDD

intrusion detection dataset, conducting experiments for multiclass

and binary classification scenarios. The IDS utilizes RNN's

ability to provide feedback from past data to make real-time

predictions.[18] developed an Anomaly Traffic Detection method

utilizing Support Vector Machine (SVM), a supervised machine

learning classification technique. This approach introduces a

novel algorithm for estimating data instance entropy. It identifies

deviations from the normal network behavior by setting a

threshold value, with anomalies occurring when this threshold is

exceeded. SVM serves as the classifier, and its effectiveness is

enhanced through the application of Particle Swarm Optimization

(PSO). The evaluation of this Anomaly Traffic Detection method

employs datasets such as KDD CUP 99 and DARPA to classify

various types of attacks. Feature selection and voting criteria are

employed to select the most relevant attributes for classification,

adhering to the min-max principle. This method excels in

achieving high accuracy while maintaining a low error rate in

identifying different attack varieties.[19] propose a unique

intrusion detection system tailored for the IoT environment,

leveraging deep learning technology. They highlight the

challenges posed by numerous protocols in IoT platforms, which

often encounter zero-day threats that deviate slightly from known

cyber risks. Their approach involves a network intrusion

detection scheme based on Conditional Variational Autoencoder

(CVAE), which consolidates intrusion labels within the decoder.

A key advantage of this model is feature reconstruction, making

it suitable for IoT networks' network intrusion detection. It

streamlines computational resources by training the technique in

a single step. [20] introduce an anomaly-based intrusion detection

system to mitigate cloud threats. They employ Binary-based

Particle Swarm Optimization (BPSO) to select the most relevant

instances and classify them using Support Vector Machine

(SVM), fine-tuning SVM control parameters using Standard-

based Particle Swarm Optimization (SPSO).[21] address security

issues in the virtual network layer of cloud computing. They

design a security scheme based on snort and various classifiers,

such as decision trees, associative models, and Bayesian models.

The intrusion detection system is deployed in each host, enabling

both offline and real-time analysis.[22] develop the Online

Intrusion Detection System Cloud System (OIDCS) to detect

zero-day threats in online mode. They introduce the NeuCube

spiking neural network architecture to OIDCS and employ the

TBR algorithm, resulting in high accuracy.[23] create a packet

scrutinization algorithm and normalized K-means with recurrent

neural network (NK-RNN) to enhance trust authority, cloudlet

controller, and virtual machine security. They introduce a one-

time signature scheme for cloud data access, effectively detecting

port scans and flooding attacks.[24] address security challenges

in Unmanned Aerial Vehicle Networks (UAVs) using an agent-

based self-protective method (ASP-UAVN) based on the Human

Immune System (HIS). This method distinguishes secure routes

from attack-prone UAVs, resulting in improved Packet Delivery

Rate (PDR) and reduced False Positive Rate, False Negative

Rate, and Packet Loss Rate (PLR) compared to other techniques.

[25] deploys an Adaptive Intrusion Detection System based on

deep learning in drones to detect intruders. Self-Taught Learning

(STL) maintains the True Positive Rate, using a multi-class

support vector machine and the Deep-Q network algorithm for

self-remediation.[26] introduce a Spline function-based intrusion

detection system to mitigate host system threats. This Client-

Server model employs various spline functions to enhance IDS

performance, with B-Splines providing particularly strong

results.[27] propose a Big data-based Network Intrusion

Detection framework to address security issues in Vehicular Ad-

hoc Networks (VANETs). The framework consists of network

traffic detection and collection components, using Micro-batch

data processing and Random Forest classification. Data

normalization is achieved using [27] enhance security in

Vehicular Ad-hoc Networks (VANETs) with a Spline-Based IDS

merged with clustering, forming Knot Flow Classification (KFC)

for improved attack detection. [28] introduce the Trust-Based

Collaborative Intrusion Detection System (TBICDS), enabling

vehicles to manage score tables of nearby vehicles and enhance

security.

3. Proposed Framework

In this framework, a hybrid framework is developed on the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |559

heterogeneous data in three phases as shown in figure 1. Cloud

IoT Bot dataset is an important tool for detecting network

intrusions in the Internet of Things (IoT) network. The dataset is

a collection of data that represents the behavior of different

devices connected to the network. The data includes information

about the devices, such as their type, behavior, and

communication patterns. This data is collected and stored in the

cloud, where it can be analyzed to identify potential

intrusions.The first step in analyzing the Cloud IoT Bot dataset is

statistical outlier detection. Outliers are data points that are

significantly different from the other data points in the dataset.

Input Data:Input data refers to the raw information or

observations that are provided to a system or algorithm for

processing, analysis, or any other purpose. In the context of

machine learning and data analysis, input data typically consists

of features or variables that are used to make predictions,

classifications, or gain insights. Input data can be structured (e.g.,

in a tabular format), unstructured (e.g., text, images, audio), or

semi-structured (e.g., JSON). The quality and relevance of input

data are critical factors in determining the performance of

machine learning models.Data filtering is the process of selecting

a subset of data from a larger dataset based on specific criteria or

conditions. This is often done to reduce the size of the dataset or

to focus on relevant information. Removing duplicates:

Eliminating duplicate records from the dataset.Applying

conditions: Selecting data points that meet certain criteria or

conditions (e.g., selecting customers who made a purchase in the

last month).Removing outliers: Excluding data points that are

significantly different from the majority of the data, which can

distort analysis or model training.Data filtering helps in cleaning

and preparing data for further analysis or modeling by reducing

noise and improving the quality of the dataset.Ranking involves

ordering items or data points in a dataset based on a specific

attribute or set of attributes. It assigns a numerical or ordinal

position to each item, indicating its relative importance, value, or

relevance within the dataset. Parallel multi-class classification

refers to the process of performing classification tasks

simultaneously on multiple classes or categories of data using

parallel computing techniques. In traditional multi-class

classification, a model is trained to classify data into one of

several mutually exclusive classes. However, in some scenarios,

it may be advantageous to perform these classifications in

parallel, especially when dealing with a large number of classes

or when speed and efficiency are crucial. Parallel multi-class

classification can be implemented using parallel processing or

distributed computing frameworks to train and evaluate multiple

classifiers concurrently. Each classifier is responsible for

classifying data into one of the classes, and the results are

combined to make the final prediction as shown in figure 1.

Fig 1: Multi-class parallel ranked based Classification Framework

Algorithm 1: Filling missing values and Data transformation

approach

Filling missing values and Data transformation approach

1. Read BoT-IoT training dataset.

2. To each feature F in dataset D.

3. if(F[i]==Null)

4. then

5. end if

6. end loop

7. To each feature F in dataset D.

8. Compute non-linear data transformation as

𝑁𝐿𝐺

= 𝐹[𝑖] . 𝑙𝑜𝑔(𝐹[𝑖]).∑
1

√2𝜋 𝑙𝑜𝑔(𝐹[𝑖])
. 𝑒−|𝑀𝑎𝑥{𝐹[𝑟]}−𝐹[𝑖]|/2

𝑁

𝑟=0

The given steps outline the process for handling missing values

and transforming data in the BoT-IoT training dataset. Step 1

involves reading the BoT-IoT training dataset. This is a crucial

step as it sets the foundation for the subsequent steps.Step 2 to 6

focuses on handling missing values. For each feature F in the

dataset D, the process checks if the value at index i is null (Step

3). If it is null, the missing value is filled in (Step 4). The process

then ends the if loop (Step 5) and repeats this process for each

feature in the dataset (Step 6).Step 7 to 8 focuses on data

transformation. For each feature F in the dataset D, a non-linear

data transformation is applied (Step 8). This step is important as it

helps in making the data more meaningful and useful for analysis.

Multi-class Fast Parallel Decision tree:

This parallel and fast decision tree is designed for regression

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |560

tasks, where the goal is to predict a continuous target variable

based on the values of other attributes or features. The code

defines several functions, including covariance, variance, and

pearsons_correlation_coefficient, which are essential for

calculating correlation and variance between variables. The heart

of the code is the FPCCTree class, which represents the decision

tree model. It allows you to fit the model to a dataset using the fit

method, build the tree structure with the build_tree method, and

make predictions for new instances using the predict method. The

tree construction process relies on finding attribute-value pairs

with the highest Pearson's correlation coefficient with the target

variable, and it continues recursively until specific stopping

criteria are met. This decision tree can be a useful tool for

regression tasks where understanding the linear relationship

between attributes and the target variable is crucial for making

accurate predictions.

FUNCTION covariance(x, y):

 RETURN mean((x - mean(x)) * (y - mean(y)))

FUNCTION variance(x):

 RETURN mean((x - mean(x))^2)

FUNCTION pearsons_correlation_coefficient(attr, decision_attr):

 cov = covariance(attr, decision_attr)

 RETURN cov / sqrt(variance(attr) * variance(decision_attr))

CLASS PCCTree:

 INIT(epsilon = 0.05):

 self.epsilon = epsilon

 FUNCTION fit(data, target_column):

 self.target = target_column

 self.tree = build_tree(data)

 FUNCTION build_tree(data):

 IF length(unique(data[self.target])) == 1:

 RETURN { "type": "leaf", "class":

data[self.target].first_element() }

 max_pcc = -infinity

 best_attr = None

 best_value = None

 FOR attr IN data.columns:

 IF attr == self.target:

 CONTINUE

 FOR value IN unique(data[attr]):

 subset = filter data where data[attr] == value

 IF length(subset) == 0:

 CONTINUE

 pcc = pearsons_correlation_coefficient(subset[attr],

subset[self.target])

 IF pcc > max_pcc:

 max_pcc = pcc

 best_attr = attr

 best_value = value

 IF best_attr is None:

 RETURN { "type": "leaf", "class":

majority_class(data[self.target]) }

 left_subset = filter data where data[best_attr] <= best_value

 right_subset = filter data where data[best_attr] > best_value

 IF length(left_subset) == 0 OR length(right_subset) == 0:

 RETURN { "type": "leaf", "class":

majority_class(data[self.target]) }

 RETURN {

 "type": "node",

 "attribute": best_attr,

 "value": best_value,

 "left": build_tree(left_subset),

 "right": build_tree(right_subset)

 }

 FUNCTION predict_instance(instance, node):

 IF node["type"] == "leaf":

 RETURN node["class"]

 IF instance[node["attribute"]] <= node["value"]:

 RETURN predict_instance(instance, node["left"])

 ELSE:

 RETURN predict_instance(instance, node["right"])

 FUNCTION predict(data):

 RETURN apply predict_instance on each row of data

The main function to train or construct the tree.

It sets the target column (the one we want to predict) and starts

the recursive tree-building process using the build_tree function.

build_tree(data):

If all data points in the current dataset belong to the same class, it

returns a leaf node with that class label.

It then initializes variables to track the best attribute and value to

split on, as well as the maximum Pearson's correlation

coefficient.

For each attribute in the data (excluding the target):

For each unique value in that attribute:

It computes the subset of data where the attribute equals that

value.

Computes the Pearson's correlation coefficient for that subset

against the target column.

If this coefficient is the highest seen so far, it updates the best

attribute, best value, and max coefficient variables.

If no suitable attribute is found to split on (i.e., all have the same

value), it returns a leaf node with the majority class label.

Otherwise, it splits the data into two subsets based on the best

attribute and value found.

If either subset is empty (which shouldn't happen with the given

logic but is a safeguard), it returns a leaf node with the majority

class label.

It then recursively builds the tree for both left and right subsets.

predict_instance(instance, node):

Makes a prediction for a single instance.

If the current node is a leaf, it returns the class label of that leaf.

Otherwise, it checks the value of the instance's attribute that

matches the current node's splitting attribute. Based on this value,

it either moves to the left or right child node and continues the

prediction process recursively.

predict(data):

Uses the predict_instance function to predict the class for each

row in the data and returns a list of predictions.

This algorithm constructs a decision tree based on maximizing

the Pearson's correlation coefficient at each split. As a result, the

tree divides the dataset in a way that each split is most correlated

with the target variable. This is different from more traditional

tree algorithms like the ID3 or C4.5, which use entropy or the

Gini impurity as the criterion for making splits.

4. Multi-Class Feature rank and Gaussian Kernel

based classification

Step 1: Feature Ranking

In the feature ranking step, the significance or importance of each

feature in the dataset is determined with respect to the target

variable. A specific method, such as mutual information,

correlation coefficient, or feature importance from a model like a

decision tree, is used to rank each feature. The outcome is a rank

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |561

or score that indicates the relevance or importance of each feature

with respect to the target variable. These ranks are then stored in

a vector for further processing in the subsequent steps.

Step 2: Feature Selection

Once the features have been ranked, the feature selection step

aims to select a subset of the most important or relevant features

based on predefined criteria. The ranking vector is first sorted in

descending order, ensuring that features with the highest ranks or

scores are considered first. Two criteria are provided for feature

selection:

a. The sum of ranks of the first i features is compared against a

fraction (defined by C1) of the total rank. If it's less than or equal

to this fraction, the feature is considered important and added to

the selected list.

b. Each feature's rank is compared to a threshold, which is the

maximum rank multiplied by C2. If a feature's rank is above this

threshold, it's considered important and added to the selected list.

Step 3: Classification using the Anisotropic Gaussian Kernel

With a selected subset of features, the classification step uses a

non-parametric method based on an anisotropic Gaussian kernel.

For each instance in the dataset, the method calculates a score

indicating the likelihood of the instance belonging to each class.

This is done using the Gaussian kernel, which computes the

similarity between the instance and all training samples. The

kernel is weighted by the rank of each feature, making it

anisotropic. The outcome is a score that provides the likelihood

of the instance belonging to a particular class. The class that

produces the maximum score for a given instance is assigned as

its predicted label.

Algorithm Steps:

Input:

 Training data with features and target labels

 C1, C2: Threshold values for feature subset selection (can be

determined by cross-validation)

Output:

 Model for classification using selected features

Steps:

1. Feature Ranking:

 - Calculate the rank (σ_j) of each feature in the training data

using a feature ranking method (e.g., mutual information).

 - Store the ranks in vector R.

2. Feature Selection:

 a. Sort vector R in descending order to get a sorted ranking

vector S.

 b. Select features based on the following criteria:

 i. Calculate the total rank of all features.

 ii. Initialize an empty list called "selected_features".

 iii. For each feature f_i in the dataset:

 1. If the sum of ranks of features from 1 to i (inclusive)

divided by the total rank is less than or equal to C1:

 - Add f_i to "selected_features".

 2. If the rank of f_i is greater than or equal to (maximum

rank * C2):

 - Add f_i to "selected_features".

3. Classification using the Anisotropic Gaussian Kernel:

 a. For each instance x in the dataset:

 i. For each class i:

 1. Calculate g_i(x) using the formula:

 g_i(x) = (1 / (n * product of σ_j from 1 to k)) * sum

from t=1 to n of [exp(sum from j=1 to k of [(x_j - x_j^t)^2 / (2 *

σ_j^2)]) * r_i^t]

 ii. Assign the class with the highest g_i(x) value to instance

x.

End of Algorithm

5. Experimental results

The dataset is composed of multiple parts, with a baseline dataset

capturing normal activities gathered during a 10-minute

simulation. Additionally, six different attack scenarios were

executed independently against the baseline architecture, each

involving RT0 as the rogue terminal. These attacks ranged from

basic denial-of-service (DOS) attacks to fake data injection and

logic attacks, each with varying numbers of messages and

durations.

The dataset is provided in the form of separate CSV files, and it

includes various fields such as message ID, timestamps, error

indicators, mode codes, channel information, and much more.

These fields provide detailed information about the messages

exchanged within the MIL-STD-1553 databus during both

normal operations and the simulated attacks. The dataset is a

valuable resource for studying the behavior of this databus under

different conditions and assessing the effectiveness of intrusion

detection and security measures.

Table 1: Sample thread cloud dataset

Features Skewness Kurtosis Mode Range Variance

msgId 0.189494 -1.30816 1 22999 53529192

timestamp 3.310311 10.78406 67.47067 5266.15 1056135

Error

modeCode

Channel 2.78255 5.743005 0 1 0.085169

connType 0.554083 -1.17511 0 2 0.617999

Sa 9.670794 161.3402 1 31 2.758459

Ssa 1.624146 1.227912 5 30 75.58434

Da 9.936773 110.0526 3 30 6.181331

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |562

Features Skewness Kurtosis Mode Range Variance

Dsa 2.534756 4.540211 0 20 36.35458

Wc 2.379626 4.722685 2 31 67.95668

modeCodeVal -24.3663 591.7619 17 13 0.282783

txRsp -8.69845 73.66835 8.5 8.5 0.907073

txSts -0.58344 -1.00942 6 6 3.289346

rxRsp 0 0 8.5 0 0

rxSts -0.00579 -1.59076 5 5 2.786449

dw0 1.552994 1.336516 0 47 157.6272

dw1 -0.759 -1.42304 11 11 26.41443

dw2 -1.09264 -0.62502 19 19 52.16003

dw3 -1.19516 -0.3292 26 26 94.19917

dw4 -2.01009 2.580657 20 20 38.30193

dw5 -1.15126 -0.38477 12 12 18.67084

dw6 -1.3204 0.019284 20 20 53.94966

dw7 -1.57751 1.229838 13 13 17.25815

dw8 -0.96041 -1.07694 11 11 24.56234

dw9 -2.78109 5.734853 1 1 0.085229

dw10 -2.78109 5.734853 1 1 0.085229

dw11 -2.78109 5.734853 1 1 0.085229

dw12 -2.78109 5.734853 1 1 0.085229

dw13 -2.78109 5.734853 1 1 0.085229

dw14 -2.78109 5.734853 1 1 0.085229

dw15 -2.78109 5.734853 1 1 0.085229

dw16 -2.78109 5.734853 1 1 0.085229

dw17 -2.78109 5.734853 1 1 0.085229

dw18 -2.78109 5.734853 1 1 0.085229

dw19 -2.78109 5.734853 1 1 0.085229

dw20 -3.35466 9.254449 1 1 0.065565

dw21 -3.35466 9.254449 1 1 0.065565

dw22 -3.35466 9.254449 1 1 0.065565

dw23 -3.35466 9.254449 1 1 0.065565

dw24 -3.35466 9.254449 1 1 0.065565

dw25 -3.35466 9.254449 1 1 0.065565

dw26 -3.35466 9.254449 1 1 0.065565

dw27 -3.35466 9.254449 1 1 0.065565

dw28 -3.35466 9.254449 1 1 0.065565

dw29 -3.35466 9.254449 1 1 0.065565

dw30 -3.35466 9.254449 1 1 0.065565

dw31 -3.35466 9.254449 1 1 0.065565

Gap 2.542136 4.462845 14 249968 5.89E+09

msgTime 2.049213 3.352466 65 667 29916.96

Class -6.83715 44.74991 1 1 0.019708

attack_type -2.69207 6.426248 6 6 1.389317

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |563

Fig.2: Statistical performance metrics and its analysis on maternity with 100000 test records.

The graph illustrates the evaluation outcomes of various machine

learning models applied to a maternity dataset. The evaluation

metrics employed include Accuracy, Recall, Precision, and F-

measure. Among the models tested, the proposed model

demonstrated the highest overall performance, achieving an

Accuracy of 0.985, as well as impressive scores for Recall,

Precision, and F-measure. These results indicate that the proposed

model exhibits strong predictive capabilities, effectively

identifying patterns and making accurate predictions on the

dataset.

In contrast, the KNN, NB, and Logistic models exhibited lower

performance, with accuracy ranging from 0.74 to 0.79. The RF

model attained a relatively higher Accuracy of 0.76, but its

Precision score was low at 0.74.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |564

Fig. 3: Statistical performance metrics and its analysis on maternity dataset with 200000 records.

Each model's accuracy is presented as a percentage, representing

the proportion of instances correctly classified in the dataset. The

K-Nearest Neighbor (KNN) algorithm attained an accuracy of

0.95, while the proposed model outperformed all others with the

highest accuracy of 0.983.Recall, also referred to as sensitivity,

assesses the proportion of true positives accurately identified by

the model. The proposed model demonstrated the highest recall

of 0.984, indicating its ability to correctly identify a significant

number of true positives in the dataset.

6. Conclusion

IoT devices and networks play a crucial role in the Internet but

have security weaknesses and vulnerabilities. Most widely-used

IoT devices lack security design, making them vulnerable to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |565

recent attacks that exploit these weaknesses and recruit the

devices to cause severe harm. In this work, a cluster based

classification approach was proposed for detecting IoT bot cyber

attacks. The proposed method achieved good results in terms of

accuracy, precision, recall and F1-score, compared to traditional

methods. The results demonstrate that the cluster based

classification approach is a promising solution for detecting IoT

bot cyber attacks in real-time Parallel multi-class classification

refers to the process of performing classification tasks

simultaneously on multiple classes or categories of data using

parallel computing techniques. In traditional multi-class

classification, a model is trained to classify data into one of

several mutually exclusive classes. However, in some scenarios,

it may be advantageous to perform these classifications in

parallel, especially when dealing with a large number of classes

or when speed and efficiency are crucial. Parallel multi-class

classification can be implemented using parallel processing or

distributed computing frameworks to train and evaluate multiple

classifiers concurrently. Each classifier is responsible for

classifying data into one of the classes, and the results are

combined to make the final prediction as shown in figure 1.

References

[1] M. Elsisi, M. Amer, A. Dababat, and C.-L. Su, “A

comprehensive review of machine learning and IoT

solutions for demand side energy management,

conservation, and resilient operation,” Energy, vol. 281, p.

128256, Oct. 2023, doi: 10.1016/j.energy.2023.128256.

[2] C. Alex, G. Creado, W. Almobaideen, O. A. Alghanam,

and M. Saadeh, “A Comprehensive Survey for IoT Security

Datasets Taxonomy, Classification and Machine Learning

Mechanisms,” Computers & Security, vol. 132, p. 103283,

Sep. 2023, doi: 10.1016/j.cose.2023.103283.

[3] I. A. Adeleke, N. I. Nwulu, and O. A. Ogbolumani, “A

hybrid machine learning and embedded IoT-based water

quality monitoring system,” Internet of Things, vol. 22, p.

100774, Jul. 2023, doi: 10.1016/j.iot.2023.100774.

[4] M. E. Elaraby, A. A. Ewees, and A. M. Anter, “A robust

IoT-based cloud model for COVID-19 prediction using

advanced machine learning technique,” Biomedical Signal

Processing and Control, vol. 87, p. 105542, Jan. 2024, doi:

10.1016/j.bspc.2023.105542.

[5] R. Lazzarini, H. Tianfield, and V. Charissis, “A stacking

ensemble of deep learning models for IoT intrusion

detection,” Knowledge-Based Systems, vol. 279, p.

110941, Nov. 2023, doi: 10.1016/j.knosys.2023.110941.

[6] F. Aloraini, A. Javed, O. Rana, and P. Burnap, “Adversarial

machine learning in IoT from an insider point of view,”

Journal of Information Security and Applications, vol. 70,

p. 103341, Nov. 2022, doi: 10.1016/j.jisa.2022.103341.

[7] Md. A. Ahmed, Md. S. Hossain, W. Rahman, A. H. Uddin,

and Md. T. Islam, “An advanced Bangladeshi local fish

classification system based on the combination of deep

learning and the internet of things (IoT),” Journal of

Agriculture and Food Research, vol. 14, p. 100663, Dec.

2023, doi: 10.1016/j.jafr.2023.100663.

[8] D. Tiwari, B. S. Bhati, B. Nagpal, S. Sankhwar, and F. Al-

Turjman, “An enhanced intelligent model: To protect

marine IoT sensor environment using ensemble machine

learning approach,” Ocean Engineering, vol. 242, p.

110180, Dec. 2021, doi: 10.1016/j.oceaneng.2021.110180.

[9] S. Hamdan, S. Almajali, M. Ayyash, H. Bany Salameh, and

Y. Jararweh, “An intelligent edge-enabled distributed

multi-task learning architecture for large-scale IoT-based

cyber–physical systems,” Simulation Modelling Practice

and Theory, vol. 122, p. 102685, Jan. 2023, doi:

10.1016/j.simpat.2022.102685.

[10] Y. Cao, Z. Wang, H. Ding, J. Zhang, and B. Li, “An

intrusion detection system based on stacked ensemble

learning for IoT network,” Computers and Electrical

Engineering, vol. 110, p. 108836, Sep. 2023, doi:

10.1016/j.compeleceng.2023.108836.

[11] H. Huang, L. Zhao, and Y. Wu, “An IoT and machine

learning enhanced framework for real-time digital human

modeling and motion simulation,” Computer

Communications, Sep. 2023, doi:

10.1016/j.comcom.2023.09.024.

[12] B. Sharma, L. Sharma, C. Lal, and S. Roy, “Anomaly based

network intrusion detection for IoT attacks using deep

learning technique,” Computers and Electrical Engineering,

vol. 107, p. 108626, Apr. 2023, doi:

10.1016/j.compeleceng.2023.108626.

[13] S. Kaddoura, A. El Arid, and A. Al-Dulaimy, “Chapter 2 -

Supervised machine learning techniques to protect IoT

healthcare environment against cyberattacks,” in Intelligent

Edge Computing for Cyber Physical Applications, D. J.

Hemanth, B. B. Gupta, M. Elhoseny, and S. V. Shinde,

Eds., in Intelligent Data-Centric Systems. , Academic Press,

2023, pp. 17–34. doi: 10.1016/B978-0-323-99412-5.00001-

0.

[14] S. Kakandwar, B. Bhushan, and A. Kumar, “Chapter 3 -

Integrated machine learning techniques for preserving

privacy in Internet of Things (IoT) systems,” in Blockchain

Technology Solutions for the Security of IoT-Based

Healthcare Systems, B. Bhushan, S. K. Sharma, M.

Saračević, and A. Boulmakoul, Eds., in Cognitive Data

Science in Sustainable Computing. , Academic Press, 2023,

pp. 45–75. doi: 10.1016/B978-0-323-99199-5.00012-4.

[15] R. K. Muna, M. I. Hossain, Md. G. R. Alam, M. M. Hassan,

M. Ianni, and G. Fortino, “Demystifying machine learning

models of massive IoT attack detection with Explainable AI

for sustainable and secure future smart cities,” Internet of

Things, vol. 24, p. 100919, Dec. 2023, doi:

10.1016/j.iot.2023.100919.

[16] A. Alatram, L. F. Sikos, M. Johnstone, P. Szewczyk, and J.

J. Kang, “DoS/DDoS-MQTT-IoT: A dataset for evaluating

intrusions in IoT networks using the MQTT protocol,”

Computer Networks, vol. 231, p. 109809, Jul. 2023, doi:

10.1016/j.comnet.2023.109809.

[17] N. Tekin, A. Acar, A. Aris, A. S. Uluagac, and V. C.

Gungor, “Energy consumption of on-device machine

learning models for IoT intrusion detection,” Internet of

Things, vol. 21, p. 100670, Apr. 2023, doi:

10.1016/j.iot.2022.100670.

[18] N. Prazeres, R. L. de C. Costa, L. Santos, and C. Rabadão,

“Engineering the application of machine learning in an IDS

based on IoT traffic flow,” Intelligent Systems with

Applications, vol. 17, p. 200189, Feb. 2023, doi:

10.1016/j.iswa.2023.200189.

[19] P. Sanju, “Enhancing intrusion detection in IoT systems: A

hybrid metaheuristics-deep learning approach with

ensemble of recurrent neural networks,” Journal of

Engineering Research, p. 100122, Jun. 2023, doi:

10.1016/j.jer.2023.100122.

[20] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(10s), 556–566 |566

Ali, and J. Ahmad, “Enhancing IoT network security

through deep learning-powered Intrusion Detection

System,” Internet of Things, vol. 24, p. 100936, Dec. 2023,

doi: 10.1016/j.iot.2023.100936.

[21] B. Sharma, L. Sharma, C. Lal, and S. Roy, “Explainable

artificial intelligence for intrusion detection in IoT

networks: A deep learning based approach,” Expert

Systems with Applications, vol. 238, p. 121751, Mar. 2024,

doi: 10.1016/j.eswa.2023.121751.

[22] M. Sarhan, S. Layeghy, N. Moustafa, M. Gallagher, and M.

Portmann, “Feature extraction for machine learning-based

intrusion detection in IoT networks,” Digital

Communications and Networks, Sep. 2022, doi:

10.1016/j.dcan.2022.08.012.

[23] S. Ben Atitallah, M. Driss, and H. Ben Ghezala,

“FedMicro-IDA: A federated learning and microservices-

based framework for IoT data analytics,” Internet of

Things, vol. 23, p. 100845, Oct. 2023, doi:

10.1016/j.iot.2023.100845.

[24] A. Hennebelle, H. Materwala, and L. Ismail, “HealthEdge:

A Machine Learning-Based Smart Healthcare Framework

for Prediction of Type 2 Diabetes in an Integrated IoT,

Edge, and Cloud Computing System,” Procedia Computer

Science, vol. 220, pp. 331–338, Jan. 2023, doi:

10.1016/j.procs.2023.03.043.

[25] S. Saif, P. Das, S. Biswas, M. Khari, and V.

Shanmuganathan, “HIIDS: Hybrid intelligent intrusion

detection system empowered with machine learning and

metaheuristic algorithms for application in IoT based

healthcare,” Microprocessors and Microsystems, p. 104622,

Aug. 2022, doi: 10.1016/j.micpro.2022.104622.

[26] A. Sharifi and S. Goli-Bidgoli, “IFogLearn++: A new

platform for fog layer’s IoT attack detection in critical

infrastructure using machine learning and big data

processing,” Computers and Electrical Engineering, vol.

103, p. 108374, Oct. 2022, doi:

10.1016/j.compeleceng.2022.108374.

[27] O. Habibi, M. Chemmakha, and M. Lazaar, “Imbalanced

tabular data modelization using CTGAN and machine

learning to improve IoT Botnet attacks detection,”

Engineering Applications of Artificial Intelligence, vol.

118, p. 105669, Feb. 2023, doi:

10.1016/j.engappai.2022.105669.

[28] T. Gaber, A. El-Ghamry, and A. E. Hassanien, “Injection

attack detection using machine learning for smart IoT

applications,” Physical Communication, vol. 52, p. 101685,

Jun. 2022, doi: 10.1016/j.phycom.2022.101685.

