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Abstract:A group of internet-connected compromised devices forming a network is called a Botnet. This network can consist of 

personal computers, servers, IoT devices, and mobile devices. Botnets are one of the most common network security threats, used for 

malicious activities such as data theft, spamming, collecting personal information from users, and launching Distributed Denial of 

Service (DDoS) attacks. The growing popularity of IoT and mobile devices has made them an attractive target for attackers, as they often 

have unpatched security vulnerabilities. In today's world, computer networks play a crucial role in the information and communication 

technology era, connecting heterogeneous devices for data communication and sharing. However, the large number of Internet-connected 

devices makes them vulnerable to massive security attacks. Most widely-used IoT devices lack security design, making them vulnerable 

to recent attacks that exploit these weaknesses and recruit the devices to cause severe harm. Parallel multi-class classification refers to the 

process of performing classification tasks simultaneously on multiple classes or categories of data using parallel computing techniques. 

In traditional multi-class classification, a model is trained to classify data into one of several mutually exclusive classes. However, in 

some scenarios, it may be advantageous to perform these classifications in parallel, especially when dealing with a large number of 

classes or when speed and efficiency are crucial. Parallel multi-class classification can be implemented using parallel processing or 

distributed computing frameworks to train and evaluate multiple classifiers concurrently. 
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1. Introduction 

Intrusion represents an abnormal activity that poses a threat to 

computer or network systems. Such intrusions can be categorized 

as either internal or external. Internal intrusions originate from 

within the target network and involve acquiring unauthorized 

access to harm the system. On the other hand, external intrusions 

come from outside the network, where individuals gain illicit 

access to the network's information. Malicious and compromised 

nodes typically initiate internal attacks, while third parties initiate 

external ones.IoT, short for the Internet of Things, comprises a 

network of interconnected devices, objects, and systems via the 

internet. It interacts with its environment both internally and 

externally, detecting and responding to environmental 

changes[1]. IoT introduces innovative approaches to various 

aspects of life, ultimately enhancing the quality of human living 

standards. It enables real-time or remote communication between 

objects. With IoT's integration, the environment becomes smarter 

and can connect to virtually any device at any time. IoT collects 

and interprets data from a variety of sensors and devices, 

transmitting it wirelessly to smartphones or computers. Its 

applications are diverse, impacting areas such as household 

appliances, energy efficiency, environmental monitoring, and 

commercial enterprises, all contributing to a more comfortable 

living environment. IoT finds utility in distribution, logistics, 

automation, robotics, and surveillance systems, enhancing their 

modernization.IoT plays a pivotal role in enhancing people's lives 

by facilitating the exchange of data among a network of devices, 

thus creating a conducive environment for application 

development while anticipating market trends in advance. In 

today's fast-paced world, IoT has the capability to meet people's 

needs and desires.IoT technology also supports Industrial Internet 

of Things (IIoT), enhancing manufacturing operations and 

industrial processes[2]. It captures, shares, and interprets data 

across a distributed system interconnected by communication 

networks, enabling quicker decision-making. For instance, IIoT 

can predict and rectify equipment flaws in industrial settings 

before they lead to breakdowns, thereby saving time, resources, 

and costs. These small devices are commonly employed within 

conventional Industrial Control Systems (ICS).The Internet of 

Medical Things (IoMT) offers numerous advantages for both 

patients and healthcare professionals. Many IoMT devices are 

designed to meticulously monitor critical patient parameters, 

enabling physicians to make more accurate diagnoses and 

develop personalized treatment plans based on real-time data. 

IoMT facilitates remote healthcare and guidance, allowing 

devices to collect data from patients' homes and securely transmit 

it to healthcare providers, eliminating the need for frequent clinic 

visits. Patients can now monitor their health in real-time, rather 

than relying solely on annual check-ups.While IoMT devices 

provide numerous benefits such as convenience, enhanced patient 

care, and cost reduction, they also bring certain risks, making 

security a critical concern[3-5]. One of the most significant 

threats is the potential theft of sensitive medical information, 

which, if exposed, could be embarrassing or harmful to 
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individuals. Hackers are not solely interested in consumer health 

data.In the context of data analysis, there are various strategies 

for determining the best features to split instructional datasets, 

including the Gini index and Information Gain. Decision trees are 

commonly used to classify unknown samples based on distinctive 

features. These trees are constructed by creating a path from the 

root node to a leaf node, following a top-down recursive division 

and conquer strategy. Decision trees offer advantages such as 

intuitive knowledge representation, accurate classification, and 

ease of implementation[6]. However, they have limitations, 

including a bias toward features with higher values when dealing 

with continuous attributes with varying strata. Support Vector 

Machine (SVM): SVM is a technique used to classify data by 

identifying the optimal line that separates data points into 

different categories. This separation is achieved by maximizing 

the margins between the categories, resulting in equal spacing 

between the lines. When provided with labeled training data, the 

SVM algorithm constructs an ideal hyperplane that can be used to 

label new data points. Random Forest: The Random Forest 

system consists of multiple trees that are constructed randomly 

and then collectively used to vote for a category. The category 

with the most votes is selected as the final classification. 

Although Random Forest methods are derived from decision 

trees, they differ significantly. In traditional Decision Trees, a 

series of rules is generated and applied to classify new data when 

a test dataset is fed into the system. On the other hand, Random 

Forest employs decision trees to create a set of rules and then 

selects a category, effectively addressing overfitting issues. K-

Nearest Neighbors (KNN): KNN represents a method of 

categorizing samples based on their proximity in an n-

dimensional space. When classifying an unknown sample, the 

algorithm identifies k training samples in the pattern space that 

are nearest to the unknown sample and assigns the category based 

on the majority among its k closest neighbors. KNN is considered 

a slow learner because it retains all training data and constructs a 

classification system only when needed. This method is suitable 

for use with labeled, noise-free, and small datasets.Naïve Bayes: 

Naïve Bayes Classification estimates the likelihood of an event 

based on prior knowledge of that event, making it particularly 

relevant in scenarios like DoS threat detection using network 

traffic data. It relies on Bayes' theorem and strict independence 

assumptions, meaning the presence or absence of one attribute 

does not influence the presence or absence of another. Bayesian 

classifiers perform well in large databases in terms of execution 

time and accuracy, especially when used in conjunction with big 

data[7].  

Logistic Regresion: Logistic regression is a mathematical 

technique used to analyze data, where the outcome is determined 

by one or more independent factors. It aims to find the best-fit 

line between dependent and independent variables. Logistic 

regression can be used for projecting values, such as predicting 

income based on various factors. It is also used for forecasting 

trends when time is considered an independent factor. Machine 

learning technologies offer valuable insights into safety across 

various practical challenges and scenarios. Automatic machine 

learning methods provide a systematic and adaptable approach to 

addressing the complexities of emerging production connectivity 

platforms, ensuring stability and reliability[].For instance, 

SCADA platforms often exhibit repetitive communication 

patterns, with a limited set of commands repeated frequently. 

Such patterns can be used by ML techniques to build models for 

detecting anomalies and improving cybersecurity. However, the 

integration of IoT, cloud technology, and other technologies in 

SCADA networks can pose significant security challenges, as 

discussed in [9].Another approach involves a hazard analysis 

technique prioritizing confidentiality, security, adaptability, and 

consistency in the context of IT and IIoT sectors [10]. This 

method assesses the likelihood of a hazard exploiting 

vulnerabilities and its impact on various stakeholders. 

Additionally, [11] presents a comprehensive examination of ML 

algorithms and their application to IoT data, emphasizing the 

need for suitable information prototypes and the challenges of 

scale and real-time data processing.Cybersecurity in IIoT is a 

critical concern, [11] discusses effective cybersecurity options for 

IIoT design, considering data breaches and security 

measures.[12] focuses on deep learning methods for intrusion 

detection, such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), highlighting the importance of 

accurate detection of intrusions in wideband communication 

systems.This type of Intrusion Detection System (IDS) 

overcomes the limitations of Signature-Based Intrusion Detection 

Systems (SIDS) by focusing on network behavior. Anomaly 

Intrusion Detection System (AIDS) incorporates machine 

learning, knowledge-based techniques, and statistical-based 

techniques to create a robust intrusion detection system. AIDS 

identifies anomalies, intrusions, or unknown threats in a network 

by detecting even slight deviations from the typical network 

behavior, triggering alerts when danger is detected. The 

development process of AIDS involves both a training phase and 

a testing phase. During training, AIDS learns the network's 

normal behavior, and during testing, it uses a dataset with unseen 

intrusions to detect and classify threats. AIDS is particularly 

advantageous as it can detect zero-day attacks, making it a 

valuable addition to network security. Additionally, it has the 

capability to identify internal threats. In a Distributed Intrusion 

Detection System (DIDS), multiple Intrusion Detection Systems 

(IDS) are employed to monitor an extensive network. Each node 

in the network is equipped with an IDS agent, and these IDS 

agents collaborate with each other or a centralized server to 

observe network activities. The IDS agents perform event 

scrutiny, intrusion detection, and take appropriate actions when 

necessary. DIDS offers the benefit of avoiding a single point of 

failure and is highly scalable. It can be implemented individually, 

where each node monitors the behavior of others and alerts a 

reporting agent if unusual behavior is detected. Alternatively, in a 

cooperative approach, nodes collaborate to determine whether a 

monitored node is under attack. 

2. Related Works 

Smart metering applications encompass a variety of use cases, 

including monitoring the stock of goods in the retail sector, 

controlling electricity usage in smart grids, and monitoring water, 

oil, and gas levels. Smart meters play a crucial role in improving 

the efficiency of solar energy plants by adjusting the angles of 

solar panels. However, these applications face both physical and 

cyber threats, with analog meters being more vulnerable to 

physical attacks. In the context of smart homes, electronic 

devices are interconnected with smart meters in the Smart Home 

Area Network, enabling cost and load management. Ensuring the 

security of data collected from these devices is crucial, as 

attackers may attempt to tamper with data, resulting in financial 

losses[13].Smart medical care systems rely on three essential 

components: hospital organization, lab administration, and 

clinical findings. By embedding sensors and actuators in medical 

devices and instruments accessible via the internet, smart 
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hospitals are created. This connectivity facilitates the 

communication of information between doctors, patients, test 

results, and medical devices. In the retail sector, IoT applications 

are developed to monitor and manage goods in warehouses and 

enhance the shopping experience. However, retail companies face 

security challenges, with adversaries attempting to manipulate 

product information to boost sales or gain unauthorized access to 

customer data, such as credit card details.Smart homes leverage 

IoT technology to remotely control and regulate electronic 

appliances, enhance security through sensors on doors and 

windows, and monitor energy and water supply. Logic-based 

security techniques, as proposed by [14], can enhance safety by 

comparing user activities with standard actions to detect 

intrusions.IoT applications in the smart environment domain 

cover various areas, including fire detection, snow monitoring, 

landslide prevention, earthquake detection, and pollution 

monitoring. The data gathered by these applications is crucial for 

government organizations. However, false negatives and false 

positives in smart environment applications can have disastrous 

consequences, emphasizing the need for robust data integrity and 

security measures.Booters, a form of Distributed-Denial-of-

Service (DDoS) threat, are employed by malicious users to 

disrupt network speeds. The dataset related to booter threats 

comprises nine different types of threats executed against IP 

addresses, each consisting of data packets exceeding 250 GB. 

The dataset is openly accessible, although individual packets are 

not labeled. Instead, various booter threats are grouped into 

files.The Botnet dataset combines existing datasets through 

overlay techniques, including ISOT, ISCX 2012, and CTU-13, 

capturing both normal and botnet behavior. It offers a testing 

dataset of 8.5 GB and a training dataset of 5.3 GB, both in packet 

form.The Canadian Institute for Cybersecurity provides the CIC 

Dos dataset, focusing on denial-of-service attacks at the 

application layer[16]. This dataset includes eight distinct DoS 

threats and captures network traffic data over a 24-hour period in 

packet form.The CIDDS-002 port scan dataset is derived from the 

base CIDDS-001 dataset, encompassing network flow data 

observed over two weeks. It includes port scan attacks and 

normal network behavior, with metadata available in a technical 

report.Ambusaidi et al. (2016) employ the Mutual Information 

(MI) feature selection technique to select optimal features for an 

intrusion detection system (IDS). They combine multiple 

classifiers, including the Least Square-Support Vector Machine 

(LS-SVM), to differentiate between various attack classes based 

on computed relevance scores between class labels and 

instances.[17] propose an anomaly-based IDS using Recurrent 

Neural Networks (RNN), a deep learning technique. They 

evaluate the RNN-based IDS model using the NSL-KDD 

intrusion detection dataset, conducting experiments for multiclass 

and binary classification scenarios. The IDS utilizes RNN's 

ability to provide feedback from past data to make real-time 

predictions.[18] developed an Anomaly Traffic Detection method 

utilizing Support Vector Machine (SVM), a supervised machine 

learning classification technique. This approach introduces a 

novel algorithm for estimating data instance entropy. It identifies 

deviations from the normal network behavior by setting a 

threshold value, with anomalies occurring when this threshold is 

exceeded. SVM serves as the classifier, and its effectiveness is 

enhanced through the application of Particle Swarm Optimization 

(PSO). The evaluation of this Anomaly Traffic Detection method 

employs datasets such as KDD CUP 99 and DARPA to classify 

various types of attacks. Feature selection and voting criteria are 

employed to select the most relevant attributes for classification, 

adhering to the min-max principle. This method excels in 

achieving high accuracy while maintaining a low error rate in 

identifying different attack varieties.[19]  propose a unique 

intrusion detection system tailored for the IoT environment, 

leveraging deep learning technology. They highlight the 

challenges posed by numerous protocols in IoT platforms, which 

often encounter zero-day threats that deviate slightly from known 

cyber risks. Their approach involves a network intrusion 

detection scheme based on Conditional Variational Autoencoder 

(CVAE), which consolidates intrusion labels within the decoder. 

A key advantage of this model is feature reconstruction, making 

it suitable for IoT networks' network intrusion detection. It 

streamlines computational resources by training the technique in 

a single step. [20] introduce an anomaly-based intrusion detection 

system to mitigate cloud threats. They employ Binary-based 

Particle Swarm Optimization (BPSO) to select the most relevant 

instances and classify them using Support Vector Machine 

(SVM), fine-tuning SVM control parameters using Standard-

based Particle Swarm Optimization (SPSO).[21] address security 

issues in the virtual network layer of cloud computing. They 

design a security scheme based on snort and various classifiers, 

such as decision trees, associative models, and Bayesian models. 

The intrusion detection system is deployed in each host, enabling 

both offline and real-time analysis.[22] develop the Online 

Intrusion Detection System Cloud System (OIDCS) to detect 

zero-day threats in online mode. They introduce the NeuCube 

spiking neural network architecture to OIDCS and employ the 

TBR algorithm, resulting in high accuracy.[23] create a packet 

scrutinization algorithm and normalized K-means with recurrent 

neural network (NK-RNN) to enhance trust authority, cloudlet 

controller, and virtual machine security. They introduce a one-

time signature scheme for cloud data access, effectively detecting 

port scans and flooding attacks.[24] address security challenges 

in Unmanned Aerial Vehicle Networks (UAVs) using an agent-

based self-protective method (ASP-UAVN) based on the Human 

Immune System (HIS). This method distinguishes secure routes 

from attack-prone UAVs, resulting in improved Packet Delivery 

Rate (PDR) and reduced False Positive Rate, False Negative 

Rate, and Packet Loss Rate (PLR) compared to other techniques. 

[25] deploys an Adaptive Intrusion Detection System based on 

deep learning in drones to detect intruders. Self-Taught Learning 

(STL) maintains the True Positive Rate, using a multi-class 

support vector machine and the Deep-Q network algorithm for 

self-remediation.[26] introduce a Spline function-based intrusion 

detection system to mitigate host system threats. This Client-

Server model employs various spline functions to enhance IDS 

performance, with B-Splines providing particularly strong 

results.[27] propose a Big data-based Network Intrusion 

Detection framework to address security issues in Vehicular Ad-

hoc Networks (VANETs). The framework consists of network 

traffic detection and collection components, using Micro-batch 

data processing and Random Forest classification. Data 

normalization is achieved using [27]  enhance security in 

Vehicular Ad-hoc Networks (VANETs) with a Spline-Based IDS 

merged with clustering, forming Knot Flow Classification (KFC) 

for improved attack detection. [28]  introduce the Trust-Based 

Collaborative Intrusion Detection System (TBICDS), enabling 

vehicles to manage score tables of nearby vehicles and enhance 

security. 

3. Proposed Framework 

In this framework, a hybrid framework is developed on the 
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heterogeneous data in three phases as shown in figure 1. Cloud 

IoT Bot dataset is an important tool for detecting network 

intrusions in the Internet of Things (IoT) network. The dataset is 

a collection of data that represents the behavior of different 

devices connected to the network. The data includes information 

about the devices, such as their type, behavior, and 

communication patterns. This data is collected and stored in the 

cloud, where it can be analyzed to identify potential 

intrusions.The first step in analyzing the Cloud IoT Bot dataset is 

statistical outlier detection. Outliers are data points that are 

significantly different from the other data points in the dataset. 

Input Data:Input data refers to the raw information or 

observations that are provided to a system or algorithm for 

processing, analysis, or any other purpose. In the context of 

machine learning and data analysis, input data typically consists 

of features or variables that are used to make predictions, 

classifications, or gain insights. Input data can be structured (e.g., 

in a tabular format), unstructured (e.g., text, images, audio), or 

semi-structured (e.g., JSON). The quality and relevance of input 

data are critical factors in determining the performance of 

machine learning models.Data filtering is the process of selecting 

a subset of data from a larger dataset based on specific criteria or 

conditions. This is often done to reduce the size of the dataset or 

to focus on relevant information. Removing duplicates: 

Eliminating duplicate records from the dataset.Applying 

conditions: Selecting data points that meet certain criteria or 

conditions (e.g., selecting customers who made a purchase in the 

last month).Removing outliers: Excluding data points that are 

significantly different from the majority of the data, which can 

distort analysis or model training.Data filtering helps in cleaning 

and preparing data for further analysis or modeling by reducing 

noise and improving the quality of the dataset.Ranking involves 

ordering items or data points in a dataset based on a specific 

attribute or set of attributes. It assigns a numerical or ordinal 

position to each item, indicating its relative importance, value, or 

relevance within the dataset. Parallel multi-class classification 

refers to the process of performing classification tasks 

simultaneously on multiple classes or categories of data using 

parallel computing techniques. In traditional multi-class 

classification, a model is trained to classify data into one of 

several mutually exclusive classes. However, in some scenarios, 

it may be advantageous to perform these classifications in 

parallel, especially when dealing with a large number of classes 

or when speed and efficiency are crucial. Parallel multi-class 

classification can be implemented using parallel processing or 

distributed computing frameworks to train and evaluate multiple 

classifiers concurrently. Each classifier is responsible for 

classifying data into one of the classes, and the results are 

combined to make the final prediction as shown in figure 1. 

 

Fig 1: Multi-class parallel ranked based Classification Framework 

Algorithm 1: Filling missing values and Data transformation 

approach 

Filling missing values and Data transformation approach 

1. Read BoT-IoT training dataset. 

2. To each feature F in dataset D. 

3.  if(F[i]==Null) 

4.  then  

5.  end if 

6. end loop 

7. To each feature F in dataset D. 

8. Compute non-linear data transformation as 

𝑁𝐿𝐺

= 𝐹[ 𝑖] . 𝑙𝑜𝑔( 𝐹[ 𝑖]).∑
1

√2𝜋 𝑙𝑜𝑔(𝐹[ 𝑖])
. 𝑒−|𝑀𝑎𝑥{𝐹[ 𝑟]}−𝐹[𝑖]|/2

𝑁

𝑟=0

 

The given steps outline the process for handling missing values 

and transforming data in the BoT-IoT training dataset. Step 1 

involves reading the BoT-IoT training dataset. This is a crucial 

step as it sets the foundation for the subsequent steps.Step 2 to 6 

focuses on handling missing values. For each feature F in the 

dataset D, the process checks if the value at index i is null (Step 

3). If it is null, the missing value is filled in (Step 4). The process 

then ends the if loop (Step 5) and repeats this process for each 

feature in the dataset (Step 6).Step 7 to 8 focuses on data 

transformation. For each feature F in the dataset D, a non-linear 

data transformation is applied (Step 8). This step is important as it 

helps in making the data more meaningful and useful for analysis. 

Multi-class Fast Parallel Decision tree: 

This parallel and fast decision tree is designed for regression 
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tasks, where the goal is to predict a continuous target variable 

based on the values of other attributes or features. The code 

defines several functions, including covariance, variance, and 

pearsons_correlation_coefficient, which are essential for 

calculating correlation and variance between variables. The heart 

of the code is the FPCCTree class, which represents the decision 

tree model. It allows you to fit the model to a dataset using the fit 

method, build the tree structure with the build_tree method, and 

make predictions for new instances using the predict method. The 

tree construction process relies on finding attribute-value pairs 

with the highest Pearson's correlation coefficient with the target 

variable, and it continues recursively until specific stopping 

criteria are met. This decision tree can be a useful tool for 

regression tasks where understanding the linear relationship 

between attributes and the target variable is crucial for making 

accurate predictions. 

FUNCTION covariance(x, y): 

    RETURN mean((x - mean(x)) * (y - mean(y))) 

FUNCTION variance(x): 

    RETURN mean((x - mean(x))^2) 

FUNCTION pearsons_correlation_coefficient(attr, decision_attr): 

    cov = covariance(attr, decision_attr) 

    RETURN cov / sqrt(variance(attr) * variance(decision_attr)) 

CLASS PCCTree: 

    INIT(epsilon = 0.05): 

        self.epsilon = epsilon 

    FUNCTION fit(data, target_column): 

        self.target = target_column 

        self.tree = build_tree(data) 

    FUNCTION build_tree(data): 

        IF length(unique(data[self.target])) == 1: 

            RETURN { "type": "leaf", "class": 

data[self.target].first_element() } 

        max_pcc = -infinity 

        best_attr = None 

        best_value = None 

        FOR attr IN data.columns: 

            IF attr == self.target: 

                CONTINUE 

            FOR value IN unique(data[attr]): 

                subset = filter data where data[attr] == value 

                IF length(subset) == 0: 

                    CONTINUE 

                pcc = pearsons_correlation_coefficient(subset[attr], 

subset[self.target]) 

                IF pcc > max_pcc: 

                    max_pcc = pcc 

                    best_attr = attr 

                    best_value = value 

        IF best_attr is None: 

            RETURN { "type": "leaf", "class": 

majority_class(data[self.target]) } 

        left_subset = filter data where data[best_attr] <= best_value 

        right_subset = filter data where data[best_attr] > best_value 

        IF length(left_subset) == 0 OR length(right_subset) == 0: 

            RETURN { "type": "leaf", "class": 

majority_class(data[self.target]) } 

        RETURN { 

            "type": "node", 

            "attribute": best_attr, 

            "value": best_value, 

            "left": build_tree(left_subset), 

            "right": build_tree(right_subset) 

        } 

    FUNCTION predict_instance(instance, node): 

        IF node["type"] == "leaf": 

            RETURN node["class"] 

        IF instance[node["attribute"]] <= node["value"]: 

            RETURN predict_instance(instance, node["left"]) 

        ELSE: 

            RETURN predict_instance(instance, node["right"]) 

    FUNCTION predict(data): 

        RETURN apply predict_instance on each row of data 

The main function to train or construct the tree. 

It sets the target column (the one we want to predict) and starts 

the recursive tree-building process using the build_tree function. 

build_tree(data): 

If all data points in the current dataset belong to the same class, it 

returns a leaf node with that class label. 

It then initializes variables to track the best attribute and value to 

split on, as well as the maximum Pearson's correlation 

coefficient. 

For each attribute in the data (excluding the target): 

For each unique value in that attribute: 

It computes the subset of data where the attribute equals that 

value. 

Computes the Pearson's correlation coefficient for that subset 

against the target column. 

If this coefficient is the highest seen so far, it updates the best 

attribute, best value, and max coefficient variables. 

If no suitable attribute is found to split on (i.e., all have the same 

value), it returns a leaf node with the majority class label. 

Otherwise, it splits the data into two subsets based on the best 

attribute and value found. 

If either subset is empty (which shouldn't happen with the given 

logic but is a safeguard), it returns a leaf node with the majority 

class label. 

It then recursively builds the tree for both left and right subsets. 

predict_instance(instance, node): 

Makes a prediction for a single instance. 

If the current node is a leaf, it returns the class label of that leaf. 

Otherwise, it checks the value of the instance's attribute that 

matches the current node's splitting attribute. Based on this value, 

it either moves to the left or right child node and continues the 

prediction process recursively. 

predict(data): 

Uses the predict_instance function to predict the class for each 

row in the data and returns a list of predictions. 

This algorithm constructs a decision tree based on maximizing 

the Pearson's correlation coefficient at each split. As a result, the 

tree divides the dataset in a way that each split is most correlated 

with the target variable. This is different from more traditional 

tree algorithms like the ID3 or C4.5, which use entropy or the 

Gini impurity as the criterion for making splits. 

4.  Multi-Class Feature rank and Gaussian Kernel 

based classification 

Step 1: Feature Ranking 

In the feature ranking step, the significance or importance of each 

feature in the dataset is determined with respect to the target 

variable. A specific method, such as mutual information, 

correlation coefficient, or feature importance from a model like a 

decision tree, is used to rank each feature. The outcome is a rank 
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or score that indicates the relevance or importance of each feature 

with respect to the target variable. These ranks are then stored in 

a vector for further processing in the subsequent steps. 

Step 2: Feature Selection 

Once the features have been ranked, the feature selection step 

aims to select a subset of the most important or relevant features 

based on predefined criteria. The ranking vector is first sorted in 

descending order, ensuring that features with the highest ranks or 

scores are considered first. Two criteria are provided for feature 

selection: 

a. The sum of ranks of the first i features is compared against a 

fraction (defined by C1) of the total rank. If it's less than or equal 

to this fraction, the feature is considered important and added to 

the selected list. 

b. Each feature's rank is compared to a threshold, which is the 

maximum rank multiplied by C2. If a feature's rank is above this 

threshold, it's considered important and added to the selected list. 

Step 3: Classification using the Anisotropic Gaussian Kernel 

With a selected subset of features, the classification step uses a 

non-parametric method based on an anisotropic Gaussian kernel. 

For each instance in the dataset, the method calculates a score 

indicating the likelihood of the instance belonging to each class. 

This is done using the Gaussian kernel, which computes the 

similarity between the instance and all training samples. The 

kernel is weighted by the rank of each feature, making it 

anisotropic. The outcome is a score that provides the likelihood 

of the instance belonging to a particular class. The class that 

produces the maximum score for a given instance is assigned as 

its predicted label. 

Algorithm Steps: 

Input: 

    Training data with features and target labels 

    C1, C2: Threshold values for feature subset selection (can be 

determined by cross-validation) 

Output: 

    Model for classification using selected features 

Steps: 

1. Feature Ranking: 

    - Calculate the rank (σ_j) of each feature in the training data 

using a feature ranking method (e.g., mutual information). 

    - Store the ranks in vector R. 

2. Feature Selection: 

    a. Sort vector R in descending order to get a sorted ranking 

vector S. 

    b. Select features based on the following criteria: 

        i. Calculate the total rank of all features. 

        ii. Initialize an empty list called "selected_features". 

        iii. For each feature f_i in the dataset: 

            1. If the sum of ranks of features from 1 to i (inclusive) 

divided by the total rank is less than or equal to C1: 

                - Add f_i to "selected_features". 

            2. If the rank of f_i is greater than or equal to (maximum 

rank * C2): 

                - Add f_i to "selected_features". 

3. Classification using the Anisotropic Gaussian Kernel: 

    a. For each instance x in the dataset: 

        i. For each class i: 

            1. Calculate g_i(x) using the formula: 

                g_i(x) = (1 / (n * product of σ_j from 1 to k)) * sum 

from t=1 to n of [exp(sum from j=1 to k of [(x_j - x_j^t)^2 / (2 * 

σ_j^2)]) * r_i^t] 

        ii. Assign the class with the highest g_i(x) value to instance 

x. 

End of Algorithm 

5. Experimental results 

The dataset is composed of multiple parts, with a baseline dataset 

capturing normal activities gathered during a 10-minute 

simulation. Additionally, six different attack scenarios were 

executed independently against the baseline architecture, each 

involving RT0 as the rogue terminal. These attacks ranged from 

basic denial-of-service (DOS) attacks to fake data injection and 

logic attacks, each with varying numbers of messages and 

durations. 

The dataset is provided in the form of separate CSV files, and it 

includes various fields such as message ID, timestamps, error 

indicators, mode codes, channel information, and much more. 

These fields provide detailed information about the messages 

exchanged within the MIL-STD-1553 databus during both 

normal operations and the simulated attacks. The dataset is a 

valuable resource for studying the behavior of this databus under 

different conditions and assessing the effectiveness of intrusion 

detection and security measures. 

Table 1: Sample thread cloud  dataset 

Features Skewness Kurtosis Mode Range Variance 

msgId 0.189494 -1.30816 1 22999 53529192 

timestamp 3.310311 10.78406 67.47067 5266.15 1056135 

Error 
     

modeCode 
    

Channel 2.78255 5.743005 0 1 0.085169 

connType 0.554083 -1.17511 0 2 0.617999 

Sa 9.670794 161.3402 1 31 2.758459 

Ssa 1.624146 1.227912 5 30 75.58434 

Da 9.936773 110.0526 3 30 6.181331 
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Features Skewness Kurtosis Mode Range Variance 

Dsa 2.534756 4.540211 0 20 36.35458 

Wc 2.379626 4.722685 2 31 67.95668 

modeCodeVal -24.3663 591.7619 17 13 0.282783 

txRsp -8.69845 73.66835 8.5 8.5 0.907073 

txSts -0.58344 -1.00942 6 6 3.289346 

rxRsp 0 0 8.5 0 0 

rxSts -0.00579 -1.59076 5 5 2.786449 

dw0 1.552994 1.336516 0 47 157.6272 

dw1 -0.759 -1.42304 11 11 26.41443 

dw2 -1.09264 -0.62502 19 19 52.16003 

dw3 -1.19516 -0.3292 26 26 94.19917 

dw4 -2.01009 2.580657 20 20 38.30193 

dw5 -1.15126 -0.38477 12 12 18.67084 

dw6 -1.3204 0.019284 20 20 53.94966 

dw7 -1.57751 1.229838 13 13 17.25815 

dw8 -0.96041 -1.07694 11 11 24.56234 

dw9 -2.78109 5.734853 1 1 0.085229 

dw10 -2.78109 5.734853 1 1 0.085229 

dw11 -2.78109 5.734853 1 1 0.085229 

dw12 -2.78109 5.734853 1 1 0.085229 

dw13 -2.78109 5.734853 1 1 0.085229 

dw14 -2.78109 5.734853 1 1 0.085229 

dw15 -2.78109 5.734853 1 1 0.085229 

dw16 -2.78109 5.734853 1 1 0.085229 

dw17 -2.78109 5.734853 1 1 0.085229 

dw18 -2.78109 5.734853 1 1 0.085229 

dw19 -2.78109 5.734853 1 1 0.085229 

dw20 -3.35466 9.254449 1 1 0.065565 

dw21 -3.35466 9.254449 1 1 0.065565 

dw22 -3.35466 9.254449 1 1 0.065565 

dw23 -3.35466 9.254449 1 1 0.065565 

dw24 -3.35466 9.254449 1 1 0.065565 

dw25 -3.35466 9.254449 1 1 0.065565 

dw26 -3.35466 9.254449 1 1 0.065565 

dw27 -3.35466 9.254449 1 1 0.065565 

dw28 -3.35466 9.254449 1 1 0.065565 

dw29 -3.35466 9.254449 1 1 0.065565 

dw30 -3.35466 9.254449 1 1 0.065565 

dw31 -3.35466 9.254449 1 1 0.065565 

Gap 2.542136 4.462845 14 249968 5.89E+09 

msgTime 2.049213 3.352466 65 667 29916.96 

Class -6.83715 44.74991 1 1 0.019708 

attack_type -2.69207 6.426248 6 6 1.389317 
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Fig.2: Statistical performance metrics and its analysis on maternity with 100000 test records. 

The graph illustrates the evaluation outcomes of various machine 

learning models applied to a maternity  dataset. The evaluation 

metrics employed include Accuracy, Recall, Precision, and F-

measure. Among the models tested, the proposed model 

demonstrated the highest overall performance, achieving an 

Accuracy of 0.985, as well as impressive scores for Recall, 

Precision, and F-measure. These results indicate that the proposed 

model exhibits strong predictive capabilities, effectively 

identifying patterns and making accurate predictions on the 

dataset. 

In contrast, the KNN, NB, and Logistic models exhibited lower 

performance, with accuracy ranging from 0.74 to 0.79. The RF 

model attained a relatively higher Accuracy of 0.76, but its 

Precision score was low at 0.74. 
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Fig. 3: Statistical performance metrics and its analysis on maternity dataset with 200000 records. 

Each model's accuracy is presented as a percentage, representing 

the proportion of instances correctly classified in the dataset. The 

K-Nearest Neighbor (KNN) algorithm attained an accuracy of 

0.95, while the proposed model outperformed all others with the 

highest accuracy of 0.983.Recall, also referred to as sensitivity, 

assesses the proportion of true positives accurately identified by 

the model. The proposed model demonstrated the highest recall 

of 0.984, indicating its ability to correctly identify a significant 

number of true positives in the dataset.  

6. Conclusion 

IoT devices and networks play a crucial role in the Internet but 

have security weaknesses and vulnerabilities. Most widely-used 

IoT devices lack security design, making them vulnerable to 
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recent attacks that exploit these weaknesses and recruit the 

devices to cause severe harm. In this work, a cluster based 

classification approach was proposed for detecting IoT bot cyber 

attacks. The proposed method achieved good results in terms of 

accuracy, precision, recall and F1-score, compared to traditional 

methods. The results demonstrate that the cluster based 

classification approach is a promising solution for detecting IoT 

bot cyber attacks in real-time Parallel multi-class classification 

refers to the process of performing classification tasks 

simultaneously on multiple classes or categories of data using 

parallel computing techniques. In traditional multi-class 

classification, a model is trained to classify data into one of 

several mutually exclusive classes. However, in some scenarios, 

it may be advantageous to perform these classifications in 

parallel, especially when dealing with a large number of classes 

or when speed and efficiency are crucial. Parallel multi-class 

classification can be implemented using parallel processing or 

distributed computing frameworks to train and evaluate multiple 

classifiers concurrently. Each classifier is responsible for 

classifying data into one of the classes, and the results are 

combined to make the final prediction as shown in figure 1. 
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