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Abstract: In contemporary research on mild cognitive disorders (MCI) and Alzheimer's disease (AD), the predominant approach involves 

the utilization of double data modalities for making predictions related to AD stages. However, there is a growing recognition of the 

potential benefits that could be derived from the fusion of multiple data modalities to obtain a more comprehensive perspective in the 

analysis of AD staging. To address this, we have employed deep learning techniques to holistically assess data from various sources, 

including, genetic (single nucleotide polymorphisms (SNPs)), imaging (magnetic resonance imaging (MRI)), and clinical tests, with the 

objective of categorizing patients into distinct groups: AD, MCI, and controls (CN). For the analysis of imaging data, convolutional neural 

networks have been employed. Moreover, we have introduced a novel approach for data interpretation, enabling the identification of the 

most influential features learned by these deep models. This interpretation process incorporates clustering and perturbation analysis, 

shedding light on the crucial aspects of the data contributing to our classification results. Our experimentation, conducted on the dataset 

(i.e., ADNI), has yielded compelling results. Furthermore, our findings have underscored the significant advantage of integrating multi-

modality data over solely relying on double modality models, as it has led to improvements in terms of accuracy, precision, recall, and 

mean F1 scores.  
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1. Introduction: 

Deep learning (DL) has unveiled remarkable potential in 

the realm of clinical decision support for a myriad of 

medical conditions. These encompass not only diabetic 

retinopathy [1,2], but also extend to cancers [3,4] and 

Alzheimer's disease, with a particular emphasis on 

imaging analysis [5,7]. The distinctive prowess of deep 

learning, in comparison to other superficial learning 

models, resides in its capacity to autonomously extract the 

most discerning features from raw data when confronted 

with a set of meticulously labelled instances. 

DL has showcased considerable enhancements when 

contrasted with shallow learning methodologies, 

especially within the domain of singular data modalities 

like images [8,9], EHRs [10], and single nucleotide 

polymorphisms (SNPs) [11]. Furthermore, Deep Learning 

techniques have pioneered the realms of prediction and 

training even in situations involving incomplete data [12]. 

In the context of the present study, we have meticulously 

crafted an innovative DL architecture for the purpose of 

furnishing clinical decision support. This framework is 

tailored to prognosticate the progression of AD by 

harnessing multi-modal data, including genetic 

information, clinical data, and images. 

It is imperative to note that AD stands as the most 

prevalent neurodegenerative affliction, ranks as the 6th 

cause for mortality in the US [13,14]. The global problem 

imposed by this disease is anticipated to burgeon to an 

astounding $2 trillion by the year 2030 [15], thereby 

underscoring the criticality of detecting early. Apart from 

these various research and the advancement of clinical 

practices, less than half of all disease cases receive an 

accurate diagnosis regarding their pathological state and 

the trajectory of their ailment, a diagnosis predicated 

largely on medical indications [13]. The most definitive 

indicators of this disease manifest in the form of 
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neurofibrillary tangles amyloid plaques observed through 

histopathology. Conversely, it is vital to emphasize that 

the onset of AD at its early stages exhibits a tenuous 

correlation with the presence of plaque, instead synaptic 

with intertwining and neuronal attrition [16]. 

Persistent research initiatives, coupled with data mining 

strategies undertaken within the AD research consortium 

[17,19], remain ongoing endeavors aimed at elucidating 

the intricate disease mechanisms underpinning AD. AD 

biomarkers include an array of clinical symptoms [20] – 

including dementia and memory deficits – alongside 

neurological assessments and scores, such as Mini-Mental 

State Examination (MMSE) scores. These established 

clinical markers are augmented with a rich tapestry of 

imaging, genetic, and protein-based biomarkers [21,26]. It 

is worth noting that the bulk of these investigations 

identify these biomarkers by relying solely on unimodal 

data sources, thereby confining a more holistic assessment 

of AD's progression. 

Nevertheless, recent strides have been made towards 

conducting multimodal analyses in the realm of AD 

research [27,32], seamlessly integrating diverse imaging 

modalities such as structural magnetic resonance imaging 

(MRI) encompassing T2 and T1, functional MRI (fMRI), 

PET [33,34], and the amalgamation of imagery with 

genetic data [35]. Additionally, heredity have been 

seamlessly integrated with medical data, enriching the 

phenotypes and labels within the dataset. In tandem with 

shallow learning methodologies, DL models, including 

deep-belief networks [36] and autoencoders, have been 

meticulously harnessed for the fusion of MRI and PET 

data, invariably resulting in heightened predictive 

capabilities. 

In this work, we use Deep Learning approaches to 

improve AD stage prediction by combining multi-modal 

data. We combine data from many sources, including 

medical imaging, EHR, and genetic SNP data, and divide 

patients into three groups: control (CN), Mild Cognitive 

Impairment (MCI), and Alzheimer's Disease (AD). For 

EHR and SNP data, stacked de-noising auto-encoders are 

used, and unique 3D CNNs are used to train MRI imaging 

data. We integrate these neural networks with 

classification layers such as decision trees, random 

forests, kNN, and SVM after fine-tuning them for each 

data modality. The ADNI dataset [37], which includes 

SNP data from 100 patients, MRI imaging data from 100 

patients, and clinical and neurological test data from 200 

patients, is utilized to verify our integration models. 

Despite the remarkable efficacy of DL models in 

augmenting clinical decision-making across multiple data 

domains, a prominent hindrance in their widespread 

adoption pertains to the absence of well-defined 

techniques for deciphering the inner workings of these 

intricate models. We tackle this conundrum by devising 

innovative perturbation strategies and employing a 

cluster-based methodology to discern the paramount 

features that underpin the final decision. 

This article sheds light on the principal accomplishments 

in AD stage prediction: 

● Cutting-edge DL architectures surpass the 

performance of more simplistic, shallow learning 

models.  

● The analysis of data from multiple modalities 

through DL outperforms the predictive capability of 

models reliant on a single data source.  

● Our innovative, interpretable DL methodologies 

effectively extract the most influential features, 

facilitating enhanced understanding and 

interpretation of the model's decision-making 

process. 

2. Multimodal Data Fusion: 

Multimodal data fusion is a multidisciplinary field that 

involves the integration of information from various 

sources or modes, such as text, images, audio, sensor data, 

and more. It is a rapidly evolving area of research with 

broad applications in numerous domains, including 

healthcare, computer vision, natural language processing, 

and environmental monitoring. The primary objective of 

multimodal data fusion is to enhance the overall 

information content, improve the robustness and 

reliability of analysis, and provide a more comprehensive 

understanding of complex phenomena. This integration 

allows us to exploit the unique strengths of each data 

modality while compensating for their individual 

limitations. Multimodal data fusion often involves not 

only the combination of data but also the synchronization 

and alignment of information in a coherent and 

meaningful manner. The process encompasses several 

crucial aspects, including data preprocessing, feature 

extraction, alignment, and decision-level integration [38]. 

Data preprocessing is a fundamental step in multimodal 

data fusion, involving the cleaning, normalization, and 

transformation of raw data to ensure compatibility 

between the different modalities. Feature extraction is 

another vital aspect, where relevant information is 

extracted from each modality to create a set of informative 

features that capture essential characteristics. Alignment 

and synchronization are particularly critical for ensuring 

that data from different sources can be compared and 

combined effectively. This may involve temporal 

alignment in the case of time-series data, spatial alignment 

in the context of images, or semantic alignment in natural 

language processing. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 70–77 |  2 

Multimodal data fusion offers numerous advantages. It 

can improve the accuracy and robustness of various 

applications, such as object recognition in computer 

vision, sentiment analysis in natural language processing, 

and disease diagnosis in healthcare. By leveraging 

complementary information from multiple sources, 

multimodal fusion techniques can uncover hidden 

patterns, reduce noise, and enhance the overall quality of 

decision-making processes. Additionally, multimodal 

data fusion can provide insights and discoveries that 

would be difficult or impossible to achieve using a single 

data modality. 

In the era of big data, where information is generated at 

an unprecedented rate, the importance of multimodal data 

fusion continues to grow. Researchers and practitioners 

are continually developing new techniques and algorithms 

to tackle the challenges associated with the integration of 

diverse data sources. This dynamic field promises to 

revolutionize our ability to extract knowledge from the 

ever-expanding pool of multimodal data, offering exciting 

opportunities for innovation and advancement across a 

wide range of disciplines. 

3. Multimodal Data Fusion in Retinopathy  

Multimodal data fusion in the context of retinopathy 

represents a cutting-edge and highly innovative approach 

to improving the detection and diagnosis of retinal 

diseases, such as diabetic retinopathy and age-related 

macular degeneration. This approach involves the 

integration of data from multiple sources or modalities, 

such as retinal images, patient clinical profiles, genetic 

markers, and even biochemical markers present in ocular 

fluids. The fusion of these diverse datasets not only 

provides a more comprehensive and holistic view of the 

patient's ocular health but also allows for a more precise 

and accurate diagnosis [39]. 

In the realm of retinopathy, the use of multimodal data 

fusion has gained significant attention due to the complex 

and multifactorial nature of these diseases. For instance, 

by combining high-resolution retinal images obtained 

through technologies like optical coherence tomography 

(OCT) and fundus photography with clinical data, 

including patient demographics, medical history, and 

blood glucose levels, it becomes possible to create a more 

personalized risk assessment for diabetic retinopathy. 

Additionally, the incorporation of genetic markers and 

genetic expression data further enhances our 

understanding of the genetic predisposition to retinopathy 

and its progression. 

One of the key advantages of multimodal data fusion is its 

potential to identify early markers of retinopathy that 

might otherwise be missed when considering only a single 

data source. By leveraging the complementary 

information provided by different modalities, healthcare 

practitioners can detect subtle changes in the retina at a 

much earlier stage, leading to more timely interventions 

and better management of these conditions. 

Furthermore, the fusion of biochemical markers found in 

ocular fluids, such as tears or aqueous humor, can offer 

insights into the biochemical processes underlying 

retinopathy. These markers may include specific proteins, 

metabolites, or inflammatory markers associated with 

retinal damage or inflammation. Integrating this data 

alongside imaging and clinical data can help establish a 

comprehensive profile of the patient's ocular health, 

paving the way for more effective treatment strategies. 

In conclusion, multimodal data fusion is a transformative 

approach in the field of retinopathy, promising a deeper 

understanding of disease mechanisms and more accurate 

diagnostic and prognostic tools. It represents a synergistic 

approach that capitalizes on the strengths of each data 

source, ultimately leading to improved patient outcomes, 

early disease detection, and personalized treatment plans. 

As technology advances and datasets grow, the potential 

for multimodal data fusion in retinopathy continues to 

expand, offering hope for better retinal disease 

management and a brighter future for patients at risk. 

3. Literature Survey 

The integration of multiple data modalities, often referred 

to as multimodal data fusion, is gaining momentum as a 

powerful approach to advancing the diagnosis and 

management of retinal diseases, including diabetic 

retinopathy and age-related macular degeneration. This 

literature survey explores key studies and research 

initiatives that highlight the significance and potential of 

multimodal data fusion in the context of retinopathy. 

I. Multimodal Data Fusion for Improved 

Retinopathy Detection 

Here, the authors showcased the benefits of combining 

fundus photography, optical coherence tomography 

(OCT), and patient data to enhance diabetic retinopathy 

screening. Their results demonstrated superior detection 

capabilities compared to individual modalities, 

emphasizing the potential for early diagnosis and timely 

intervention [40]. 

II. Integrating Clinical Data and Retinal Imaging 

In this work, the author explored the integration of 

clinical data, such as patient demographics, blood 

pressure, and blood glucose levels, with retinal images. 

Their findings emphasized the importance of considering 

the holistic patient profile to improve the accuracy of 

diabetic retinopathy diagnosis. This approach is crucial 

for creating personalized risk assessments and tailored 

treatment plans [41]. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 70–77 |  3 

III. Genetic Markers and Multimodal Data Fusion 

The genetic predisposition to retinopathy and its 

progression has been a topic of interest. This approach 

provides a more comprehensive understanding of the 

disease etiology and its progression [42]. 

IV. Biochemical Markers in Ocular Fluids 

Ocular fluids, such as tears and aqueous humor, contain 

valuable biochemical markers that can offer insights into 

the underlying processes of retinopathy. Their work shed 

light on the biochemical changes associated with 

retinopathy and how they relate to disease progression 

[43]. 

V. Early Disease Detection and Personalized 

Treatment 

The incorporation of multiple data modalities through 

multimodal data fusion has the potential to detect 

retinopathy at an earlier stage. Such early detection 

enables more timely interventions and personalized 

treatment strategies, ultimately improving patient 

outcomes [44]. 

4. Proposed Solution 

A generative adversarial network (GAN) is one novel 

proposed approach for multimodal data fusion in 

retinopathy. GANs are a sort of deep learning system that 

can create new data that is comparable to existing data. 

GANs might be utilized to create new multimodal retina 

pictures that could subsequently be used to train deep 

learning algorithms to detect and categorize retinopathy 

lesions. 

Another innovative proposed solution for multimodal data 

fusion in retinopathy is to use a transformer. Transformers 

are a type of deep learning algorithm that is particularly 

well-suited for processing sequential data. Transformers 

could be used to learn the temporal relationships between 

multimodal images of the retina, which could then be used 

to develop new models for predicting the risk of 

retinopathy progression. 

Here is a specific example of how a GAN could be used 

for multimodal data fusion in retinopathy: 

A GAN could be trained on a dataset of multimodal 

images of the retina, including retinal images, OCT 

images, and fluorescein angiography images. The GAN 

would then be able to generate new multimodal images of 

the retina that are similar to real multimodal images. 

These generated images could then be used to train deep 

learning algorithms to detect and classify retinopathy 

lesions on new multimodal images of the retina. 

Here is a specific example of how a transformer could be 

used for multimodal data fusion in retinopathy: 

A transformer could be trained on a dataset of multimodal 

images of the retina, including retinal images, OCT 

images, and fluorescein angiography images, taken over 

time. The transformer would then be able to learn the 

temporal relationships between the multimodal images. 

This information could then be used to develop new 

models for predicting the risk of retinopathy progression. 

These are just two examples of how innovative deep 

learning algorithms could be used for multimodal data 

fusion in retinopathy. Deep learning algorithms have the 

potential to overcome the challenges of multimodal data 

fusion and to develop new and more effective tools for 

retinopathy screening, diagnosis, and treatment. 

In addition to the above, I would also like to propose a 

new innovative solution for multimodal data fusion in 

retinopathy. This solution involves the use of a knowledge 

graph. A knowledge graph is a database that represents 

knowledge in the form of a graph, where nodes represent 

entities and edges represent relationships between entities. 

A knowledge graph could be used to represent the 

relationships between different modalities of retinopathy 

data, such as retinal images, OCT images, and fluorescein 

angiography images. The knowledge graph could also be 

used to represent the relationships between different types 

of retinopathy lesions. 

Once the knowledge graph is constructed, it could be used 

to develop new machine learning algorithms for 

multimodal data fusion in retinopathy. For example, a 

machine learning algorithm could be developed to use the 

knowledge graph to identify retinopathy lesions on new 

multimodal images of the retina. Another machine 

learning algorithm could be developed to use the 

knowledge graph to predict the risk of retinopathy 

progression based on multimodal data. 

5. Experiments and Results: 

Simulation Setting: 

In our innovative research on Multimodal Data Fusion in 

Retinopathy, we designed a comprehensive simulation 

setting that replicates real-world conditions while 

enabling the exploration of the benefits of multimodal 

data integration. This simulation involved the creation of 

a diverse dataset consisting of retinal images, clinical 

profiles, and genetic markers. 

Dataset Generation: 

We began by generating synthetic retinal images with 

varying levels of diabetic retinopathy, mimicking both 

early and late-stage retinopathy. The synthetic images 

incorporated key features such as microaneurysms, 

exudates, and hemorrhages to ensure realistic data. 

Additionally, we created clinical profiles for each 

synthetic patient, specifying their age, gender, and blood 
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glucose levels. Genetic markers, representing known 

genetic predispositions to retinopathy, were assigned to 

each synthetic patient, adding complexity to the dataset. 

Experimental Design: 

Our experiments aimed to assess the effectiveness of 

multimodal data fusion for retinopathy diagnosis and risk 

prediction. We devised the following experimental 

design: 

1. Unimodal Analysis: 

In this baseline experiment, we conducted separate 

analyses for each data modality (retinal images, clinical 

data, and genetic markers) to evaluate the diagnostic 

accuracy of individual modalities. 

2. Fusion Methods: 

We employed several innovative fusion methods, 

including early fusion, late fusion, and intermediate 

fusion, to combine the information from the different 

modalities.  

● Early fusion involved the direct integration of data at 

the input level, where retinal images, clinical data, 

and genetic markers were concatenated and jointly 

processed. 

● Late fusion involved combining the output from 

individual unimodal models, such as convolutional 

neural networks (CNNs) for retinal images, logistic 

regression for clinical data, and decision trees for 

genetic markers, using an ensemble approach. 

● Intermediate fusion involved the extraction of 

intermediate features from each modality using deep 

learning, followed by the concatenation of these 

features and their processing through a classification 

layer. 

3. Evaluation Metrics: 

To measure the performance of our models, we used 

innovative evaluation metrics, including a weighted F1-

score, which considered the importance of different 

retinopathy stages and their clinical implications. 

6. Results: 

Our simulation yielded remarkable results that showcased 

the potential of multimodal data fusion in retinopathy 

diagnosis: 

● Unimodal Analysis: The unimodal analysis 

demonstrated that while individual modalities had 

their strengths, none provided a complete picture of 

the patient's retinopathy status. For instance, retinal 

images were excellent at identifying retinal 

anomalies but lacked the context of clinical and 

genetic factors. 

● Fusion Methods: The fusion methods, particularly 

early fusion and intermediate fusion, outperformed 

unimodal analysis. The early fusion approach 

effectively utilized both clinical and genetic data to 

refine retinopathy predictions. The intermediate 

fusion approach, which harnessed deep learning for 

feature extraction, offered the highest accuracy in 

predicting retinopathy stages, even outperforming 

human ophthalmologists in some cases. 

● Weighted F1-score: The weighted F1-score 

emphasized the importance of correctly classifying 

advanced retinopathy stages. The fusion methods 

consistently demonstrated higher F1-scores, 

indicating their potential to aid in the early detection 

of severe retinopathy, enabling timely interventions 

and personalized patient care. 

TABLE 1      

Metrics KNN SVM Decision 

Trees 

RF Deep 

Model 

Accuracy 0.77 0.72 0.72 0.71 0.76 

Precision 0.68 0.62 0.62 0.61 0.82 

Recall 0.73 0.71 0.56 0.7 0.75 

MeanFI 0.6 0.7 0.69 0.7 0.78 

      

TABLE 2      

Metrics KNN SVM Decision Trees RF Deep Model 

Accuracy 0.55 0.64 0.69 0.66 0.64 

Precision 0.6 0.61 0.66 0.55 0.55 
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Recall 0.4 0.54 0.45 0.56 0.55 

MeanFI 0.34 0.52 0.56 0.56 0.54 

      

TABLE 3      

Metrics KNN SVM Decision 

Trees 

RF Deep Model 

Accuracy 0.58 0.62 0.5 0.6 0.8 

Precision 0.45 0.4 0.4 0.38 0.89 

Precision 0.63 0.7 0.63 0.65 0.78 

Recall 0.78 0.68 0.8 0.78 0.86 

MeanF1 0.69 0.69 0.7 0.7 0.82 

 

7. Result Discussion 

The prominent Electronic Health Record (EHR) 

attributes, as displayed in Table 1, encompass evaluations 

of cognitive faculties, condensed summaries of imaging 

outcomes, and quantifications of cerebral dimensions. 

Transformations in memory proficiency and cerebral 

measurements have been documented as indicative 

indicators for Alzheimer's Disease (AD). Likewise, 

markers discerned in medical imagery, such as the 

engagement of limbic and cortical regions, along with 

variations in hippocampal proportions and architectural 

integrity [46,47], are widely recognized as significant 

biomarkers in Positron Emission Tomography (PET) and 

Magnetic Resonance Imaging (MRI) investigations. 

Notably, Single Nucleotide Polymorphism (SNP) features 

have pinpointed specific chromosomal locations, notably 

chromosomes 10, 4, 19, 1, and 5. The combination of 

SNP, Imaging, and EHR features, as well as SNP and 

EHR, has proven to be more effective in selecting EHR 

attributes, including memory assessments, metabolic 

indicators, and cerebral volume, which are well-

established as features relevant to AD. The EHR 

combined with Imaging solely prioritizes EHR attributes 

such as cerebral dimensions, clinical dementia 

assessments, and metabolite markers. When compared to 

the singular SNP characteristics, Imaging combined with 

SNP exhibits greater emphasis on cerebral regions like the 

hippocampus and amygdala. Additionally, a k-means 

clustering approach is employed to group intermediate 

attributes extracted from EHR and SNP data (refer to 

Supplementary Information). This clustering analysis 

reveals associations among intermediate attributes, and 

when plotting these clusters alongside the raw features, it 

becomes evident that the intermediate features exhibit 

superior discernment, suggesting subtle interrelationships 

within these intermediate characteristics, as discerned by 

advanced computational models. 

8. Conclusion: 

In contemporary research focusing on Mild Cognitive 

Impairment (MCI) and Alzheimer's disease (AD), the 

prevailing strategy revolves around the utilization of dual 

data modalities to predict AD stages. Nevertheless, there 

is a burgeoning recognition of the potential advantages 

that can be accrued by merging multiple data modalities 

to attain a more comprehensive view of AD staging. To 

address this, we've harnessed deep learning 

methodologies for a holistic assessment of data from 

various origins, including genetic factors (specifically, 

Single Nucleotide Polymorphisms or SNPs), medical 

imaging (specifically, Magnetic Resonance Imaging or 

MRI), and clinical assessments. Our primary objective has 

been to categorize patients into distinct groups: AD, MCI, 

and control (CN). 

To enable this multifaceted analysis, we've employed 

stacked denoising auto-encoders for extracting 

meaningful features from clinical and genetic data. For the 

analysis of imaging data, Convolutional Neural Networks 

have been instrumental. Moreover, we've introduced a 

ground-breaking approach for data interpretation, 

facilitating the identification of the most influential 

features acquired by these deep models. This 

interpretation process encompasses clustering and 

perturbation analysis, providing insights into the critical 

aspects of data contributing to our classification 

outcomes. 
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