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Abstract: As smart cyber-physical systems advance, they generate substantial valuable data from healthcare, smart homes, and vehicles, 

often containing sensitive information. This data requires sanitization for safe analysis. However, rapid data generation necessitates 

scalable privacy-preserving methods with high privacy and utility. Balancing privacy and utility pose a common challenge in preserving 

data privacy. The Advanced Privacy-Preserving Framework ensures secure data preprocessing for scalable big data analysis. It segments 

raw data, enabling distributed computation while preserving privacy through homomorphic encryption. Within each segment, 

normalization and scaling maintain accuracy without compromising privacy. Adaptive privacy parameters and encrypted noise 

perturbation ensure differential privacy and statistical integrity. Aggregated results remain encrypted until decryption under stringent 

privacy conditions. Secure data release, compliant with privacy regulations, includes protective measures like random swapping or 

masking. The Enhanced Privacy-Preserving Data Perturbation Algorithm partitions, encrypts, sorts, perturbs, and securely releases 

datasets based on a specified threshold. These steps ensure robust privacy and secure data release throughout the analysis. 
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1. Introduction  

The escalating prevalence of Smart Cyber-Physical 

Systems (SCPS) such as smart healthcare, homes, vehicles, 

and grid systems arises from rapid technological 

advancements. These systems gather extensive data pivotal 

for enhancing efficiency and intelligence across various 

life activities. However, this data often encases sensitive 

information, raising substantial privacy concerns [1]. 

Striking a balance between controlled information release 

and the necessity for sharing data for analysis, such as 

machine learning and data mining, poses a significant 

challenge. Safeguarding the privacy of the immense and 

swiftly generated data streams produced by SCPS 

necessitates robust, scalable, and efficient solutions [2]. 

Privacy-preserving data mining (PPDM) grapples with 

challenges related to the sheer volume and pace of data 

flow [3]. Two primary approaches in PPDM are encryption 

and data perturbation. While encryption promises robust 

security, its computational intricacies might prove 

impractical for managing vast SCPS-generated data. Data 

perturbation, encompassing techniques like noise addition 

and randomization, presents a less intricate yet potentially 

utility-compromising alternative [4]. Earlier privacy models 

like l-diversity and k-anonymity have displayed 

vulnerabilities to specific attacks. Differential privacy (DP) 

mitigates these vulnerabilities by minimizing the risk of 

private data leakage [5]. However, DP encounters limitations 

concerning small databases and struggles with extremely large 

or continually expanding databases, leading to potential 

information leaks [6]. 

Existing perturbation mechanisms often overlook the 

trade-off between data utility and privacy enhancement [7]. 

The inefficient processing of high data volumes and 

streams further complicates privacy preservation within 

SCPS settings. Addressing these complexities necessitates 

novel approaches specifically tailored to preserving 

privacy in data generated by SCPS. The objectives of the 

proposed work are: 

• Develop an advanced framework for big data analysis 

that effectively balances privacy preservation with 

data utility. 
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• Create a three-step approach to retain the spatial 

layout of data while ensuring privacy through 

sensitivity assessment, polynomial interpolation, and 

perturbation. 

• Implement a robust preprocessing method utilizing 

encryption, normalization, and adaptive privacy 

parameters to maintain differential privacy in analysis 

while securely releasing insights. 

• Apply Lagrange interpolation with Gaussian noise to 

protect privacy while reconstructing or perturbing data 

within differential privacy principles. 

• Develop an enhanced data perturbation algorithm 

ensuring differential privacy at each step of data 

partitioning, encryption, noise addition, and secure 

release, fostering data usability and confidentiality in 

big data analytics. 

2. Literature review 

Smart cyber-physical systems (SCPS) encompassing 

various domains like healthcare, smart cities, and vehicles 

gather substantial data for analysis. However, security and 

privacy concerns amid this data surge remain significant 

[8]. Numerous studies underscore the importance of 

securing SCPS, especially due to the extensive usage of 

personally identifiable information (PII). Privacy in SCPS 

is addressed through mechanisms like authentication, 

attribute-based encryption, and access control protocols 

[9]. 

Data privacy approaches in SCPS mainly revolve around 

data perturbation and encryption. While encryption offers 

robust security, its computational complexity limits its 

application in resource-constrained devices [10]. 

Perturbation methods, including input and output 

perturbation, present viable solutions. However, existing 

models like k-anonymity and l-diversity exhibit 

vulnerabilities [11]. Differential privacy (DP) emerges as a 

powerful model, yet faces challenges in real-valued 

numerical data and scalability for high-dimensional 

datasets and streams [12]. 

Key perturbation methods, like additive and multiplicative 

perturbation, encounter reconstruction attacks, especially 

with high-dimensional data. Recent methods attempt to 

address these issues but encounter limitations in utility, 

scalability, and privacy protection [13]. Existing 

mechanisms struggle to balance privacy, utility, and 

scalability in the dynamic SCPS environment. The review 

exposes the pressing need for an efficient, scalable, and 

privacy-preserving solution tailored specifically for SCPS-

generated data [14]. The major research gaps and 

challenges of existing systems are as follows: 

• Balancing privacy, utility, and scalability in SCPS-

generated data. 

• Improving DP mechanisms for real-valued numerical 

data and data streams. 

• Addressing reconstruction attacks in perturbation 

methods, especially with high-dimensional data. 

• Developing efficient, scalable, and robust privacy-

preserving solutions for SCPS in resource-constrained 

environments. 

3. Proposed work 

The advanced privacy-preserving framework tailored for 

scalable big data analysis emphasizes the delicate 

equilibrium between privacy and utility, acknowledging 

their potential interplay. In the context of data mining tasks 

like classification and clustering, the spatial arrangement 

of data profoundly influences outcomes. However, privacy 

measures, such as randomization, might disrupt this spatial 

layout, impacting utility. Conversely, prioritizing utility 

could compromise privacy. To navigate this challenge, the 

framework orchestrates a three-step process: (1) assessing 

dataset sensitivity to gauge the necessary random noise for 

effective privacy, (2) utilizing polynomial interpolation 

with noise caliberated to approximate a noisy function 

representing the original data, and (3) leveraging this 

function to generate perturbed data. This approach ensures 

privacy preservation while upholding the spatial structure 

of the initial dataset. The methodology involves 

polynomial interpolation in addition to the calibrated noise 

addition in alignment with the principles of differential 

privacy. 

 

Fig. 1 Architecture of the proposed model 

Figure 1 illustrates the incorporation of the proposed 

algorithm into the broader data flow of SCPS (Smart 

Cyber-Physical Systems). The depiction highlights that the 

perturbed data, resulting from the algorithm, directly 

originates from SCPS. This indicates that the information 

stored within the system's storage module has already 

undergone the privacy preservation process facilitated by 

the algorithm, thereby ensuring that the stored data no 

longer retains any original, unaltered information. 

3.1 Data Pre-processing  

In the Advanced Privacy-Preserving Framework for 

Scalable Big Data Analysis, data preprocessing involves 

several essential steps. Firstly, the raw dataset is 

partitioned into smaller batches to facilitate distributed 
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computation and maintain privacy boundaries per segment. 

Following this, homomorphic encryption techniques are 

applied to encrypt the partitions, allowing computations on 

encrypted data, thereby preserving privacy throughout the 

analysis process. The data within each partition is 

normalized and scaled for uniformity, aiding accurate 

computations while maintaining privacy. Adaptive privacy 

parameters are then assigned based on data sensitivity or 

analysis needs, and noise is added to the encrypted data to 

ensure differential privacy without compromising 

statistical properties. Secure computation occurs on the 

encrypted and perturbed data, safeguarding underlying data 

privacy. Subsequently, aggregated results are obtained 

from encrypted computations while maintaining privacy, 

and decryption occurs only when strictly necessary and 

under stringent privacy-preserving conditions. Finally, 

processed insights or data are securely released, adhering 

to privacy regulations and employing mechanisms like 

random swapping or masking for additional sensitive 

information protection. 

3.2 Mathematical model 

The Lagrange interpolation technique is applied to 

approximate or reconstruct datasets while maintaining 

privacy. Lagrange interpolation constructs a polynomial 

that passes through a given set of data points. In the 

context of your framework, this can be applied to the 

perturbation or processing of data while preserving the 

privacy aspects using homomorphic encryption and 

adaptive privacy parameters. However, the direct 

application of Lagrange interpolation within the encryption 

or perturbation process might not be straightforward, as its 

primary purpose is to interpolate or approximate functions 

using known data points. 

The equations supporting Lagrange interpolation involve 

constructing a polynomial that fits a set of data points (xi, 

yi). The general form of the Lagrange interpolation 

polynomial of degree n for a set of distinct points is given 

by: 

𝑃(𝑥) = ∑ 𝑦𝑖 ∙ 𝐿𝑖(𝑥)𝑛
𝑖=0         (1) 

Here, n is the degree of the polynomial, xi and yi are the 

given data points, Li(x) are the Lagrange basis polynomials 

defined as: 

𝐿𝑖(𝑥) = ∏
𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗

𝑛
𝑗=0,𝑗≠𝑖         (2) 

Gaussian noise with a sensitivity of 1 is introduced into the 

root mean square error (RMSE) minimization process. 

Gaussian noise is added in a calibrated manner to derive 

values for a1, a2, a3, and a4, in the interpolation process.  

CA = B          (3) 

Here, C represents the coefficient matrix derived from 

factorized expressions. A is the coefficient vector obtained 

from matrix M. B is the constant vector obtained from the 

factorized expressions. The matrix C is represented as 

𝐶 = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22
𝑚23 𝑚24

𝑚31

𝑚41

𝑚32

𝑚42

𝑚33

𝑚43

𝑚34

𝑚44

]          

(4) 

Where mij denotes coefficients. The vectors A and B are: 

𝐴 = [𝑎1 𝑎2
𝑎3 𝑎4]𝑇         

(5) 

𝐵 = [𝑏1 𝑏2 𝑏3 𝑏4]𝑇         

(6) 

Where a1, a2, a3, a4 represent the coefficients to 

approximate data, and b1, b2, b3, b4 denote constants in the 

interpolation process. 

As the input dataset is normalized within the range of 0 

and 1, Gaussian noise ensures a randomized error while 

adhering to this specified range. In this method, the 

position of the noise (i.e., where the noise is centered) is 

adjusted to align with the aim of maintaining local minima 

of RMSE around 0. The process involves the formulation 

of a linear system, represented by Equation 8, wherein C 

denotes the coefficient matrix derived from factorized 

expressions, A denotes the coefficient vector from matrix 

M, and B signifies the constant vector from the factorized 

expressions. Solving this linear system (formed utilizing 

Equations 4, 5, and 6) allows the acquisition of noisy 

values for a1, a2, a3, and a4, thereby approximating the input 

data series using a stochastic function. As Gaussian noise 

is introduced in a randomized manner calibrated using a 

user-defined ε value, the outcomes differ with each 

calculation, contributing to the randomized interpolation 

process while ensuring privacy through differential privacy 

measures. 

3.3 Algorithmic framework 

Algorithm: Enhanced Privacy-Preserving Data 

Perturbation Algorithm 

1: Divide D into data partitions (wi) of size ws 

2: x = [1, . . . , ws] 

3: normalize x within the bounds of [0, 1] 

4: for each wi do 

5:   rep = rep + 1 

6:   Dp = []  # empty matrix 

7:   # Apply homomorphic encryption to the data partitions 

8:   for each attribute, ai in wi do 

9:   sai = sort(ai)  # sorted in ascending order 
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10: generate M 

11: generate B 

12: A = B ∗ M−1 

13: # Use A = [a1, a2, a3, a4] to generate perturbed data 

(api) using ˆ f(x)  

14: # Adjust ε dynamically based on sensitivity of the 

attribute or window 

15: normalize api within the bounds of [0, 1] to generate 

aNi 

16:    # Apply adaptive privacy parameter selection based 

on sensitivity/utility 

17:    # Normalize aNi within the bounds of [min(ai), 

max(ai)] 

18:    # Resort aNi to the original order of ai to generate aoi 

19:   end for 

20:   merge all aoi to generate wpi 

21:   Dp = merge(Dp, wpi) 

22:   if rep == t then 

23:     # Apply necessary privacy-enhancing operations 

(random swapping, etc.) 

24:     release Dp  # Perform secure release with 

homomorphic encryption 

25:     rep = 0 

26:   end if 

27: end for 

28: if t == -1 then 

29:   # Apply necessary privacy-enhancing operations 

(random swapping, etc.) 

30:   release Dp  # Perform secure release with 

homomorphic encryption 

31:   return Dp 

32: end if 

End Algorithm 

 

The enhanced privacy-preserving data perturbation 

algorithm begins by dividing the input dataset 'D' into 

smaller data partitions of a specified size ('ws'). It 

initializes parameters and normalizes a sequence 'x' within 

the range [0, 1]. For each data partition 'wi', the algorithm 

performs several operations. It involves applying 

homomorphic encryption to the partitions, sorting 

attributes within each partition in ascending order, 

generating matrices based on specific equations, and using 

them to perturb the data ('api'). Furthermore, the algorithm 

dynamically adjusts the privacy parameter 'ε' based on 

attribute or window sensitivity, then normalizing and 

resorting the perturbed data. These steps ensure that the 

perturbed data maintains its original order and falls within 

specific value ranges. After processing all partitions, it 

merges the perturbed data to generate 'Dp'. The algorithm 

includes conditions to release 'Dp' securely with privacy-

enhancing operations like random swapping, contingent on 

the repetition count reaching a threshold ('t'). Finally, the 

algorithm returns the perturbed dataset 'Dp' after ensuring 

privacy through necessary operations, including secure 

release with homomorphic encryption, contingent on the 

value of 't'. 

4. Results and discussion 

4.1 Experimental Setup 

Tests were conducted during the experimental phase on a 

Windows 10 Professional Edition system (64-bit) that had 

an Intel i5-6200U CPU (6th generation) with a dual-core 

configuration capable of handling four logical threads. The 

CPU had a speed range of 2.3 GHz to 2.8 GHz using turbo 

boost and was supported by an 8192 MB RAM capacity. 

The proposed algorithm's scalability was evaluated by 

conducting experiments on Amazon Web Services (AWS) 

using a cloud-based infrastructure. An EC2 instance with a 

configuration of 32 vCPUs, 128GB RAM, and an EBS-

backed storage system optimized for high-performance 

computing was used. The algorithm was implemented 

using Python 3.9, and data classification experiments were 

performed using TensorFlow and Scikit-learn libraries, 

which are renowned for their efficacy in machine learning 

and data mining tasks. 

4.2 Dataset description 

A concise portrayal of the datasets is outlined in Table 1. 

These datasets exhibit diverse dimensions, ranging from 

small to exceedingly large, deliberately chosen to 

comprehensively evaluate the proposed algorithm's 

performance under varying scenarios. Notably, the current 

iteration of the proposed algorithm focuses solely on 

perturbing numerical data. Therefore, datasets chosen for 

evaluation exclusively contain numerical attributes, except 

for the class attribute, which includes non-numerical data. 

Dataset 

Name 

Number 

of 

Records 

Number of 

Attributes 

Number of 

Classes/Targets 

Wine 

Quality 

1599 12 2 (Red/White) 

Iris Dataset 150 4 3 (Iris Species) 

House Prices 1460 81 Regression (Price) 
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Dataset 

Letter 

Recognition 

20000 17 26 (Alphabets) 

Diabetes 

Dataset 

768 8 2 (Diabetic/Non-

diabetic) 

HIGGS 11000000 28 2 (Yes/No) 

4.3 Performance metrics and analysis 

The analysis involves evaluating the outcomes derived 

from the proposed model against Additive Perturbation 

(AP), Hybrid Perturbation (HP), Geometric Perturbation 

(GP), Random Projection (RP), and Data Condensation 

(DC). When comparing performance with the proposed 

model, the assessment was conducted using AP, HP, GP, 

and RP on static datasets, whereas DC was employed 

specifically with data streams. These mechanisms were 

chosen due to their multidimensional perturbation nature, 

aligning closely with the technique applied in the linear 

system of the proposed model. 

One of the main attributes of the proposed model lies in its 

capability to perturb a dataset while retaining the original 

shape of its data distribution. The model was executed on 

the same data series to observe the impact of 

randomization in two separate instances of perturbation. 

This experiment aims to ensure that the proposed model 

does not generate similar perturbed data when applied with 

the same ε value to identical data on different occasions. 

This feature plays a pivotal role in preventing privacy 

breaches caused by data linkage attacks exploiting multiple 

data releases. As shown in Figure 2, the proposed model 

generates two distinct randomized data series in two 

different applications while maintaining the structure of the 

original data series. The plot visualizes the data generated 

under ε values of 1 and 0.1, illustrating the substantial 

effect of increased randomization at a stricter privacy 

budget (ε of 0.1). 

 

Fig. 2. Effect of perturbation 

A decline in utility is evident with reduced ε, indicating 

higher randomization. Figure 3 illustrates the relationship 

between classification accuracy and increasing ε, 

showcasing an upsurge in accuracy as ε grows. Meanwhile, 

Figure 4 portrays a consistent trend of heightened utility 

(classification accuracy) with rising ε. The choice of an 

appropriate ε depends on specific application needs; 

smaller ε values cater to increased privacy requirements, 

while larger ε values enhance utility. Notably, double-digit 

ε values do not offer substantial privacy benefits. 

Emphasizing the preservation of the original data 

distribution, an ε range of 0.4 to 3 is recommended to 

prevent unexpected privacy vulnerabilities. The study 

underscores the superior privacy and utility of the 

proposed model compared to similar methods within an ε 

budget of 1. 

 

Fig. 3. Classification Accuracy vs. Window Size (ws) at 

10,000 Tuples 

 

Fig. 4. Classification Accuracy vs. Privacy budget ( ) at 1 

Figure 5 displays the time consumption plots of various 

methods overlaid on a single graph. Notably, the curves 

representing the proposed model align almost parallel to 

the x-axis, indicating significantly lower time consumption 

compared to the other methods. 
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Fig. 5. Time consumption vs. number of attributes 

4. Conclusion and Future Scope 

The privacy-preserving big data analysis framework 

achieves a balance between privacy and utility through a 

three-step process: assessing dataset sensitivity, employing 

polynomial interpolation with calibrated noise, and 

generating perturbed data while preserving the original 

spatial structure. The experiments conducted demonstrate 

the model's capability to safeguard privacy, maintain data 

distribution shapes, and mitigate potential privacy 

breaches. An advised ε range of 0.4 to 3 offers a stronger 

defense against unforeseen privacy vulnerabilities, 

exhibiting an improved equilibrium between privacy and 

utility compared to existing methods within an ε budget of 

1. The model's efficiency and effectiveness in ensuring 

robust privacy preservation while sustaining utility 

represents a significant stride in privacy-conscious data 

analysis. Future research endeavors may concentrate on 

enhancing the model's adaptability to diverse data types 

and exploring optimization strategies to enhance scalability 

when handling larger datasets. 
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