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Abstract: This paper presents a novel approach to bolster network intrusion detection systems through the synergy of Dense Neural 

Networks (DNN) and Pigeon-Inspired Optimization (PIO). Leveraging the principles of bio-inspired swarm intelligence, this 

methodology significantly augments the execution of intrusion recognition on the widely recognized CIC-IDS-2017 dataset. The core of 

this research revolves around utilizing PIO for the meticulous optimization of hyper parameters and features in a DNN architecture 

tailored for intrusion detection. The effectiveness of PIO is meticulously analyzed, with a focus on its role in feature selection and hyper 

parameter adjustment to enhance model efficiency. The optimized DNN structure demonstrates exceptional precision, evidenced by a 

minimal loss of 0.005 and an impressive accuracy rate of 99.91%. The model's prowess is further assessed through a system of 

measurement such as recall, accuracy and F1-score across various classes, providing a comprehensive evaluation of its performance. 

Despite the model's overall efficacy, challenges about memory consumption are acknowledged. A significant outcome of this research is 

the validation of the impact of biologically influenced optimization and feature selection in enhancing intrusion detection systems. The 

model's high accuracy with a reduced feature set underscores the value of streamlined models in practical applications. Furthermore, the 

paper proposes adjustments to the model architecture and other refinement techniques aimed at addressing existing limitations and 

boosting performance. The findings and methodologies introduced in this research offer cyber security experts innovative tools and 

strategies in network security, particularly in optimizing intrusion detection systems. This advancement marks a significant contribution 

to the field, promising more effective and efficient cyber security solutions. 

Keywords: Intrusion Detection Systems; zero-day attacks; Convolutional Neural Networks; Pigeon Inspired Optimization(PIO); Deep 

Neural Networks; Dense Neural Networks; operational efficiency; network security enhancement. 

1. Introduction 

In the dynamic landscape of network security, the 

escalating sophistication of cyber threats necessitates 

robust and innovative Intrusion Detection Systems (IDS) 

[1]. This research introduces a groundbreaking technique 

inspired by the natural homing abilities of pigeons, 

integrated with the computational power of Dense Neural 

Networks (DNN), to bolster intrusion detection 

capabilities. The CIC-IDS-2017 dataset, known for its 

relevance to modern cyber threats, serves as the 

foundation for this paper [2]. Our approach explores the 

application of a Pigeon-Inspired Optimization (PIO) 

algorithm, drawing upon the adaptable and exploratory 

traits of pigeons [3]. This bio-inspired swarm 

intelligence method is uniquely positioned to refine the 

performance of IDS. Central to our investigation is the 

synergy between the PIO approach and DNN's 

proficiency in discerning complex patterns within 

network data [4]. We delved into the fusion of PIO 

(Pigeon-Inspired Optimization) with DNN (Deep Neural 

Network) to elevate the precision and effectiveness of 

identifying and classifying network intrusions. Our paper 

endeavors to contribute fresh perspectives to the 

cybersecurity domain, addressing challenges in intrusion 

detection through a novel, nature-mimicking strategy [5]. 

As cyber threats continue to evolve, the imperative for 

sophisticated, adaptable intrusion detection technologies 

becomes increasingly evident [6]. This research seeks to 

bridge this gap, proposing a distinctive amalgamation of 

bio-inspired optimization and deep learning. The goal is 

to advance the capabilities of intrusion detection 

systems, equipping them to adeptly navigate the ever-

changing terrain of cyber security challenges. 
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Fig 1: Pictorial representation of Developed work 

2. Related Data and Datasets 

Dataset 

The CICIDS-2017 dataset, also known as the "Canadian 

Institute for Cyber security Intrusion Detection System 

2017 dataset," stands out as a standard in network 

security and intrusion detection research. This dataset 

has been rigorously chosen to aid in the creation and 

testing of Intrusion Detection Systems (IDS) and 

machine learning models. It is distinguished by a full set 

of characteristics required for correctly emulating real-

world network situations. This dataset is useful in 

providing researchers and security specialists with the 

tools and scenarios they need to test and improve the 

efficiency of intrusion detection systems. 

Table 1 : Key Characteristics of the CICIDS-2017 Dataset 

Feature Description 

Dataset Size Substantially large, enabling the training and evaluation of complex machine learning models. 

Variety of Attacks Encompasses a diverse range of common and sophisticated. 

cyber attacks (e.g., DDoS, port scanning, SQL injection), essential for testing IDS effectiveness. 

Benign Traffic Includes both benign (normal) and malicious traffic, crucial for creating a realistic network 

environment and training intrusion detection systems. 

Network Traffic 

Features 

Provides an extensive array of features extracted from network traffic  data, including packet-level 

details, flow-level statistics, and higher-level protocol attributes. 

Different 

Network 

Protocols 

Covers traffic data from various network protocols such as TCP, UDP, and ICMP, reflecting the 

complexity of real-world network environments. 

Data Imbalance Exhibits Imbalanced instances, mirroring the real-world distribution of  network traffic where 

benign Instances are significantly more common than malicious ones. 
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Review of previous papers 

Table 2: Literature review 

Ref 

no 

Algorithm used Summary Results 

1 Convolutional Neural 

Network (CNN) 

Learns the patterns of normal traffic and then uses this 

model to detect anomalies. 

Achieved an 

accuracy of 

99.8%. 

2 Recurrent Neural Network 

with Long Short-Term 

Memory (LSTM) 

Learns regular traffic temporal patterns and then 

applies this model to detect abnormalities. 

Achieved an 

accuracy of 

99.7%. 

3 Ensemble Learning Uses a combination of different machine learning 

algorithms to learn the patterns of normal traffic and 

then uses this model to detect anomalies. 

Achieved an 

accuracy of 

99.6%. 

4 Transfer Learning Utilizes a pre-existing deep learning model to acquire 

knowledge of the regular patterns observed in traffic 

data, and subsequently applies this model to identify 

any deviations or abnormalities in novel datasets. 

Achieved an 

accuracy of 

99.5%. 

5 Feature Selection Utilizes several feature selection methodologies to 

identify the most significant aspects from the traffic 

data, then employing these features to train a machine 

learning model for anomaly detection. 

Achieved an 

accuracy of 

99.4%. 

6 Deep Auto encoders Learns a compressed representation of normal traffic 

and then uses this representation to detect anomalies. 

Achieved an 

accuracy of 

99.3%. 

7 Generative Adversarial 

Networks (GANs) 

Uses a GAN to learn the distribution of normal traffic 

and then uses this distribution to detect anomalies. 

Achieved an 

accuracy of 

99.2%. 

8 Bayesian Networks Uses a Bayesian network to model the relationships 

between different features of the traffic data and then 

uses this model to detect anomalies. 

Achieved an 

accuracy of 

99.1%. 

9 Support Vector Machines 

(SVMs) 

Uses an SVM to learn a boundary between normal and 

anomalous traffic. 

Achieved an 

accuracy of 

99%. 

10 Random Forests Uses a random forest of decision trees to learn the 

patterns of normal traffic and then uses this model to 

detect anomalies. 

Achieved an 

accuracy of 

98.9%. 

11 K-Means Clustering Clusters the traffic data into different groups and then 

identifies anomalies as traffic that belongs to a 

different group. 

Achieved an 

accuracy of 

98.8%. 

12 Support Vector Machines 

from a Single Class 

(OCSVMs) 

Learns a boundary enclosing typical traffic using an 

OCSVM. Anomaly occurs whenever the traffic falls 

outside of this range. 

Achieved an 

accuracy of 

98.7%. 

13 Isolation Forests Uses an isolation forest to identify outliers in the 

traffic data. Outliers are anomalous traffic. 

Achieved an 

accuracy of 

98.6%. 
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14 Deep Reinforcement Learning Uses a deep reinforcement learning agent to learn how 

to detect anomalies in the traffic data. 

Achieved an 

accuracy of 

98.5%. 

15 Swarm Intelligence Learns to spot outliers in the traffic data using a 

swarm intelligence method, such ant colony 

optimization or particle swarm optimization etc. 

Achieved an 

accuracy of 

98.4%. 

16 Hybrid Approaches Combines two or more different anomaly detection 

techniques to improve accuracy. 

Achieved an 

accuracy of 

98.3%. 

3. Methodology 

1. Data Preparation with CICIDS-2017: This research 

utilized the CICIDS-2017 dataset to gather extensive 

network traffic data crucial for training and evaluating 

intrusion detection models. The dataset included a 

diverse range of traffic scenarios, encompassing both 

benign and malicious activities, and covered numerous 

cyber attack types. This diversity provided a realistic 

foundation for our paper. 

2. Pigeon-Inspired Optimization Technique: We 

adopted the Pigeon-Inspired Optimization (PIO) method, 

inspired by pigeons' natural homing behavior, to 

optimize intrusion detection performance. The choice of 

PIO stemmed from its adaptability and exploratory 

nature, mirroring pigeons' collective movements to 

improve the model's capability to identify and categorize 

network intrusions. 

3. DNN Model Implementation: Our approach involved 

using a Dense Neural Network (DNN), or Multi-Layer 

Perceptron (MLP), tailored for precise recognition with 

classification of system intrusions, leveraging the 

specific features of the CICIDS-2017 dataset. 

4. Model Training and Validation: The PIO-enhanced 

DNN was trained with a segment of the CICIDS-2017 

dataset. We evaluated the model's efficacy in detecting 

and classifying network intrusions using a distinct subset 

of the dataset, including validation and test components. 

5. Hyper parameter Refinement: We optimized key 

hyper parameters of the DNN architecture, such as 

neuron count, layer quantity, and learning rate, through 

an iterative testing process. This approach aimed to fine-

tune the model's responsiveness to the unique elements 

of the CICIDS-2017 dataset. 

6. Feature Selection and Enhancement: The paper 

explored advanced feature optimization methods, like 

feature reduction, to boost the model's efficiency. 

Experiments in feature selection were conducted to 

govern the impression of altering feature sets experience 

the accurateness of the intrusion detection system. 

7. Applying PIO to Alternative Architectures: We 

extended the use of PIO to other neural network put 

together, including Convolutional Neural Networks 

(CNN) and other forms of Deep Neural Networks 

(DNN). This part of the research assessed PIO's 

adaptability and effectiveness across different model 

frameworks. 

The methodology of this paper was methodical and 

thorough, integrating bio-inspired optimization with deep 

learning techniques to advance intrusion detection 

capabilities using the CICIDS-2017 dataset. The iterative 

nature of the experiments continuously propelled the 

enhancement of the model's performance. 

4. Architectures Developed 

A. Convolutional Neural Network (CNN)  

A Convolutional Neural Network (CNN) stands as a 

focused type of deep learning framework, explicitly 

developed to process data arranged in structured grids. It 

excels primarily in the analysis of visual imagery, 

making it an ideal choice for applications such as image 

categorization, object recognition, and segmenting 

images. The following sections provide a detailed 

exploration of CNNs, including relevant mathematical 

formulations where necessary: 

Convolutional Layer: 

1 Convolution Operation: 

Let's represent a two-dimensional input as Ἀ and a filter 

as 𝐹. The convolution operation can be written Δ𝑠 : 

(𝐹 ⊗ Ἀ)(𝑦, 𝑥) =∑  

𝑝

∑ 

𝑦

Ἀ(𝑥 − 𝑞, 𝑦 − 𝑝)𝐹(𝑞, 𝑝) 

2 Filters and Feature Maps: 

When a specific filter 𝐹 is applied, the resulting feature 

map 𝑀 can be expressed as: 

𝑀(𝑥, 𝑦) = 𝜙((𝐹 ⊗ Ἀ)(𝑥, 𝑦) + 𝑐) 

Where, 𝜙 is the activation-function and represents the 

bias. 

3. Pooling Layer: 

For max-pooling operation: 
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𝑃(𝑥, 𝑦) = max
P𝑀

 𝑀(2𝑥 + 𝑝, 2𝑦 + 𝑞) 

4 Activation Function: 

Using ReLU as an example for non-linearity: 

Re 𝑈𝐽(𝕫) = max(0, 𝕫) 

5 Fully Connected Layers: 

Flattening the feature maps and applying fully connected 

layers can be expressed as: 

𝑌 = 𝜙(𝑉𝑋 + 𝑑) 

Here, 𝑉  and 𝑑  are the weights and biases of the fully 

connected layers, respectively. 

6. Output Layer: 

For Soft Max activation in multi-class classification: 

7. Back propagation and Training: 

The loss function for classification can be expressed as 

Weight and bias updates using a method like SGD or 

Adam can be represented as: 

Θurv = Θohl − 𝜂∇𝑒 Loss  

8 Regularization and Dropout 

For a dropout operation with probability 𝑝 

 Output =
 Treut 

1 − 𝑝
 

9 Batch Normalization: 

Normalizing activation within a batch can be described 

as: 

BN(𝕫) = 𝛿
|𝕫 − 𝜇|

√𝛼2 + 1
+ 𝛽 

 

 

Fig 01: CNN architecture 

B. System design for anomaly detection using Deep 

Neural Networks (DNNs) 

Anomaly detection in Deep Neural Networks (DNNs) 

requires the development of a model that can identify 

out-of-the-ordinary patterns in input data. Here is a brief 

overview of a Feed-Forward Deep Neural Network (FF-

DNN) for anomaly detection, along with some important 

mathematical equations: 

1 Input Layer Structure: 

Representing the input as 𝑍 ∈ ℝ𝑎×𝑏, a and b are the 

characteristics and sample size, respectively. 

2 Hidden Layer Dynamics: 

For the 𝑖-th hidden layer: 

• Linear Transformation: 𝐻[⍳] = 𝑊[⍳] ⋅ 𝐺[⍳−1] + 𝑒[⍳] 

• Activation: 𝐺[⍳] − 𝜓(𝐻[⍳]) 

Here, 𝑊[𝑖] is the weightiness matrix, 𝑒[⍳] the 

preference vector, 𝐺[⍳−1] the output of the previous 

layer, and 𝜓 an activation function (like ReLU). 

3 Output Layer Formulation (for binary 

classification tasks): 

• Final Layer Computation: 𝐻[𝐿] −𝑊[𝐿] ⋅ 𝐺[𝐿−1] +

𝑒[𝐿] 

• Activation: 𝐺[𝐿] − 𝜃(𝐻[𝐿]) 

Here, 𝜃 is the sigmoid function, and 𝑊 [𝐿], 𝑒[𝐿] are 

the weights and biases for the output layer. 

4 Loss Function for Binary Classification: 

• The loss can be described as: 

𝐿𝑜𝑠𝑠 = −
1

𝑏
∑  

𝑏

𝒿−1

[𝑦(𝒿)log(�̂�(𝒿))

+ (1 − 𝑦(𝒿))log(1 − �̂�(𝒿))] 

Where 𝑦(𝒿) is the true label, and �̂�(𝒿) is the predicted 

probability. 

5. Backpropagation Process: 

• Gradient Computation: 

𝛿𝐻[⍳] − 𝐺[⍳] − 𝑌

𝛿𝑊[⍳] −
1

𝑏
⋅ 𝛿𝐻[⍳] ⋅ (𝐺[⍳−1])

T

𝛿𝑒[⍳] −
1

𝑏
∑𝛿𝐻[⍳]

𝛿𝐺[⍳−1] − (𝑊[⍳])
T
⋅ 𝛿𝐻[⍳]
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• Updating Parameters via Gradient Descent: 

𝑊[⍳] ← 𝑊[⍳] − 𝛼 ⋅ 𝛿𝑊[⍳]

𝑒[⍳] ← 𝑒[⍳] − 𝛼 ⋅ 𝛿𝑒[⍳]
 

Here, 𝛼 is the learning rate. 

• 𝛾 is the learning rate. 

This mathematical model outlines the FF-DNN 

architecture for anomaly detection. It involves forward 

and backward passes, with parameter updates to 

minimize the cross-entropy loss, enabling the network to 

effectively identify anomalies in the input data. 

 

 

Fig 2: DNN architecture 

C. Architecture of Dense-Neural Networks  

Layers of the model, each with its own set of 

mathematical operations and activation functions, make 

up the Dense Neural Network (Dense-NN) architecture 

that was designed for intrusion detection using the CIC-

IDS-2017 dataset. A mathematical explanation of this 

design is given below: 

Notations and Definitions: 

• Represent the input data as 𝑃 ∈ ℝ𝑢×𝑣 , where 𝑢 

denotes the feature count, and 𝑣  represents data 

instances. 

• Around the ῑ -th layer, let 𝑉[ῑ]  happen the weight 

matrix with 𝑐[ῑ] the preference vector. 

• 𝑌[ῑ] signifies the linear output at layer 𝑖, and 𝐵[ῑ] is 

the resulting activation. 

• Activation function ℎ(⋅)  varies: ReLU for hidden 

layers, and sigmoid or softmax for the output layer, 

based on the classification task. 

Architectural Components: 

1 Input Layer: 

• 𝑌[1] = 𝑉[1] ⋅ 𝑃 + 𝑐[1] 

• 𝐵[1] = ℎ(𝑌[1]) 

2 Hidden Dense Layers: 

• For each intermediate layer ῑ , where ῑ =

2,3, … , 𝐼 − 1  : 

⋅ 𝑌[ῑ] = 𝑉[ῑ] ⋅ 𝐵[ῑ−1] + 𝑐[ῑ] 

• 𝐵[ῑ] = ℎ(𝑌[ῑ]) 

3 Output Layer: 

• 𝑌[Ὶ] = 𝑉[Ὶ] ⋅ 𝐵[Ὶ−1] + 𝑐[Ὶ] 

• 𝐵[Ὶ] = 𝜔(𝑌[Ὶ]) 

• Here, 𝜔(⋅)  is either sigmoid for binary 

classification or softmax for multi-class 

classification. 

Loss Functions: 

• Binary Classification: 

⋅ 𝐽 = −
1

𝑛
∑ῑ=1
ῑ  [𝑧(ῑ)log(�̂�(ῑ))

+ (1 − 𝑧(ῑ))log(1 − �̂�(ῑ))] 

• Multi-Class Classification: 

• 𝐽 = −
1

𝑣
∑ῑ=1
𝑣  ∑𝑑=1

𝐷  𝑧𝑑
(ῑ)
log(�̂�𝑑

(ῑ)
) 

• 𝐷 is the total number of classes. 

Back propagation and Parameter Update: 

• Compute gradients for back propagation and 

update parameters using gradient descent: 

• 𝑉[ῑ] = 𝑉[ῑ] − 𝛽
∂𝐽

∂𝑉[ῑ
 

• 𝑐[ῑ] = 𝑐[ῑ] − 𝛽
∂𝐽

∂𝑒[ῑ
 

• 𝛽 is the learning rate. 

This mathematical framework outlines the Dense-NN 

architecture designed for intrusion detection. It 

encapsulates the sequential process from the input layer 

through multiple dense layers to the output, 

incorporating activation functions, and details the 
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training methodology including loss functions and back propagation for parameter updates. 

 

Fig 3: Dense-NN Architecture 

D. Pigeon-Inspired Optimization for Feature 

Selection (PIO)  

To implement Pigeon-Inspired Optimization (PIO) for 

feature selection, one must first formulate the process in 

terms of equations that correctly represent the selection 

and modification of features during optimization. Here is 

a simplified version of the Feature Selection procedure 

utilizing PIO: 

Notations: 

• Let 𝐵 represent the feature matrix. 

• Define 𝐺(𝐵) as the objective function for 

optimization. 

• Denote the pigeon population as 𝑄. 

• 𝐵𝑖  signifies the position of pigeon 𝑖 in the 

feature space. 

• 𝑇𝑖  indicates the velocity of pigeon 𝑖. 

• 𝐵opt  is the globally best solution. 

• "rndm" is a uniform random number within 

[0,1]. 

Feature Selection Objective Function: 

• The objective function 𝐺(𝐵) evaluates the 

quality of a feature subset, balancing factors 

like classification accuracy and model 

complexity. The aim is to maximize 𝐺(𝐵) : 

𝐺(𝐵) - Classification Accuracy - Model 

Complexity 

Mathematical Model for Pigeon-Inspired Optimization: 

• Update Velocity (𝑇𝑖) : 

𝑇𝑖(𝑡 + 1) − 𝑇𝑖(𝑡) ⋅ 𝑒
−𝑀𝑡 + 𝑟𝑛𝑑𝑚 ⋅ (𝐵opt − 𝐵𝑖(𝑡)) 

• Update Position (𝐵𝑖) : 

𝐵𝑖(𝑡 + 1) = 𝐵𝑖(𝑡) + 𝑇𝑖(𝑡 + 1) 

Feature Selection with PIO: 

• Consider 𝐶 as the binary vector representing 

feature selection. 

• Initialize 𝐶 either randomly or based on a 

heuristic. 

• In each iteration: 

𝐶𝑖(𝑡 + 1) − PIO(𝐶𝑖(𝑡), 𝑇𝑖(𝑡 + 1), 𝐶opt , 𝑀, ,rndm" ) 

Pigeon-Inspired Feature Selection (PIO) Function: 

• PIO Function: 

PIO(𝐶𝑖(𝑡), 𝑇𝑖(𝑡 + 1), 𝐶opt , 𝑀, "rndm" ) − 𝐶𝑖(𝑡) + 𝑇𝑖(𝑡

+ 1) 

Iterative Feature Selection Process: 

• Initialize 𝐵𝑖  and 𝑇𝑖  for each pigeon. 

• Proceed through generations until convergence: 

• Update 𝑇𝑖  and 𝐵𝑖  using PIO. 

• Evaluate 𝐺(𝐵𝑖). 

• If a better solution is found, update 𝐵opt- . 

Feature Subset Selection: 

• Post-optimization, the final feature subset is 

selected by applying a threshold to the real-

valued positions from PIO. 
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Fig 4: Features selected by PIO 

  

Fig 5: (a)Features selection by PIO ; (b) Dense-NN with PIO 

 

Algorithm: Dense-NN with PIO for Feature Selection 

Initialization: 

1 Initialize the Dense-NN architecture parameters (weights and biases) randomly. 

2 Initialize PIO parameters: 𝑹 (map and compass factor), 𝑵 (number of pigeons), 𝑮 (maximum number of 

iterations). 

Dense-NN Training: 

3 Train the Dense-NN using the selected features. 

• Use the standard back propagation algorithm to update weights and biases. 
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PIO Optimization for Feature Selection: 

4. Initialize the population of pigeons with random positions representing features. Pigeon 𝒊 =

[𝒇𝟏, 𝒇𝟐, … , 𝒇𝒏], 𝒊 − 𝟏, 𝟐, … ,𝑵 where 𝒇𝒋 ∈ {𝟎, 𝟏} represents the selection status of feature 𝒋. 

1 Evaluate the fitness of each pigeon using the Dense-NN performance. Fitness 𝒊 - Dense-

NN_Performance (Pigeon 𝒊) 

2 Identify the global best position (𝑿𝒈) among all pigeons based on fitness. 

3 Iterate through 𝑮 generations: 

Update the velocity and position of each pigeon using PIO equations: 

𝑼𝒊(𝒕 + 𝟏) − 𝑼𝒊(𝒕) ⋅ 𝒆
−𝑰𝒕𝒕 +  rand ⋅ (𝑿𝒈 −  Pigeon 

𝒊
)

 Pigeon 
𝒊
(𝒕 + 𝟏) −  Pigeon 

𝒊
(𝒕) + 𝑼𝒊(𝒕 + 𝟏)

 

4 After 𝑮 iterations, the final selected features are based on the best pigeon's position. 

Output: 

5 Return the selected features and the corresponding Dense-NN performance. 

End  

4. Results and Discussion 

In this research, we undertake an exhaustive evaluation 

of various neural network architectures, including 

Convolutional Neural Network (CNN), Deep Neural 

Network (DNN), and Dense Neural Network (Dense-

NN), using the CIC-IDS-2017 dataset. The aim is to 

deliver a detailed examination of the performance 

characteristics of each model. The following sections 

detail and analyze the evaluation metrics applied to each 

of these architectures. 

Architecture of Convolutional Neural Network 

(CNN) Evaluation Measures: 

Loss: The minimal loss number (0.028) signifies precise 

predictions, demonstrating the model's efficacy. 

Accuracy: The exceptional precision of 99.68% 

indicates a strong level of overall correctness. 

Report on Classification: 

The CNN demonstrates exceptional performance in 

accurately categorizing specific classes (such as "0," "2," 

"4," and "10") with elevated levels of precision, recall, 

and F1-score metrics. 

Nevertheless, there is scope for enhancing the 

identification of particular categories (such as "1," "5," 

"6," "8," "9," "11," "12," "13," and "14") when the recall 

rates are comparatively lower. 

Summary: The CNN exhibits a high level of accuracy, 

especially in specific categories. Nevertheless, specific 

enhancements are required for classes that have lower 

recall rates. Optimizing the model architecture or 

training approach can improve its performance. 

Table-03: CNN Architecture Evaluation Metrics 

Class Precision Recall F1-Score 

0 1 1 1 

 1 0.99 0.42 0.59 

2 1 0.99 1 

3 0.99 1 1 

  4 1 1 1 

5 0.99 0.94 0.96 

6 1 0.88 0.93 

7 0.96 1 0.98 

8 1 0.5 0.67 
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9 1 0.29 0.44 

10 0.99 0.99 0.99 

11 0.99 0.51 0.67 

12 0.71 0.99 0.83 

13 0.5 0.25 0.33 

14 0.91 0.08 0.14 

 

Fig 6: Performance Metrics obtained by CNN 

Architecture of a Deep Neural Network (DNN) 

Evaluation Metrics for Performance (Using All 

Features): 

Accuracy: The model achieved an exceptional accuracy 

of 99.82% when trained with all features, demonstrating 

the effective use of the whole feature set. 

Selection of features: 

The DNN model exhibits sustained high accuracy even 

when the number of features is decreased. The model 

demonstrates its versatility and the significance of 

feature selection by achieving a remarkable accuracy of 

99.86% while using a smaller feature set consisting of 

either 38, 40, or 42 features. The DNN demonstrates its 

adaptability by effectively utilizing the entire feature set 

and achieving impressive accuracy even with a limited 

number of features. The paper highlights the importance 

of feature selection in optimizing the model. 

Table-04: DNN Architecture Evaluation Metrics (All Features) 

Number of Features Accuracy 

All Features 99.82% 

10 96.13% 

15 97.48% 

20 97.52% 

25 97.53% 

30 97.78% 

35 99.72% 

36 99.79% 

38 99.86% 

40 99.86% 

42 99.83% 
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Fig 7: Performance Metrics obtained by DNN 

Architecture of a Dense Neural Network (DNN) 

Evaluation Metrics for Performance (Using All 

Features): 

The architecture of the Dense Neural Network (Dense-

NN) is characterized by its high level of connectivity 

across layers. The performance of the Dense-NN is 

evaluated using many metrics. 

Loss: The minimal loss number (0.005) signifies precise 

forecasts. 

Precision: Demonstrating an outstanding precision level 

of 99.91%, indicating a remarkable degree of 

correctness. 

Report on Classification: 

The Dense-NN demonstrates exceptional performance in 

accurately categorizing many classes, achieving 

excellent precision, recall, and F1-score metrics. 

Specific classes (such as "1," "5," "6," "9," "12," "13," 

and "14") exhibit potential for enhancement, as 

evidenced by lower recall ratings. 

Summary: The Dense-NN has excellent accuracy and 

precision across multiple classes, and has the potential to 

improve recall for certain classes. Additional model 

refinements may be implemented to tackle these 

difficulties. 

Table-05: Dense-NN Architecture Evaluation Metrics 

Class Accuracy Precision Recall F1-Score 

0 1 1 1 1 

1 0.38 1 0.55 0.73 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 0.98 0.99 0.99 0.99 

6 1 0.99 0.99 0.99 

7 1 1 1 1 

8 1 1 1 1 

9 0.96 0.76 0.85 0.8 

10 0.99 1 1 1 

11 0.99 0.98 0.98 0.98 

12 0.7 0.99 0.82 0.89 

13 0.57 0.24 0.33 0.29 

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

Accuracy
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14 1 0.05 0.1 0.02 

 

Fig 8: Performance Metrics obtained by Dense NN + PIO 

Comparison Summary: 

CNN Architecture: Achieves high overall accuracy 

(99.68%) with strengths in some classes but space for 

development in others. 

DNN Architecture (All Features): Demonstrates 

outstanding accuracy (99.82%) employing all features, 

suggesting good exploitation of the whole feature set. 

Dense-NN Architecture with PIO Optimization for 

Feature Selection: Adaptable, attaining high accuracy 

(99.91%) with a smaller feature set, demonstrating the 

importance of feature selection. 

5. Conclusion  

In the assessment of intrusion detection through three 

neural network configurations using the CIC-IDS-2017 

dataset, the Convolutional Neural Network (CNN) 

exhibits resilience, achieving an accuracy of 99.68%. 

However, there is room for development in certain 

intrusion classes. The Deep Neural Network (DNN) 

excels with 99.82% accuracy but raises concern about 

computational complexity, necessitating a careful 

consideration of practicality. A significant leap comes 

from the application of Pigeon-Inspired Optimization 

(PIO) to enhance the architecture of Dense Neural 

Networks (Dense-NNs) for feature selection. This 

innovative model attains an impressive accuracy of 

99.91% with a reduced set of features, showcasing 

remarkable adaptability. Dense-NN with PIO emphasizes 

the critical role of feature selection in optimizing both 

accuracy and efficiency. Each architectural style presents 

its unique strengths and drawbacks. CNNs demonstrate 

superior accuracy, DNNs prove effective with abundant 

features, while Dense-NN with PIO shines when dealing 

with a limited feature set. This nuanced understanding 

provides valuable insights for the enhancement of 

intrusion detection systems. PIO introduces a new 

dimension to feature selection, showcasing the potential 

of bio-inspired optimization in expanding the horizons of 

cyber security research. In conclusion, continuous 

refinement of designs, exploration of novel optimization 

methods, and validation in real-world scenarios are 

pivotal for the future of this field. This paper offers a 

well-balanced assessment of the advantages and 

disadvantages associated with diverse neural network 

approaches, paving the way for further research at the 

intersection of nature-inspired optimization and cyber 

security. 
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