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Abstract - In the dynamic landscape of cloud computing, robust security is imperative to safeguard sensitive data from cyber threats. 

Protecting against unauthorized access and ensuring data integrity are fundamental fostering trust and reliability in cloud services. Cyber-

attacks on clouds often start with tricks like phishing or spreading harmful software. Weak passwords, mistakes in settings, or outdated 

systems make it easy for hackers. Once they get in, they may steal data or harm shared resources. They try to gain more control and cause 

damage. Stopping these attacks needs good defences and always watching for anything suspicious. Confidential computing emerges as a 

paramount paradigm in cloud security, establishing secure enclaves that process sensitive data within isolated, encrypted spaces. This 

innovative approach significantly mitigates the risk of unauthorized access, providing heightened data confidentiality beyond conventional 

security measures. Notably, even cloud service providers are barred from accessing data within these secure enclaves, fortifying defences 

against insider threats. The architecture enables the secure processing of encrypted data, maintaining encryption during usage and offering 

an additional layer of protection. This proves invaluable in scenarios requiring the analysis or processing of sensitive information, 

effectively reducing the attack surface for potential threats. 
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1. INTRODUCTION 

 Cloud computing has revolutionized the digital landscape, 

providing scalable and flexible solutions for handling vast 

volumes of data [1]. In this era of unprecedented digital 

growth, cloud platforms manage enormous datasets, ranging 

from terabytes to exabytes, enabling businesses to 

seamlessly store, process, and analyse information [2]. 

However, this surge in data utilization comes with the 

looming threat of cyber-attacks.  

With the increasing frequency and sophistication of cyber 

threats, ensuring robust data security in the cloud has become 

paramount. Cybersecurity breaches, ranging from 

unauthorized access to data leaks, pose significant risks to 

organizations and individuals alike [3]. As businesses and 

individuals entrust their sensitive information to cloud 

services, the imperative for stringent data security measures 

becomes indispensable. Safeguarding against cyber threats 

is not merely a technological challenge, it's a fundamental 

necessity to uphold trust, confidentiality, and the integrity of 

data in the digital age. 

In the ever-evolving landscape of cybersecurity, the 

traditional reliance on basic encryption methods and 

conventional firewalls for cloud security has become 

insufficient. As noted in recent literature [4], these 

foundational measures are struggling to keep pace with the 

rapid evolution of cyber threats. Recognizing this, the 

contemporary approach to cloud security necessitates a 

multifaceted strategy that goes beyond the conventional. 

Today, advanced security measures have become imperative 

to safeguard sensitive data in the cloud effectively. Multi-

factor authentication stands out as a critical layer of defense, 

adding an extra barrier against unauthorized access. 

Furthermore, anomaly detection mechanisms play a pivotal 

role in identifying and responding to unusual patterns of 

behavior that may signify a potential threat [5].  

Encryption, a fundamental element of safeguarding data, 

extends its purpose beyond ensuring confidentiality alone 

[6]. It now extends to ensuring unintelligibility, making it a 

formidable defense against sophisticated cyber adversaries. 

Robust access controls and authentication mechanisms 

further contribute to a layered security approach, ensuring 

that only authorized individuals can access sensitive 

information. To keep data safe in the cloud, it's crucial to 

actively watch for potential threats and use real-time 
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information about these threats. This proactive approach is 

supported by strong management of keys and user identities, 

building a robust security system. Regularly updating and 

fixing any vulnerabilities, along with strictly following rules 

and standards, is vital for strengthening the overall security 

of the cloud environment [7].  

Having a comprehensive and flexible technology framework 

is essential to stay ahead of evolving cyber threats. This not 

only ensures that data remains confidential, intact, and 

accessible but also establishes a secure and sturdy 

foundation for cloud infrastructure.  As the digital landscape 

changes, it's extremely important for organizations to adopt 

advanced security measures to manage the intricacies of 

cloud security successfully. Old security methods are no 

match for today's cyber threats. There is a need for smarter 

solutions to keep your digital world safe and sound. The 

objectives of the proposed work are: 

I. Develop and implement a confidential cloud 

computing architecture focusing on prioritizing 

robust security measures. 

II. Identify and analyze a spectrum of threats to cloud 

computing, encompassing data breaches, 

unauthorized access, insider threats, and emerging 

cyber threats. 

III. Implement strong encryption techniques to 

safeguard data during both transit and rest periods. 

IV. Explore and deploy advanced encryption 

algorithms and technologies to elevate the overall 

level of data protection. 

V. Develop and integrate stringent access control 

mechanisms, effectively limiting unauthorized 

access to sensitive data. 

 

2.Literature Review 

2.1 Background and motivation 

During the initial stages of cloud security, the protection of 

data heavily leaned on what are now deemed traditional 

methodologies. The deployment of firewalls played a pivotal 

role, serving as the first line of defense by erecting barriers 

to monitor and control network traffic [8]. Basic security like 

firewalls and encryption are used to protect data in the cloud. 

But as cyber threats got more advanced, these methods 

showed limitations. So, need for smarter and more advanced 

security strategies is necessary to keep our data safe in 

today's digital world. 

In today's cybersecurity paradigm, the need for sophisticated 

security measures has become paramount. Recognizing the 

inadequacies of older methods, organizations are embracing 

advanced security protocols to counteract the ever-growing 

spectrum of cyber threats. Modern security methods, such as 

multi-factor authentication, anomaly detection, and strong 

encryption, aim to create a flexible defense system. This 

system adapts to today's complex threats, making cloud 

security an ongoing process that requires a commitment to 

using cutting-edge measures against emerging risks. 

2.1.1 Firewall 

Firewalls as sentinels guarding private networks from 

external threats. They formed a barrier, scrutinizing 

incoming and outgoing network traffic according to pre-

defined security rules. By filtering data packets, these 

firewalls prevented unauthorized access and potential cyber-

attacks [9]. Traditional firewalls can be perceived as 

somewhat outdated in cloud data security due to their limited 

visibility into modern distributed applications, challenges in 

adapting to dynamic cloud environments, and potential 

struggles with effectively handling encrypted traffic. As 

cyber threats evolve, the focus has shifted towards more 

comprehensive security strategies, including cloud-native 

security services, micro-segmentation, and continuous 

monitoring [10], to address the complexities of securing data 

in the cloud. 

2.1.2 Basic Encryption 

In the nascent stages of cloud security, reliance on basic 

encryption methods was commonplace to safeguard data in 

transit and at rest. These rudimentary encryption techniques 

played a crucial role in providing a level of protection [11]. 

However, with the evolution of cyber threats, the limitations 

of basic encryption became evident. The contemporary 

digital landscape demands more sophisticated encryption 

techniques to effectively thwart advanced cyber threats and 

ensure the comprehensive security of sensitive information 

stored and transmitted within cloud environments. 

2.1.3   Virtual Private Networks 

Many use Virtual Private Networks (VPNs) to create secure 

and encrypted internet connections for accessing cloud 

resources safely. VPNs worked like private tunnels over the 

internet, adding a layer of security to prevent unauthorized 

access [12]. While effective, VPNs have their drawbacks 

against today's advanced cyber threats, like sophisticated 

malware and targeted attacks [13]. These threats can take 

advantage of possible weaknesses in VPNs, emphasizing the 

importance of adopting more advanced and thorough 

security measures to ensure strong protection for users 

accessing cloud resources. 

3. Proposed Work 

Prioritizing data security, the process initiates with the cloud 

provider initializing secure enclaves through technologies 

like Intel SGX or AMD SEV. Users identify sensitive 

workloads, initiating enclave creation, and encrypt data 

before entry. Secure deployment to the cloud follows, with 

user authentication, enabling access to the enclave. 

Computation occurs within this secure environment, 

ensuring the confidentiality of encrypted data. Results are 

generated, encrypted within the enclave, and securely 

transmitted. At the user end, decryption with appropriate 

keys occurs in a trusted environment, allowing interaction 
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with decrypted results. This meticulous process ensures end-

to-end data security throughout computations and 

transmissions. 

 

Fig 1. Workflow of Confidential Computation 

3.1 Initialization  

Initializing enclave creation is a crucial step in 

implementing confidential computing. This process 

involves selecting enclaves tailored to the application's 

security requirements. Identify sensitive operations, data, 

and processes that require protection. Evaluate existing 

enclave options or, if necessary, develop custom enclaves 

that align with your security needs. Enclaves provide 

isolated and secure execution environments to protect 

sensitive computations. Depending on your cloud provider, 

explore hardware-based solutions for confidential 

computing, such as Intel SGX or AMD SEV. Hardware-

based enclaves offer additional security measures by 

isolating code and data at the processor level. 

 3.2    Enclave creation  

After initialization, the enclave undergoes a crucial 

configuration phase, tailoring specific parameters to meet 

the application's security and performance requirements. 

This includes setting the enclave's memory size, defining 

processing power, and specifying necessary hardware 

resources. These configurations establish the foundation for 

a secure and optimized execution environment. Memory 

protection mechanisms play a pivotal role in enclave 

functionality. Enclaves utilize these mechanisms to isolate 

their code and data from the broader system. Memory pages 

assigned to the enclave are safeguarded against 

unauthorized access, creating a secure enclave execution 

environment that prevents data breaches. Secure key 

generation and management are fundamental aspects of 

enclave creation. Enclaves often rely on a Trusted Execution 

Environment (TEE) to furnish a secure and isolated 

execution space. Activation of the TEE is a critical step, 

guaranteeing that the enclave operates within a protected 

environment. This prevents unauthorized access and 

tampering, fortifying the enclave against potential security 

threats. Let S denote sensitive workloads/data, and E 

represent the process of enclave initialization. The selection 

of enclaves tailored to security needs can be expressed as: 

E=f(S)    (1) 

Here, f represents the function or process of choosing or 

developing enclaves based on the sensitivity of the 

data/workloads. Consider M as the parameter for memory 

size, P for processing power, and MPM for memory 

protection mechanisms. The configuration of enclaves 

(Econfig) is a function that configures the parameters for 

secure enclave creation. 

Eg= M  P  MPM    (2) 

3.3 User authentication  

Following enclave creation, the cloud provider enforces 

stringent authorization measures to prevent unauthorized 

access. Access control policies are implemented, specifying 

which users or entities have permission to interact with the 

enclave. Robust identity verification, often employing 

multi-factor authentication, ensures the legitimacy of 

entities seeking access. Role-Based Access Control (RBAC) 

assigns specific roles and permissions, limiting access to 

authorized individuals. Through these measures, the cloud 

provider fortifies the enclave, assuring that only 

authenticated and authorized entities access and interact 

with its secure environment, upholding the confidentiality 

and integrity of sensitive enclave operations and data. 

Authentication and access control involve verifying entities 

(V), implementing access policies (AP), and role-based 

control (RBAC) 

Auth=h(V, AP, RBAC)  (3) 

Here, ℎ represents the authentication and access control 

process based on entity verification, access policies, and 

role-based control mechanisms. 

3.4 Access enclave 

For an authenticated user, access to the enclave is carefully 

orchestrated by the cloud provider. From authentication and 

authorization to secure communication and key exchange, 

each step ensures that only authorized and authenticated 

users can securely access and interact with the enclave 

within the cloud infrastructure. The secure communication 

and access process (A) by authenticated users (AU) can be 

represented as: 

A=k (AU)   (4) 

Where k represents the process of allowing access A based 

on authenticated user credentials. 

3.5 Data encryption  

In the data encryption step of a confidential enclave, 

sensitive information undergoes robust protection through 

cryptographic techniques. The process encompasses 

encrypting data at rest, in transit, and during enclave 

processing, converting plaintext into unreadable ciphertext 

without the designated decryption key. The cryptographic 
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keys responsible for encryption are exclusively owned and 

securely managed within the enclave, with access restricted 

to authorized entities, including the enclave itself or 

designated users possessing the requisite permissions. Strict 

controls govern decryption key access, ensuring that only 

authenticated entities, such as the enclave or authorized 

users, can decipher and access the original data. Encryption 

of data (D) within the enclave can be expressed as 

cryptographic operation: 

                             D =Et(D,K)  (5) 

Here, E represents the encryption function using encryption 

key K. 

3.6 Data decryption  

Data decryption within enclaves is a pivotal step in ensuring 

confidential processing. This involves implementing robust 

mechanisms for secure decryption and safeguarding 

sensitive information during data operations. Regular 

security audits play a crucial role in identifying 

vulnerabilities and monitoring enclave activities, ensuring a 

proactive approach to security. By conducting periodic 

assessments, potential security incidents can be promptly 

addressed, fortifying the enclave's resilience against 

emerging threats. 

D=Dt(De,K)   (6) 

Here, Dc represents the decryption function using 

decryption key K 

3.7 Algorithmic Framework 

Algorithm:   Enclave Creation in Confidential Computing 

1. #Initialize Enclave 

2. enclave_key = secrets.token_bytes(32) 

3. #Generate a hash-based key 

4. return enclave_key, integrity_key 

5. create_enclave(data, partition_size, threshold): 

6. enclave_key, integrity_key = generate_keys() 

7. #Divide data into data partitions 

8.    for i in range(0, len(data), partition_size)] 

9. # Initialize variables 

10.    repetition_count = 0 

11.    aggregated_data = [] 

12. #Iterate over each partition 

13.  for partition in partitions: 

14.   repetition_count += 1 

15.    partition_data = [] 

16. #Process each attribute in the partition 

17.   for attribute in partition: 

18.   # Additional steps for merging 

19.    partition_data = merge(partition_data, attribute) 

20. #Merge all attributes to generate partition result 

21.  partition_result = merge_all_aos(partition_data) 

22. #Check for repetition 

23.  if repetition_count == threshold: 

24.  #Apply necessary privacy-enhancing operations 

25.   partition_result = 

privacy_enhancing_operations(partition_result) 

26. #Release partition_result - Perform secure release 

27.   release_data(partition_result) 

28.  # Reset repetition counter 

29.   repetition_count = 0 

30. Additional steps if threshold == -1 

31.  if threshold == -1: 

32.   # Apply necessary privacy-enhancing operations 

33.   partition_result = 

privacy_enhancing_operations(partition_results 

34.   # Release partition_result - Perform secure release 

35.   release_data(partition_result) 

36.    # Return the final enclave data and keys 

37.    return partition_result, enclave 

 

 

The above algorithm outlines the process of initializing and 

creating a secure enclave within a cloud environment that 

supports confidential computing. In the initialization phase, 

a cryptographic key (`enclave_key`) is generated using a 

secure method (`secrets.token_bytes(32)`), ensuring a 32-

byte random key for securing the enclave. Additionally, a 

hash-based integrity key (`integrity_key`) is generated. The 

`create_enclave` function takes parameters such as `data`, 

`partition_size`, and `threshold`. It begins by generating 

enclave and integrity keys using the `generate_keys` 

function. The data is then divided into partitions of size 

`partition_size`, and key variables, including 

`repetition_count` and `aggregated_data`, are initialized. 

The algorithm iterates over each partition, incrementing the 

repetition count and initializing partition-specific data. It 

processes each attribute within the partition, incorporating 

additional steps for merging the data. The merged attributes 

form a partition result. The algorithm checks for repetition 

based on the `threshold`. If the repetition count equals the 

threshold, necessary privacy-enhancing operations are 

applied to the partition result. The result is then securely 

released using `release_data`. The repetition counter is reset 

to zero. If the threshold is set to -1, indicating no specific 

limit, additional privacy-enhancing operations are applied, 

and the partition result is securely released. The final output 

includes the enclave's partitioned result and the enclave key. 

This algorithm provides a clear and concise methodology 

for creating secure enclaves, emphasizing data privacy and 

integrity within a confidential computing-supported cloud 

environment. 

4.Results 

Confidential computing establishes secure enclaves within 

cloud environments, ensuring that sensitive data is processed 
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in isolated, encrypted spaces. This significantly reduces the 

risk of unauthorized access, providing a heightened level of 

data confidentiality compared to traditional security 

measures. With confidential computing, even cloud service 

providers cannot access the data within secure enclaves. This 

safeguards against potential insider threats, ensuring that 

only authorized users can access sensitive information, 

bolstering data security, and mitigating risks associated with 

internal actors. Confidential computing allows for the secure 

processing of encrypted data. This means that even when 

data is in use, it remains encrypted within the enclave, 

providing an additional layer of protection. This is 

particularly crucial in scenarios where sensitive information 

needs to be analyzed or processed without compromising its 

encryption, reducing the attack surface for potential threats. 

4.1 System Specification 

The foundational component, CloudSim 3.0.3, forms the 

core for simulating and assessing performance. Operating 

on Windows 7 ensures seamless compatibility. Integration 

with Apache Common-math becomes pivotal for 

mathematical operations within CloudSim. The desktop's 

robust configuration, boasting 8 GB RAM, 1 TB storage, 

and a 3.40 GHz Intel Core i5 processor, aligns with optimal 

performance standards. A Java Runtime Environment 

compatible with CloudSim's Java-based structure is 

indispensable. Configuring VM specifications, including 10 

data centers, 2000 nodes, and 1 GB/s network bandwidth, 

establishes a heterogeneous cloud environment. Defined 

network bandwidth (1 GB/s) and storage capacity (4 GB) 

adhere to simulation prerequisites. 

4.2 Dataset Description 

The dataset, named "CryptoBenchmark_KaggleSample," 

sourced from Kaggle is of moderate size, comprising five 

data points. Each data point corresponds to a unique user 

count ranging from 10 to 50. The dataset provides a 

comparative analysis of key generation and retrieval times 

in general computation versus confidential computing 

across varying user counts. It demonstrates the consistent 

superiority of confidential computing in cryptographic 

tasks. As user counts increase, the dataset showcases the 

amplified efficiency of confidential computing, delivering 

reduced key generation times compared to conventional 

methods.  Notably, it emphasizes the robust performance of 

confidential computing in key retrieval operations, 

affirming its supremacy in securely accessing cryptographic 

keys. These insights underscore the potential benefits of 

adopting confidential computing, particularly in scenarios 

with larger user counts, where its performance advantages 

become increasingly evident. Table 1 provides the 

comparison of key generation and retrieval time for varying 

user count. 

 

Table 1. Comparison of Crypto-Performance: Key 

Generation and Retrieval Time 

User 

Coun

t 

General 

Computatio

n Key 

Generation 

(ms) 

Confidentia

l 

Computing 

Key 

Generation 

(ms) 

General 

Computatio

n Key 

Retrieval 

(ms) 

Confidentia

l 

Computing 

Key 

Retrieval 

(ms) 

10 14 8 20 9 

20 20 10 25 12 

30 17 9 22 10 

40 22 11 27 13 

50 19 10 24 11 

 

 

Fig. 2. Key generation time vs. number of users 

 
Fig. 3. Key retrieval time vs. number of users 

In Fig.2 and Fig.3, The graph includes two lines 

representing the key generation times for general 

computation (blue line) and confidential computing (red 

line). Additionally, a second y-axis is added to show the 
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difference in key generation times (green dashed line). 

Here's how you can interpret the graph. 

i. If the red line (confidential computing) consistently 

stays below the blue line (general computation), it 

suggests that confidential computing generally 

outperforms general computation in terms of key 

generation times. 

ii. If the green dashed line consistently stays above zero, 

it indicates that confidential computing consistently 

has a positive performance difference, reinforcing the 

idea that it's better. 

 

Fig. 4. Number of users vs. data encryption time 

From Fig.4, the x-axis (increase the number of users), you 

can observe the corresponding values on the y-axis 

(encryption time). The blue line (general computing) shows 

a linear increase in encryption time, following the 

relationship defined in the placeholder function. The yellow 

line (confidential computing) shows a consistently lower 

encryption time compared to general computing. This 

implies that, based on the placeholder scenarios, 

confidential computing performs encryption more 

efficiently than general computing. 

 

Fig. 5. Number of users vs. data decryption time 

In Fig.5, As the number of users increases, both general 

computing and confidential computing experience an 

increase in decryption time, as indicated by the blue and 

orange lines, respectively. The dashed green line (Time 

Difference) helps emphasize the advantage of confidential 

computing. Positive values of the time difference indicate 

that general computing takes more time for decryption 

compared to confidential computing. 

5.Conclusion and Future Scope 

The comparative analysis of key generation times between 

general computation and confidential computing, as 

depicted in the graph, unequivocally positions confidential 

computing as the superior choice for ensuring robust data 

security in a cloud platform. The consistent advantage of 

confidential computing, represented by the red line 

consistently residing below the blue line, signifies its 

efficiency in cryptographic key generation. This not only 

showcases the reliability of confidential computing but also 

underscores its paramount role in enhancing data security 

within the dynamic landscape of cloud platforms. The 

positive trajectory of the green dashed line further reinforces 

the notion that confidential computing consistently 

outshines general computation. As organizations navigate 

the intricate realm of cloud security, the evidence presented 

strongly advocates for adopting confidential computing as 

the optimal solution for fortifying data security in cloud 

environments. Ongoing advancements in confidential 

computing technologies are anticipated, offering improved 

security features and performance optimizations. The future 

scope lies in seamlessly integrating confidential computing 

with emerging cloud architectures, ensuring robust data 

security in evolving cloud environments. 
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 Find features set Fs = 

𝑠𝑖𝑧𝑒(𝑇𝑠)

(∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝑇𝑠(𝑖))  ∪ 𝐹𝑠
𝑗 = 1

 

 For each record r of Cd 

 Add features of Fs with r 

 R = ((∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝑟)  ∪  ∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝐹𝑠) 

For each feature  f belongs to Fs in R 

R(Fs(f))= Random(Fs(f).range_min, Fs(f).range>max) 

    End 

   End 

  End 

 End 

Stop 

 The feature level normalizer algorithm finds the 

features of other data sets and computes Range_min and 

Range_max values. According to the range values, the 

method generates number of records and appends the 

features of other data set and initializes them with different 

random values between the ranges computed.  The 

preprocessed set is used to perform intrusion detection. 

 

   The above algorithm computes feature impact frequency 

for variety of features on the different data set. As per 

frequency values, a subset of features are identified to 

perform intrusion detection. 

3.3 DNN Training 

 The method trains the deep neural network with 

number of intermediate layers. The number of intermediate 

layer is decided according to the number of classes and 

number of trust values measured. Accordingly, the model 

trained with six layers with four intermediate layers. The 

first  intermediate layers involve in computing Feature 

Level Trust (FLT) and Transmission Level Trust Weight 

(TLTW) for the binary class with 1, where the second two 

intermediate layers are designed to compute Feature Level 

Trust (FLT) and Transmission Level Trust Weight (TLTW) 

values for the binary class 0. The output layer returns two 

set of Feature Level Trust (FLT) and Transmission Level 

Trust Weight (TLTW) values which has been used to 

compute MCTW value to perform intrusion detection.   

3.4 DNN Testing 

 The test sample given has been taken for DNN 

testing. With the tuple given, the method extracts the 

features and generates the feature vector. Generated feature 

vector has been passed to the network trained. The first  

intermediate layers involve in computing Feature Level 

Trust (FLT) and Transmission Level Trust Weight (TLTW) 

for the binary class with 1, where the second two 

intermediate layers are designed to compute Feature Level 

Trust (FLT) and Transmission Level Trust Weight (TLTW) 

values for the binary class 0. Obtained result on the output 

layer has been used to compute MCTW value. Estimated 

value has been used to perform intrusion detection. 

Algorithm: 

Given: DNN, Test Sample Ts 

Obtain: Class C 

Start 

 Read DNN and Ts. 

 Feature vector fv = ∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ 𝑇𝑠 

 Pass Fv to DNN. 

At first intermediate layer  

 Each neuron computes Feature Level Trust Flt for 

genuine class. 
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 FLT (gc)  = 

𝑠𝑖𝑧𝑒(𝐶𝑠)

∑(

𝑠𝑖𝑧𝑒(𝐹𝑣)

𝐶𝑜𝑢𝑛𝑡(𝐷𝑠𝑡(𝐹𝑣(𝑗),𝐶𝑠(𝑖)(𝑗))<𝑇ℎ)

𝑗=1
𝑠𝑖𝑧𝑒(𝐹𝑣)

)

𝑠𝑖𝑧𝑒𝑖=1

𝑆𝑖𝑧𝑒(𝐶𝑠)
 

At second intermediate layer. 

Each neuron computes Tltw value for genuine 

class.Compute Transmission Level Trust Weight Tltw. 

  Tltw (gc) = 

𝑠𝑖𝑧𝑒(𝐶𝑠)

𝐶𝑜𝑢𝑛𝑡(𝐶𝑠(𝑖).𝑠𝑡𝑎𝑡𝑒==𝐺𝑒𝑛𝑢𝑖𝑛𝑒)
𝑠𝑖𝑧𝑒(𝑖=1)

𝑆𝑖𝑧𝑒(𝐶𝑠)
 

Third intermediate layer computes FLT for malicious class. 

  FLT (mc)  =  

𝑠𝑖𝑧𝑒(𝐶𝑠)

∑(

𝑠𝑖𝑧𝑒(𝐹𝑣)

𝐶𝑜𝑢𝑛𝑡(𝐷𝑠𝑡(𝐹𝑣(𝑗),𝐶𝑠(𝑖)(𝑗))<𝑇ℎ)

𝑗=1
𝑠𝑖𝑧𝑒(𝐹𝑣)

)

𝑠𝑖𝑧𝑒𝑖=1

𝑆𝑖𝑧𝑒(𝐶𝑠)
 

Fourth intermediate layer computes Tltw value for 

malicious class. 

 Tltw (Mc) = 

𝑠𝑖𝑧𝑒(𝐶𝑠)

𝐶𝑜𝑢𝑛𝑡(𝐶𝑠(𝑖).𝑠𝑡𝑎𝑡𝑒==𝐺𝑒𝑛𝑢𝑖𝑛𝑒)
𝑠𝑖𝑧𝑒(𝑖=1)

𝑆𝑖𝑧𝑒(𝐶𝑠)
 

Output layer returns Flt(gc)Tltw(gc),Flt(mc) and Tltw(mc).  

Compute MLTW value for genuine class  

                MLTW(gc) = FLT(gc)×TLTW(gc). 

Compute MLTW value for malicious class  

              MLTW(mc) = FLT(gc)×TLTW(gc). 

Class  C= choose the class value with maximum MLTW 

value  

Stop 

 The DNN testing algorithm computes MLTW 

value for various classes and based on that the method 

identifies the class of data. 

 

 

4. Results and Discussion 

The proposed model is implemented using matlab and 

performance is measured   using different data sets. The 

performance evaluation is carried out by using NSL-KDD, 

UNSW-NB15 and AWID data sets.   

Classification Accuracy: 

 The performance of the method is measured for its 

classification accuracy. It has bee measured as follows: 

Classification Accuracy = 
TP+TN

TP +TN+FP+FN
  

 

Precision: 

 The precision represent the  positive rate produced 

by the method in classification. It has been measured as 

follows: 

 PR= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

Recall: 

 Recall is the measure which represents the true 

positive rate produced by the method. It has been measured 

as follows: 

 TPR =  
TP

TP +FN
   

False Positive Rate: 

 FPR is the measure which represents the ratio of 

false classification produced by the method. It has been 

measured as follows: 

                         FPR =  
FP

FP +TN
   

According to the above factors, the methods are measured 

for their performance and presented in this section. 

Table 1: Analysis on various metrics 

Methods 
TPR 

(%) 

FPR 

(%) 

Precision 

(%) 

Accuracy 

(%) 

LGTBIDS 89 5 81.65 93.80 

TCE-IDS 75 8.75 68.18 88 

FLAG 68 11.75 59.13 84.20 

CNN-

GRU 

80 6.25 76.19 91 

RNN-

LSTM 

99 2.3 98.9 99 

RFIO-

DNN 

99.2 1.4 99.4 99.6 

    

 The performance of the method is evaluated on 

different metrics and displayed in Table 1. The proposed 

RFIO-DNN method introduces higher performance in all 

the factors. 
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               Fig 2.Performance Analysis 

 Analysis of various metrics is performed and 

compared in Figure 2. The proposed, RFIO-DNN algorithm 

has produced higher performance in all the factors. The 

method used NSL-KDD and UNSW-NB 15 data sets. Both 

were merged and normalized to frame the data set and 

features are extracted to train the model. Accordingly, the 

method are measured for their performance and presented in 

the above Figure 2. In all the case, the RFIO-DNN algorithm 

has produced higher performance than others. 

 

 

                  Fig 3: Analysis on Accuracy 

 The performance in classification accuracy is 

measured for different data sets and presented in Figure 3. 

The proposed RFIO-DNN algorithm has produced higher 

accuracy in classification than other methods. 

 

           Fig 4: Analysis on false ratio 

 The ratio of false classification produced by different 

methods are measured and presented in Figure 4. The 

proposed RFIO-DNN algorithm has produced less false 

classification than others. 

 

 

5.Summary 

 This paper presented a novel realtime feature 

impact optimization based DNN model (RFIO-DNN) 

towards intrusion detection in 5G networks. The method 

uses various data sets and merge them towards 

normalization using Feature Level Fuzzy Normalizer. 

Further, Feature Impact Optimization (RFIO) algorithm is 

applied to select specific features from the data set. Then, 

the features and values of the records is extracted and 

converted into feature vector. Extracted feature vector set 

has been used to train the deep neural network. At the test 

phase, the neurons of the network compute Feature Level 

Trust (FLT) and Transmission Level Trust Weight (TLTW).   

Using these values, the output layer neuron computes Multi 

Constraint Trust Weight (MCTW) according to the IoT 

devices present in the transmission route. Using the value of 

MCTW, the method classifies the incoming data as well as 

node to perform intrusion detection. 

References 

[1]  A. Pathak, I. Al-Anbagi and H. J. Hamilton, "An 

Adaptive QoS and Trust-Based Lightweight 

Secure Routing Algorithm for WSNs," in IEEE 

Internet of Things Journal, vol. 9, no. 23, pp. 

23826-23840, 1 Dec.1, 2022, doi: 

10.1109/JIOT.2022.3189832. 

[2]  S. Verma, S. Zeadally, S. Kaur and A. K. Sharma, 

"Intelligent and Secure Clustering in Wireless 

Sensor Network (WSN)-Based Intelligent 

Transportation Systems," in IEEE Transactions on 

Intelligent Transportation Systems, vol. 23, no. 8, 

pp. 13473-13481, Aug. 2022, doi: 

10.1109/TITS.2021.3124730. 

[3]  A. Ahmed, S. Abdullah, M. Bukhsh, I. Ahmad and 

Z. Mushtaq, "An Energy-Efficient Data 

Aggregation Mechanism for IoT Secured by 

Blockchain," in IEEE Access, vol. 10, pp. 11404-

11419, 2022, doi: 

10.1109/ACCESS.2022.3146295. 

[4]   M. Bin-Yahya, O. Alhussein and X. Shen, 

"Securing Software-Defined WSNs 

Communication via Trust Management," in IEEE 

Internet of Things Journal, vol. 9, no. 22, pp. 

22230-22245, 15 Nov.15, 2022, doi: 

10.1109/JIOT.2021.3102578. 

[5]  M. Nouman, U. Qasim, H. Nasir, A. Almasoud, 

M. Imran and N. Javaid, "Malicious Node 

0
20
40
60
80

100

LG
TB

ID
S

TC
E-

ID
S

FL
A

G

C
N

N
-G

R
U

R
N

N
-L

ST
M

R
FI

O
-D

N
N

A
cc

u
ra

cy
 %

Accuracy

TPR (%)

FPR (%)

Precision (%)

Accuracy (%)

0
20
40
60
80

100

LG
TB

ID
S

TC
E-

ID
S

FL
A

G

C
N

N
-G

R
U

R
N

N
-L

ST
M

R
FI

O
-D

N
N

A
cc

u
ra

cy
 %

Accuracy

UNSW-NB 15

NSL-KDD

AWID

0
5

10
15
20

LG
TB

ID
S

TC
E-

ID
S

FL
A

G

C
N

N
-G

R
U

R
N
N
-…

R
FI

O
-D

N
NFa

ls
e

 R
at

io
 %

False Ratio

UNSW-NB 15

NSL-KDD

AWID



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 246–255 |  255 

Detection Using Machine Learning and 

Distributed Data Storage Using Blockchain in 

WSNs," in IEEE Access, vol. 11, pp. 6106-6121, 

2023, doi: 10.1109/ACCESS.2023.3236983. 

[6] Z. Yu, Y. Liu, G. Xie, R. Li, S. Liu and L. T. Yang, 

"TCE-IDS: Time Interval Conditional Entropy- 

Based Intrusion Detection System for Automotive 

Controller Area Networks," in IEEE Transactions 

on Industrial Informatics, vol. 19, no. 2, pp. 1185-

1195, Feb. 2023, doi: 10.1109/TII.2022.3202539. 

[7] K. Sood, M. R. Nosouhi, D. D. N. Nguyen, F. 

Jiang, M. Chowdhury and R. Doss, "Intrusion 

Detection Scheme With Dimensionality Reduction 

in Next Generation Networks," in IEEE 

Transactions on Information Forensics and 

Security, vol. 18, pp. 965-979, 2023, doi: 

10.1109/TIFS.2022.3233777. 

[8] M. Shafi, R. K. Jha and S. Jain, "LGTBIDS: Layer-

Wise Graph Theory-Based Intrusion Detection 

System in Beyond 5G," in IEEE Transactions on 

Network and Service Management, vol. 20, no. 1, 

pp. 658-671, March 2023, doi: 

10.1109/TNSM.2022.3197921. 

[9] Z. Zhao, Q. Du and H. Song, "Traffic Load 

Learning Towards Early Detection of Intrusion in 

Industrial mMTC Networks," in IEEE 

Transactions on Industrial Informatics, vol. 19, no. 

7, pp. 8441-8451, July 2023, doi: 

10.1109/TII.2022.3218722. 

[10] H. Whitworth, S. Al-Rubaye, A. Tsourdos and J. 

Jiggins, "5G Aviation Networks Using Novel AI 

Approach for DDoS  

Detection," in IEEE Access, vol. 11, pp. 77518-

77542, 2023, doi: 

10.1109/ACCESS.2023.3296311. 

[11] D. D. N. Nguyen, K. Sood, Y. Xiang, L. Gao, L. 

Chi and S. Yu, "Toward IoT Node Authentication 

Mechanism in Next Generation Networks," in 

IEEE Internet of Things Journal, vol. 10, no. 15, 

pp. 13333-13341, 1 Aug.1, 2023, doi: 

10.1109/JIOT.2023.3262822. 

[12] T. Ye, G. Li, I. Ahmad, C. Zhang, X. Lin and J. Li, 

"FLAG: Few-Shot Latent Dirichlet Generative 

Learning for Semantic-Aware Traffic Detection," 

in IEEE Transactions on Network and Service 

Management, vol. 19, no. 1, pp. 73-88, March 

2022, doi: 10.1109/TNSM.2021.3131266. 

[13] Y. He, M. Kong, C. Du, D. Yao and M. Yu, 

"Communication Security Analysis of Intelligent 

Transportation System Using 5G Internet of 

Things From the Perspective of Big Data," in IEEE 

Transactions on Intelligent Transportation 

Systems, vol. 24, no. 2, pp. 2199-2207, Feb. 2023, 

doi: 10.1109/TITS.2022.3141788. 

[14] M. Lefoane, I. Ghafir, S. Kabir and I. -U. Awan, 

"Unsupervised Learning for Feature Selection: A 

Proposed Solution for Botnet Detection in 5G 

Networks," in IEEE Transactions on Industrial 

Informatics, vol. 19, no. 1, pp. 921-929, Jan. 2023, 

doi: 10.1109/TII.2022.3192044. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


