
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 337–349 |  337 

A Transfer Learning Based Deep Learning Method for Mesoscale 

Convective Cloud Segmentation 

Vidya Patil*1, Anuradha Phadke2 

 

Submitted: 04/11/2023         Revised: 26/12/2023           Accepted: 03/01/2024 

Abstract: Risky weather events associated with Mesoscale Convective Systems (MCS) may end in considerable financial losses and 

occasionally even fatalities. Owing to the unpredictability of climate scenarios, little is known about the dynamics behind the development 

and deepening of MCS. Satellite images of MCS Clouds (MCSC) reveal a range of topologies, from open to closed, yet study on MCSC 

activities remains severely constrained. Through the use of high-resolution mathematical models of the atmosphere and the analysis of 

remote sensing imagery, high cloud-top temperature gradients, specific spatial shapes of temperature patterns, and other aspects of MCSCs 

can be investigated. In this study, deep learning (DL) methods are used to segment MCSC images using a transfer learning (TL) strategy. 

VGG-16 has been improved in the present work by fusing encoder-decoder architecture and taking cues from UNet architecture. The design 

that is generated is called ENDE-VGG. The proposed approach enables the collection of more pertinent data over a wider region. Images 

based on the Brightness Temperature in the infrared (K1-IR) channel by the Indian geostationary satellite Kalpana-1 are used in the present 

research. The TL technique produced a Dice coefficient of 0.935 on the validation data set, an intersection of union (IoU) of 0.875 on the 

K1-IR data set, and a mean IoU of 0.93. Additionally, using the test data, it obtained a 0.933 Dice coefficient and 0.875 IoU. ENDE-VGG 

performed better than the most sophisticated cloud image segmentation methods when using IoU as the loss function, based on numerous 

research studies.   
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1. Introduction 

The highest temperatures registered in meteorological 

records have been observed globally over the previous thirty 

years. In comparison to the worldwide average, temperature 

levels in Russia are rising twofold quicker [1]. Convective 

phenomena in the upper atmosphere have intensified as a 

result of the discovered climate warming, and dangerous 

convective weather occurrences have become more frequent 

and intense [2]. These instances significantly harm the 

country’s economy and result in fatalities. The most 

significant of these is extremely torrential downpours, 

which includes devastating continuous cyclones in 2010, 

2017, and 2021 [3], [4] an intense flood in Krymsk in 2012 

[4], severe hurricanes in both the European and Asian areas 

of the world [5], [6], [7] and high levels of precipitation in 

general [4]. Mesoscale Convective Systems (MCS) are 

responsible for producing dangerous convective events, 

such as huge hail, cyclones, squalls, and strong stormy rains, 

which often happen during the hottest part of the year [8], 

[9]. 

Mesoscale Convective Systems, called the MCS, represent 

a structured collection of cumulonimbus clouds that 

generate a zone of precipitation with a width exceeding 

beyond 100 km no less than a single direction [10]. 

Although tropical regions are home to the bulk of MCSs, a 

smaller proportion is often seen there throughout the 

summer months [11]. Depending upon their geometric and 

horizontal aspects, Maddox’s suggested classification of 

MCS [12]. Particularly, axisymmetric and regular MCS 

have been identified. According to the Orlanski 

identification, the initial categories are further classified into 

squall contours referred as meso-alpha scale and 

cumulonimbus peaks called as meso-beta scale [13], [14]. 

Mesoscale convective complexes (MCCs), that belong to 

mesoalpha scale frameworks, while cumulonimbus cloud 

clusters and supercells, resulting in meso-beta scale 

networks, are examples of axisymmetric MCS. 

On the basis of the utilization of remote sensing 

information, observational and climatological examinations 

of MCS are carried out. Continuous series of data are 

specifically given by geostationary satellites like GOES, 

Meteosat, and Himawari as well as polar satellites in orbit 

like NOAA or Terra/Aqua. Owing to the contiguous patches 

of extremely frigid cloud top temperatures that MCS 

generate, infrared satellite images are used to detect and 

track them [15]. Additionally, geostationary satellite 

imagery offers extensive spatial and temporal distribution, 

alongside any part of the world may employ the techniques 

used to analyze its information. Laing and Fritsch [11] 

conducted one of the earliest satellite-based investigations 
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of the climatological properties of MCSs over the period 

1986–1997, concentrating on MCCs. Numerous 

climatological research on MCS have since been conducted 

globally [16] and macro-regional [17] scales, including the 

contiguous United States, China, and West Africa. Infrared 

images from space are employed for evaluating a number of 

MCS features along with to keep track of them. Intense 

updrafts and regions featuring a high likelihood of severe 

weather are particularly indicated by cloud-top signatures 

including overshooting tops (OTs) [18], cold rings [19], 

cold U/V features [20], and above-anvil cirrus plumes [21]. 

In climatological investigations of MCS, meteorological 

radar measurements are frequently employed in conjunction 

with satellite images [22]. Such information can be used to 

assess the properties and progression of MCS because of 

their great resolution in both time and space. The United 

States [23] and Eastern Europe each have their own radar-

based climatologies of MCSs. Weather radar data has been 

effectively used to assess the climatological parameters of 

hailstorms in addition to the MCSs themselves and their 

morphological properties [24]. Radar data have several 

spatial coverage gaps in some areas, which is their principal 

drawback. 

Using automated technologies or the expertise of specialists, 

MCS can be found on satellite images. An increase in the 

use of computerized data-processing and analyzing 

methodologies has been brought on by a growing volume of 

experimental data, particularly those concerning the 

temporal and spatial variation of different meteorological 

characteristics [25], [26]. However, it still takes a lot of time 

to visually locate and analyze MCSs in satellite imagery. 

Alternately, specialists can employ sophisticated machine 

learning techniques that can spot associations and patterns 

in the large amounts of available data to better comprehend 

the dynamics of MCSs [27], [28]. 

The remainder of the paper is divided into the following 

sections: A summary of the research work presented in the 

published literature for the MCSC segmentation and 

classification is provided in Section 2. A detailed 

description of the technique used for the proposed ENDE-

VGG model is provided in Section 3. Section 4 describes 

the experimental findings and the analysis that goes along 

with them, and section 5 finishes the work provided along 

with any shortcomings and suggestions for further research. 

2. Literature Review 

Computer vision techniques are widely used in conjunction 

with the numerical simulation techniques for the study of 

two dimensional data that may be visualized. The 

identification of related components, key point localization, 

clustering, and image processing methods tailored for the 

recognition of visual patterns are a few examples. Numerous 

techniques, such as analyzing images using machine 

learning algorithms [29], are applicable in addition to 

image-processing techniques that assess color and 

brightness [30]. 

There have been numerous machine learning-based 

methods created so far to identify different MCC cloud 

forms. Recent studies have demonstrated the successful use 

of machine learning techniques for recognizing extreme 

weather occurrences [31], [32], [33]. Due to the clear 

depiction of these occurrences in the majority of empirical 

data and modeled atmospheric dynamics knowledge, the 

majority of studies concentrate on the recognition  

 synoptic-scale atmospheric occurrences such as tropical 

cyclones [34] and atmospheric rivers [35]. Investigations on 

the detection of mesoscale geophysical phenomena using 

DL methods have been conducted. Huang et al. [36] 

discovered sub-mesoscale oceanic vortices in SAR satellite 

data, and Krinitskiy et al. [37] showed that the convolutional 

neural network (CNN) capacity to classify polar lows in 

infrared and microwave satellite mosaics. CNN techniques 

are also used by Krinitskiy et al. [38] to address the 

identification of polar lows in satellite mosaics of the 

Southern 

Ocean challenge. 

One of the oldest is the Wood and Hartmann [39] technique, 

which uses a Multi-Layer Perceptron model trained using a 

Moderate Resolution Imaging Spectrometer. Here, the 

degree and distribution of liquid water paths are used to 

classify the MCC type on imaging regions of 256×256 km2. 

This technique has been found to help identify global and 

seasonal variations [40], [41]. It gives outcomes for areas 

with fairly high spatial resolutions. The relevance of the 

technique for analyzing the dynamics and diurnal cycle of 

these kinds of systems is nevertheless limited on account of 

the coarse spatial resolution of the approach and the use of 

cloud components produced from visible images. 

Significant contributions of the present investigation are as 

follows: i) The conventional VGG-16 architecture’s three 

fully connected layers (FC-Layer), which are used for 

classification, are adjusted in the present scenario to adopt 

the traits associated with a symmetric decoder with layers 

placed in the opposite order from the encoder side, as is done 

in a traditional U-Net; ii) In order to segment the clouds that 

can be utilized that represents MCSC after performing the 

area threshold, DL has been applied for the very first time 

with Indian satellite IR image data; iii) Considering 

exclusively two distinct kinds of pixel values in an output 

image-white for the object, MCSC in this instance and black 

for the background or other objects in the image-object 

segmentation, like separating out a MCSC with a certain 

temperature, can be viewed as a binary classification 

challenge. Accuracy might not be taken into account as a 

true performance criterion because the segmented image 
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contains more black pixels than white ones. An extremely 

high accuracy value can be produced by an output image 

with an imbalanced proportion of black and white pixels. 

Intersection-over-union (IoU) and Dice coefficient are used 

as performance metrics to evaluate the efficiency of the 

proposed system; iv) Applying IoU as a loss function has 

enhanced the accuracy, IoU, and Dice Coefficient 

performance of the MCS segmentation as overall.  

3. Methodology 

In this present work, an improved DL model namely ENDE-

VGG is utilized to segment MCSC in the MCS 

environment. In the part that follows, the essential 

components needed to build a DL-based MCSC 

segmentation model are outlined. Figure 1 illustrates the 

suggested DL-based MCC segmentation approach. 

3.1. Data Annotation         

With the use of thresholding technique, an image is capable 

of being easily analyzed and the desired features can be 

extracted by splitting it into two or more sections based on 

intensity levels. Pixels exhibiting intensities that are higher 

or lower than the threshold will be categorized differently 

by specifying a threshold value. This method helps with 

tasks including recognizing objects. 

The thresholded image, T(x, y), is denoted mathematically 

as, 

𝑇(𝑥, 𝑦) = {
1 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇

 0 𝑖𝑓 𝐼(𝑥, 𝑦) ≤ 𝑇
                     (1) 

where I (x, y) represents the input image. 

3.2. Data Augmentation 

Data augmentation employs current data to create modified 

replicas of datasets, which are then used to artificially 

increase the training set [47]. During augmentation, 

geometric transformations such as crop, rotation, flipping 

operations like horizontal flip and vertical flip, grid 

distortion, and elastic transform are performed to K1-IR 

images as well as its corresponding mask. The subsections 

below provide descriptions of each operation. 

3.2.1. Crop 

The term "random crop process" typically refers to a 

padding- 

Fig. 1. Overall architecture of TL based DL approach for 

cold clouds segmentation in MCS environment 

based random cropping procedure. The input image is first 

put up with an arbitrary-sized window. The raw image 

is then clipped out according to the vertical and horizontal 

lines that traversed a random point within the predetermined 

window. It was then downsized to the original image size. 

Here, the ground-truth box in the image can be removed 

together with the actual image. 

3.2.2. Rotation 

Rotation augmentations are performed by rotating the image 

between 1° and 359° to the right or left on an axis. The 

rotation degree attribute has a significant impact on the 

effectiveness of rotation augmentations. On identification 

assessments, slight rotations may be helpful, but as the 

degree of rotation grows, the marking of the information is 

not anymore preserved after transformation.  

3.2.3. Flipping 

Images can be rotated both horizontally and vertically. 

Transitioning the horizontal axis occurs far more frequently 

than switching the vertical axis. However, a vertical flip is 

the same as rotating an image by 180°, then flipping it 

horizontally. This augmentation is among the simplest to 

employ and has worked well with datasets like ImageNet. 

3.2.4. Grid Distortion 

Grid-distortion is an image warping technique which is 

driven by the mapping between equivalent families of 

curves, arranged in a grid structure. Here, the aberrant image 

is broken down into a rectangular grid, and for each grid, 

each of the current curves are given slightly different 

shapes, resulting in variances in the MCSC's geometric 

alteration. 

3.2.5. Elastic Transform 

In this research, we investigate an interesting method of 

elastic distortions. The following justifies the use of this 

kind of data augmentation: The MCSC is a non-rigid object, 

therefore varied stretching can lead the same object to seem 

slightly differently in different exams. In order to produce 
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fresh synthetic samples which are scientifically reasonable, 

one can artificially induce analogous tiny elastic distortions.  

3.3. Segmentation using Deep Learning 

A convolutional neural network (CNN) is a particular type 

of multiple-layered neural network that relies on explicit 

pattern identification from image data with minimal or no 

pre-processing [48]. Convolution, pooling, and fully linked 

layers are the three primary layers that make up a traditional 

CNN. The convolution layer, which is the base layer of a 

CNN, performs the majority of the computing effort. Like 

the term suggests, it filters or performs convolutions on the 

input before passing the result to the following layer. The 

input is completely filtered by the applied filter, creating a 

feature map and serving as a feature marker. The pooling 

layer is employed to substantially minimize the 

representation of space and the amount of computation 

required between successive convolutions. Each sliced input 

is subjected to the pooling operation by the pooling layer, 

which lowers the computational burden on the following 

convolution layer. Features from the input images are 

extracted and reduced as a result of the use of convolution 

as well as pooling layers. Applying the completely 

connected layer results in an end result corresponding to the 

total number of classes. A CNN is a variation of each of 

these components layered together to produce a CNN 

architecture. The architecture is the identical for all CNNs, 

however there are some differences. 

CNNs are a technique for TL that enables the knowledge 

acquired from a specific task to be applied to another, 

related task [49]. The fundamental method used in DL to 

address the issue of limited training data is known as TL. TL 

might be useful for issues like MCSC segmentation. When 

employing TL, one aims to transfer from the original 

domain to the target domain the understanding of the spatial 

distribution of information in an encoded representation 

space [49]. TL makes use of the generic properties that 

CNNs trained on huge datasets, like ImageNet, have 

discovered and which are pertinent to many perceptual 

applications. TL uses a pre-trained CNN as its foundation 

and refines it on the new dataset like K1-IR as opposed to 

training a CNN from scratch on a fresh dataset. For MCSC 

segmentation in this work, we used the VGG-16 architecture 

to perform TL on K1-IR dataset referred as ENDE-VGG. 

ENDE-VGG is redesigned in the current MCSC 

classification by integrating encoder-decoder architecture 

and taking design ideas from UNet architecture. 

3.3.1.Parameters for learning K1-IR features 

A domain, D, is made up of the feature space, F, and the 

associated probability, 𝑃(𝐹) [49], where 𝐹 =  𝑓1, 𝑓2, . . . , 𝑓𝑎 

denotes the total number of input images. The region that is 

relevant can be mathematically stated as, 

 𝐷 =  [𝐹, 𝑃(𝐹)]                         

 (2) 

For two distinct domains, their corresponding feature spaces 

and marginal probabilities would also vary. A task E in a 

domain D is made up of two parts: the objective predictive 

function X(.) and label space S. This is denoted in 

mathematical concepts as, 

𝐸 =  [𝑆, 𝑋(. )]      (3) 

The attributes S labelled as l are used during the training 

procedure to produce the function X(.) in order to predict 

the testing data. In our proposed method, which uses a pre-

trained network of VGG-16, we experience the case when 

there is just one base domain 𝐷𝑏  and one destination domain 

𝐷𝑑. Base domain and destination domain are 

mathematically represented as, 

  

𝐷𝑏 = (𝑓𝑏1, 𝑙𝑏1), (𝑓𝑏2, 𝑙𝑏2), … , (𝑓𝑏𝑒 , 𝑙𝑏𝑒) (4) 

where 𝑓𝑏𝑘is the instance of the base information that 

matches label 𝑙 𝑏𝑘, and k=1, 2, 3,..., e. The desired field 

information is displayed similarly as, 

               

𝐷𝑑 = (𝑓𝑑1, 𝑙𝑑1), (𝑓𝑑2, 𝑙𝑑2), … , (𝑓𝑑𝑒 , 𝑙𝑑𝑒) (5) 

Our suggested system's two domains, as well as each of their 

unique characteristic spaces and labels, may not be the 

same. Transfer learning is the process of learning the 

predictive function 𝑋(. ) of a target domain using data from 

a source domain and tasks. 𝑋(. ) is used to predict the label 

of an unidentified instance f, which is mathematically stated 

as, 

                                                                 

𝑓(𝑦)  =  𝑃(𝑙|𝑦)    (6) 

The basic idea of the current study is that each of the 

innermost layers of CNN are able to extract broad 

characteristics from images that can be generated in advance 

for a certain domain (in this case, ImageNet is the source 

task) and then be utilized for classifying a new task (MCSC 

classification) 𝐷𝑑. 

Additionally, the mathematical depiction of objectives, 

referred to as loss functions, need to be taken care of, if 

it possesses the ability of covering even the edge situations 

in order to comprehend the goal properly and more quickly. 

Conventional learning methods, from which loss functions 

have evolved based on label distribution, is where loss 

functions first appeared. In this work, three types of loss 

functions are used for the analysis: Binary Cross Entropy 

(BCE), Dice Coefficient (DC), and Intersection over Union 

(IoU) [50]. 

3.4.1.1. Binary Cross Entropy 

BCE is the loss function used in this case. BCE loss is a 

predictive statistic that measures inaccurate data category 
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labelling through a model and penalizes the model if errors 

in label classification occur. High accuracy levels 

correspond to low log loss scores. The goal problem entails 

two labels, presence of MCSC and absence of MCSC and 

predictions for two classes: presence and absence of MCSC. 

As a result, the loss function for the network varies 

accordingly, and for these binary classification issues, we 

explore BCE loss (Eq. (7)). 

𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = −
1

𝑁
∑ 𝑍𝑖 .

𝑁
𝑘=1 (𝑝(𝑍𝑖)) + (1 − 𝑍𝑖). 𝑙𝑜𝑔 (1 −

𝑝(𝑍𝑖))  (7) 

Where 𝑍𝑖 is the actual class, log (1 − 𝑝(𝑍𝑖)) details the 

probability of the original class, 𝑝(𝑍𝑖) represents the 

probability value of 1 and 1 − 𝑝(𝑍𝑖) represents the 

probability value of 0. 

3.4.1.2. Dice Coefficient 

This popular loss is employed to determine the similarity of 

the two images and it is related to the Intersection-over-

Union strategy. As a result, the Dice Coefficient (DC) is 

transformed into the Dice Loss, a function that represents 

loss (Eq. (8)). 

𝐿𝑜𝑠𝑠𝐷𝐶 = 1 −
2𝑍𝑖𝑝+1

𝑍𝑖+𝑝+1
                                      (8) 

where, 𝑝 represents the predicted value. 

3.4.1.3. Intersection over Union 

IoU sometimes referred by the term the Jaccard index or 

Jaccard similarity coefficient, is a popular metric for 

comparing the resemblance of finite test sets. IoU is usually 

described as the intersection of two finite test sets, A and B, 

divided by their union, A and B (Eq. (9)). 

𝐿𝑜𝑠𝑠𝐼𝑜𝑈 =  
𝐴∩𝐵

𝐴∪𝐵
             (9) 

The identity of indiscernible, non-negativity, symmetry, and 

triangle inequality are all characteristics of a metric that IoU 

satisfies. The resemblance between two arbitrary forms A 

and B is devoid of the scale of their space in particular 

because IoU is scale-invariant. The IoU has been used in this 

paper because of the aforementioned qualities. 

3.3.2.The Proposed ENDE-VGG Architecture 

ENDE- VGG architecture is divided into two sections. 

VGG16 structure (i.e encoder, EN) is used in one section 

with five downsampling blocks to capture context. The 

other U-Net-based component (decoder, DE) [39] employs 

an expanding path that is symmetrical to enable 

exact identification and consists of five up-sampling blocks. 

The design of ENDE- VGG is seen in Figure 2. 

 

Fig. 2. Overall flow of the proposed ENDE-VGG 

Architecture 

The input images are 512 × 512 pixels containing a total of 

three channels (Red, Green, and Blue- RGB) are applied in 

the suggested ENDE-VGG model. Convolutional layers 

linked to the Rectified Linear Unit (ReLU) layer, 

MaxPooling layer. Upsampling layers of the ENDE- VGG 

design bring the component dimensions of the down-

sampling block which were reduced to its original 

dimensions by means of Transposed Convolutional layers. 

In the meanwhile, Batch Normalization (BN) layer comes 

after the convolutional layer in the up-sampling block. 

Certain layers are replicated symmetrically after which they 

are combined alongside the output of the convolutional 

layer during the up-sampling block operation. The width 

and height of the data after every subsequent downsampling 

block calculation are cut in half. The input applied to the 

upsampling layer gets doubled in its width and height at the 

output. The upsampling layer in this case doubles the 

applied input in both width and height. 

Convolutional layers are used in both blocks of up- and 

down-sampling. The layer employs a set of learnable weight 

kernels to carry out the convolution operation. MaxPooling 

layer, which shrinks the overall dimension of the input array 

and is frequently referred to as downsampling, is another 

crucial component of ENDE- VGG. It obtains the maximum 

values using a subarray. If a stride of 2 is taken into account, 

the input array's width and height are reduced to half once it 

has passed the MaxPooling layer. The memory shrinks to 

one-fourth of its initial size once the array has gone through 

the MaxPooling layer. This increases training efficiency 

tremendously. 

Blocks of data are upsampled in order to convert the 

characteristic vectors to its original pixel values in RGB 

channels. This process is referred to as image visualization. 

In the up-sampling blocks (DE blocks), the upsampling 

layer is frequently utilized. It expands the input array's width 

and height. Here, any input element would be repeated 

twice. Following upsampling, resolution would always be 2 

× 2 of the input array. The input as well as the output image 

dimensions are identical since there are precisely the same 

amount of MaxPooling and Up-Sampling layers. 

Layer copying and concatenation are exclusive to U-net and 
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set it apart from other fully connected networks. For 

instance, to create annotations in an output image, up-

sampling blocks convert the result of convolutional layers, 

which capture the properties of MCSC into abstract 

knowledge, or into spatial data. Convolutional and pooling 

layers, however, will begin to forfeit spatial information, 

with the pooling process having a greater impact. Both 

spatial and abstract knowledge are crucial for K1-

IR segmentation. As a result, typical fully connected 

networks lack desirable results in terms of accuracy. 

Copying and concatenating are suggested as a solution to 

connect the features in the down-sampling blocks to the 

equivalent up-sampling blocks in U-net, as each time 

pooling will drastically lose spatial information. 

4. Experimentation Results 

4.1. Evaluation Parameters 

The metrics that are used to evaluate the models are 

accuracy, recall, also known as sensitivity, specificity, and 

false positive rate, which are the most frequently employed 

metrics. Four key metrics are utilized to determine these 

measures: (i) correctly identifying cloud pixel cases (true 

positives, TP); (ii) incorrectly classifying cloud pixel cases 

(false negatives, FN); (iii) correctly identifying black 

background cases (true negatives, TN); and (iv) incorrectly 

classifying black background cases (false positives, FP). 10, 

11, 12, and 13 show the mathematical formulas for 

calculating accuracy, specificity, sensitivity, and false 

positive rate. 

       

𝑆𝐸𝑁 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (10)                                    

𝑆𝑃𝐸 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
               (11)               

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                      (12)  

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
                             (13) 

Where SEN represents sensitivity, SPE denotes specificity. 

ACC represents the accuracy, and FPR gives the false 

positive rate.    

4.2. Data Annotation 

In order to use supervised learning to obtain the most 

effective segmentation and classification results, labels need 

to be collected from K1-IR images. We use a threshold of 

220K. This value needs to be calculated by taking into 

consideration the K1-IR image pixel values that are related 

to the specific temperature variations. Radiant annotations 

that have too high of values lose their brilliance, whilst too 

low of values result in artifacts like less obvious margins 

around clouds. In order to properly segment MCSC, the 

following threshold values are selected for this experiment 

and images are manually annotated: 

i) If the temperature is below or equal to 220K, the 

threshold for the temperature indicates the white 

pixel values; otherwise,  

ii) The values of each pixel are black if the temperature 

criterion exceeds above 220K. 

White pixels serve as the work's representation of objects, 

MCSC in this scope of investigation. Here, for the purpose 

of being able to generate manual annotations employing the 

photo editing program, Photoshop, this threshold is depicted 

by a color in the color palette. 

Figure 3 illustrates the result of the data annotation step. 

Figure 3 (a) displays the input image from the K1-IR dataset 

as a sample for illustration. Figure 3 (b) shows the resultant 

output image at this stage. 

 

Fig. 3. Result for the data annotation phase 

Figure 3 shows that a given RGB K1-IR image is divided 

into two distinct regions according to a temperature-related 

threshold value. Therefore, in the output image, pixels with 

intensity values higher than the specified 220K will be 

classified as black, or 1, and those with intensity values 

lower are regarded as white, or 0. This process also helps to 

know about the ground truth present in the input image. 

4.3. Data Augmentation 

 

Fig.4. Result of crop operation  

An arbitrary-sized window initially loads with the input 

image. Following that, the raw image is clipped off in 

accordance with the vertical and horizontal lines that passed 

through a chosen location inside the predefined window. 

The image is then shrunk to 512x512 size. In this case, both 

the image and the ground-truth box can be eliminated. The 

object is assumed to exist if over 50% of the ground-truth 

area is left after being chopped off. Additionally, when the 
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total number of arbitrary points is set to n, the number of 

original image details are multiplied by n to create new 

images created by data augmentation. Additionally, we 

avoided overfitting by enhancing the data by horizontal 

flipping. Figure 4 displays the result of crop operation. 

It is followed by the rotation-based transformations. The 

image is rotated between 1° and 359° to the right or left on 

an axis to conduct rotation augmentations. The efficiency of 

rotation augmentations is significantly influenced by the 

rotation degree attribute. Slight rotations, such as those 

between 1° and 20° or -1° to 20°, may be useful for 

identification evaluations, but as the degree of rotation 

increases, the imprint of the details is no longer kept 

following transformation. For the sake of this experiment, 

the K1-IR images are thus randomly rotated by 90°. The 

rotation-based transformation result is shown in Figure 5. 

Images are rotated in both the horizontal and vertical 

directions during rotation-based transformation. The 

horizontal axis changes far quicker than the vertical axis 

does. The images are rotated by 180° in a vertical flip before 

being turned horizontally.  

 

Fig. 5. Result of random rotate by 90° operation 

With datasets including ImageNet, this augmentation has 

shown to be one of the most convenient to use. Figure 6 and 

Figure 7 displays the result of flip operations, horizontally 

and vertically, respectively. 

 

Fig.6 Result of horizontal flip operation 

 

 

Fig.7. Result of vertical flip operation 

 

Fig.8. Result of grid distortion 

In grid based transformation, the aberrant image is divided 

into a rectangular grid and each grid's current curves are 

given slightly varied shapes, leading to variations in the 

MCSC's geometric transformation. The resultant image is 

shown in Figure 8. 

 

Fig.9. Result of elastic transformation 

Additionally, we see that elastic distortions on K1-IR 

pictures as displayed in Figure 9 substantially enhances 

MCSC segmentation and classification performance in 

MCS environments. 

4.4. Segmentation using ENDE-VGG Model 

Following the data annotation and data augmentation 

procedure described in Section 4.2 and 4.3, we conducted 

MCSC segmentation and classification using the proposed 

ENDE-VGG model. We generated splits of the source K1-

IR dataset into training validation and testing subsets 

employing 70:15:15 ratio. Employing the methodology 

described in Section 3.3.2, we trained and evaluated our 

proposed ENDE-VGG model with each split. We present 
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the resulting measures of quality and their uncertainties in 

Table 1.  

A total of 100 iterations are included in each training phase. 

The Adam optimizer is used throughout training along with 

an initial learning rate of 0.0001 as long as it showed little 

advancement on the validation dataset, then trained using a 

learning rate of 0.1 through early stopping following another 

30 epochs with little improvement on the validation dataset. 

IoU is the model validation measure used for comparing 

several models and decide on early halting. A weighted sum 

of dice loss and BCE that has a 70% weighting in favour of 

BCE makes up the loss function. By calculating the 

equilibrium value of precision and recall, dice loss, 

sometimes referred to as the F1-score, optimizes the 

incorrect impact of false positives and false negatives. Dice 

loss and IoU are fairly comparable in terms of numbers. 

Initial testing revealed that employing both types of loss 

function offered a greater IoU and dice loss compared to a 

BCE loss function. This is probably since BCE exhibits 

more steady gradients and is closer to the actual goal of 

enhancing IoU than dice loss and IoU loss, which are more 

resilient to imbalanced classes. 

Image investigators frequently examine images employing 

masks for segmenting and analysing MCSC. It is beneficial 

to create image processing masks that, like traditional image 

processing screens, take into account numerical parameters, 

which includes quantitative assessments of pixel values and 

nearby pixels, in order to decode basic physical concepts 

beneath the MCSC image level. Filter sizes of [32, 64, 128, 

256, 512] are used in the proposed approach to process 

labelled objects like MCSC. The validation dataset for filter 

sizes [16, 32, 48, 64], [16, 32, 64, 128, 256], [64, 128, 256, 

512, 1024], [32, 64, 128, 256, 512, 1024], and [32, 64, 128, 

512, 1024] does not show any improvement, hence the 

aforementioned filter size is chosen. 

Table 1. Evaluation measures for the proposed ENDE-

VGG model 

Loss 

Fun

ctio

n 

Training Validation 

mea

n 

IoU 

SEN SPE AC

C 

FPR mea

n 

IoU 

SEN SPE AC

C 

FPR 

BCE 0.49

6 

0.90

1 

0.99

9 

0.99

82 

0.00

018 

0.49

6 

0.89

7 

0.99

9 

0.99

82 

0.00

025 

DC 0.92

6 

0.90

9 

0.99

9 

0.99

83 

0.00

016 

0.93 0.9 0.99

9 

0.99

82 

0.00

026 

IoU 0.93

1 

0.91 0.99

9 

0.99

83 

0.00

014 

0.93 0.9 0.99

9 

0.99

82 

0.00

025 

 

Table 1 demonstrates that when the loss function is IoU, 

mean IoU (mIoU) greatly increases whereas BCE and DC 

hardly change at all. This is because mIoU elevates the 

weight of damaged pixels to the identical extent as the 

weight of non-damaged pixels. This demonstrates that 

mIoU may enhance the K1-IR dataset's capacity to segment 

and categorize images, as well as that using a method of 

assessment that assigns objects more weight is significant 

especially when such items, like mIoU, only take up a small 

portion of the total number of pixels in the dataset. Results 

from every image that offers areas with clear temperature 

thresholds are better. Since overall K1-IR image is 

illuminated unevenly, the source image needs to be 

modified in relation to illumination throughout the image.  

Considering the entire K1-IR images, the segmentation 

performance is shown in Table 1 on the basis of sensitivity, 

specificity, and accuracy. The effectiveness is still very 

constant, proving that the variables in the suggested 

algorithm have the best values.  As seen in Table 1, the 

suggested segmentation method efficiently segments the 

MCSC using the suggested ENDE-VGG model with an 

overall accuracy of 0.9983 (training) and 0.9982 

(validation). The FPR lies between [0, 1]. In this case, the 

model performs better when FPR values decrease. For the 

suggested ENDE-VGG model, this is accurate. From Table 

1, it appears that the FPR value, which is within the range, 

is 0.00014 (for training) and 0.00025 (for validation).    

The initial evaluation of the MCSC segmentation method 

only incorporated ENDE-VGG. Later, two image 

segmentation models-conventional U-Net [51] and double 

U-Net [52]-are examined as part of the segmentation 

algorithms. Then, three objective functions, including BCE, 

Dice Loss, and IoU, are calculated. Initially, the 

segmentation method only used 30 to 60 epochs. However, 

models were under fitting because of an insufficient amount 

of data and the necessity to train an model with 1.3 million 

parameters. An average validation Dice Coefficient of 0.91 

resulted from overfitting caused by efforts to raise the 

number of trials. These preliminary findings indicated that 

the segmentation algorithm on the K1-IR dataset performed 

around averagely. The comparison of the MCSC 

segmentation algorithm employing ENDE-VGG ended up 

being in depth. In this instance, we are able to enhance the 

optimal Dice Coefficient score from 0.845 to 0.907 

considering a total sample of 7868 K1-IR images spread 

across 100 epochs (Table 2). The Dice Coefficient score 

increased from 0.915 to 0.951 (Table 2) during the 

validation phase utilizing 7868 K1-IR images, and from 

0.906 to 0.933 during the testing phase. 
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Table 2.  Assessment metrics for objective functions used 

in ENDE-VGG Model. 

 

Loss 

Function 

Validation Testing 

IoU Dice 

Coefficient 

IoU Dice 

Coefficient 

BCE 0.845 0.915 0.829 0.906 

DC 0.903 0.949 0.874 0.932 

IoU 0.907 0.951 0.875 0.933 

4.5. Comparison of Performance 

Two additional pre-trained models based on DL are 

employed to assess the effectiveness of the segmentation 

and classification of the MCSC from the K1-IR dataset in 

order to gain insight into the impact of the efficiency of the 

ENDEVGG model. U-Net and double U-Net decoder 

designs are being put to the test. Adam is employed herein 

across all the models used for segmentation for uniformity 

and since the initial evaluation revealed that employing 

Adam produced decent results, regardless of the various 

segmentation models utilized in the present investigation. 

The transferred U-Net model, which is made up of subtle 

characteristics collected from more than 1,000,000 images, 

had been pre-trained across the ImageNet dataset. The U-

Net architecture’s layers are finely tweaked throughout the 

entire and segmented K1-IR images as the fully connected 

layers are transferred. The U-Net and double U-Net models 

retain the low-level attributes from the source domain while 

transferring the fully connected layers, accelerating 

learning. A total of 100 epochs are used to record both the 

training and the validation phases for each image, and the 

resulting average outcomes of evaluation are provided in 

Table 3. The U-Net correctly identified MCSC in 0.9982 as 

part of pixels after training. Table 3 shows that there is a 

considerable rise in mIoU from 0.911 by U-Net, 0.903 by 

double U-Net, to 0.931 by ENDE-VGG model. The results 

showed a sensitivity of 0.906 and a specificity of 0.999. 

Double U-Net attained a sensitivity of 0.909, specificity of 

0.999, and average accuracy of 0.9983. Additionally, noted 

are the FPRs for U-Net and double U-Net, which are 

0.00019 and 0.00015, respectively. In Supplementary Table 

1, the results are summarized together with accuracy, 

sensitivity and specificity. The investigation shows that the 

suggested ENDE-VGG model improves U-Net and double 

U-Net topologies, particularly in terms of mIoU, accuracy, 

and FPR. 

Furthermore, we examined the DC and IoU of the recovered 

ground truth and the binarized forecasted segmentations in 

both the training and the validation dataset (sections 4.2 and 

4.3). When comparing the forecasts based on the training set 

to the ground truth segmentations, it is as expected that both 

DC and IoU are relatively large. The projected 

segmentations nevertheless exhibit a mediocrely good level 

of agreement with DC and IoU values on unobserved data. 

Interestingly, we observed performance that is comparable 

to the outcome of the validation phase. Careful analysis of 

Table 4 reveals that the trained ENDE-VGG model’s 

performance is mostly unaffected by variations in the 

ground truth segmentations employed to train the model 

between different raters. Table 4 displays a summary of 

various agreement indicators. 

Moreover, shown in the present research, we successfully 

managed to gather the entire MCSC and train an ENDE-

VGG segmentation model with a very high DC compared to 

those formerly reported with only 7868 K1-IR images. 

Table 3. Performance comparison criteria for evaluation of 

the proposed model. 

Mod

els 

Training Validation 

mea

n 

IoU 

SEN SPE ACC FPR mea

n 

IoU 

SEN SPE ACC FPR 

U-

Net 

0.91

1 

0.90

6 

0.99 0.99

82 

0.00

019 

0.91

5 

0.88

9 

0.99

9 

0.99

81 

0.00

022 

Dou

ble 

U-

Net 

0.90

3 

0.90

9 

0.99 0.99

83 

0.00

015 

0.91

2 

0.9 0.99

9 

0.99

82 

0.00

03 

END

E-

VG

G 

0.93

1 

 

0.91 

 

0.99 

 

0.99

83 

 

0.00

014 

 

0.93 

 

0.9 

 

0.99

9 

 

0.99

82 

 

0.00

02 

 

 

Considering more extensive datasets that utilize multi-

institutional MCSC batches and more powerful models, the 

suggested ENDE-VGG segmentation accuracy might 

probably be increased even more. In this research, we used 

a dataset of 7868 samples and trained the models utilizing 

1.3 million parameters. To maintain success in automatic 

MCSC segmentation, extensive datasets in MCSC image 

evaluation shall be required. Using large, heterogeneous 

records, multi-model techniques to train a single model that 

is capable of recognizing and segmenting any kind of 

MCSC should additionally be evaluated. 
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Table 4. Comparison of objective functions 

Models Training Validation 

IoU Dice 

Coefficient 

IoU Dice 

Coefficient 

U-Net 0.893 0.943 0.873 0.932 

Double 

U-Net 

0.903 0.949 0.879 0.935 

ENDE-VGG 0.907 

 

0.951 

 

0.879 

 

0.935 

5. Conclusion 

MCS are highly dangerous and strong atmospheric 

phenomena. Due to a lack of labeled data, conducting 

effective research on MCSC characteristics based on 

difficult impressions can be difficult. In addition, 

investigation into the dynamics of the MCSC utilizing DL 

approaches has become severely constrained due to its 

multiple topologies, that may be a combination of open or 

closed in nature. The proposed work uses pre-trained DL 

algorithms and a TL technique to segment and classify 

MCSC images employing the K1-IR database obtained from 

the Indian geostationary satellite. The proposed model, 

called ENDE-VGG, utilizes the capabilities of the encoder-

decoder design. On the validation data set for the K1- IR 

data set, the TL technique yielded an IoU of 0.875, a mIoU 

of 0.93, and a Dice coefficient of 0.935. It also cleared the 

examination with an IoU of 0.875 and a Dice coefficient of 

0.933. Numerous investigations indicate that when IoU is 

used as the loss function, ENDE-VGG outperforms the most 

modern methods for segmenting cloud images. In the 

current study, 1.3 million parameters were used to train the 

ENDE-VGG model using a dataset of 7868 samples. To 

ensure the achievement of automatic MCSC segmentation, 

large datasets for MCSC image assessment are required. In 

the future, studies will examine multi-model techniques for 

training one predictive model that can recognize and 

segment any form of MCSC utilizing a variety of huge, 

heterogeneous datasets. 
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