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Abstract: Multi-disease classification and severity estimation of cotton and soybean leaves is a crucial task in the field of agriculture. The 

early detection and management of plant diseases are vital for ensuring crop yield and food security. This study presents a novel approach 

for the multi-disease classification and severity estimation of cotton and soybean leaves using the hybridization of a Convolutional Neural 

Network (CNN) with Multi-Resolution Feature Optimization (MRFO). The suggested model takes the benefit of both CNN and MRFO to 

enhance the classification and severity estimation performance. The dataset used for training and testing consists of images of cotton and 

soybean leaves affected by multiple diseases. The experimental results demonstrate that the suggested model provides improved 

classification accuracy and severity estimation compared to the state-of-the-art approaches. The model achieved an overall accuracy of 

96.07% for cotton leaves and 95.51% for soybean leaves. Moreover, the proposed model accurately estimated the severity of the diseases 

in the soybean and cotton leaves to be 99.1% and 91.21% respectively, which is crucial for effective disease management. 
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1. Introduction 

Agriculture is an important sector because it provides food for 

people all over the world. The prosperity of a nation's farmers 

depends on the success of their crops. A major danger to 

agricultural output and food security, however, comes from crop 

diseases [Kaur et al. (2019)]. Losses in crop yield, decreased crop 

quality, and higher production costs are all possible outcomes of 

crop disease. As a result, proper disease management and control 

depend on prompt and precise crop disease detection. Therefore, 

several researchers have turned to image-processing methods to 

aid in the diagnosis of plant diseases [Bagde et al. (2015), Rastogi 

et al. (2015)]. The most accurate way for identifying agricultural 

illnesses has been a visual inspection by professionals, but this 

process is time-inefficient and prone to error. Additionally, several 

agricultural diseases have identical symptoms at different phases 

of plant development, making it difficult to distinguish between 

them [Prasad et al. (2016), Khirade & Patil (2015)]. Because of 

this, it is necessary to have procedures that are both accurate and 

efficient for identifying agricultural illnesses. 

There are a variety of diseases that can affect plants; however, the 

disease that a plant has is determined by its etiology. Additionally, 

because of this, it is more difficult for computer vision techniques 

to appropriately recognize them [Barbedo (2016), Prashar et al. 

(2015)]. Molecular, serological, and DNA analysis are three of the 

most widely used classic methods. The detection procedure is 

automated in novel ways by using volatile organic molecules and 

imaging and spectroscopic methods [Applalanaidu & 

Kumaravelan (2021)]. These cutting-edge methods are more 

efficient and require less oversight. The following figure 1 

illustrates leaves of cotton and soybean leaves infected with plant 

diseases. 

 

Fig 1. Disease identification in cotton 

[http://cotton.tamu.edu/Photos/diseasephotos/images/10bacter

ialblight.jpg] and soybean 

[https://fieldcropnews.com/2016/07/soybean_disease_resource

s/] leaves 

Investment in creating automated systems for disease 

identification and severity estimation in crops has increased 

alongside the development of computer vision and machine 

learning techniques. The detection and categorization of crop 

diseases using machine learning (ML) methods have shown 

encouraging results in recent years [Annabel et al. (2019)]. 

Machine learning algorithms can shift through massive datasets in 

search of patterns and characteristics that would be invisible to the 

human eye. The surrounding environment, genetic factors, and 

management techniques are only a few of the many potential 

influences on crop health that must be evaluated to detect and 

classify diseases in multi-variant crops. ML-based algorithms can 

produce a more precise result by combining data from several 

different sources and taking some different aspects into account. 

This study examines deep learning (DL) methods for multi-variant 

crop disease detection, classification, and severity analysis. DL 

1Research Scholar, Department of Computer Engineering, 

Veermata Jijabai Technological Institute, Mumbai 

2 Supervisor, Department of Computer Engineering & 

Information Technology, Veermata Jijabai Technological 

Institute, Mumbai 

* Corresponding Author Email: 

vaishali.bhujadesfdc@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering                                                 IJISAE, 2024, 12(11s), 584–594 |  585 

approaches for identifying agricultural illnesses, how they might 

enhance agriculture, and its possibility for widespread application 

will be discussed. This paper proposes a CNN-based multi-disease 

classification and severity assessment approach for cotton and 

soybean leaf pictures. The recommended approach may classify 

leaf diseases and evaluate severity. This goal is to establish a 

reliable, accurate, and automated crop disease detection and 

severity assessment system. The suggested method could evaluate 

large datasets, handle complex characteristics, and produce 

reproducible and consistent results better than the present 

methodology. 

1.1. Analysis of DL models for plant disease classification 

Deep learning (DL) models, especially CNNs, can classify disease 

of plants including cotton and soybean diseases. These models 

accurately recognize healthy and sick leaves from leaf pictures 

[Fan et al. (2022)] [Abade et al. (2021)]. DL models may follow 

disease progression by processing field sensor time-series data on 

temperature, humidity, and soil moisture [Saleem et al. (2019)]. 

Pre-trained DL models from ImageNet may be adapted to cotton 

or soybean disease datasets to improve model efficiency [Wu et al. 

(2019)]. This method uses historical data and environmental 

factors to anticipate and prevent disease outbreaks. CNNs, a 

fundamental DL architecture, are ideal for automated feature 

extraction from input images [Amara et al. (2017)]. Their capacity 

to handle data with minimum variance and low pre-processing 

helps them identify and diagnose diseases. 

The study presents a completely automated technique for 

diagnosing cotton and soybean plant diseases. This study would 

target plant disease detection in cotton and soybean, two vital 

commodities for global food security. Farmers might make 

educated management decisions and reduce crop losses with the 

suggested system's accurate plant disease detection and severity 

estimation. This technology uses image processing and deep 

learning algorithms to reliably identify and categorize plant 

illnesses, making it new. The study shows the potential of image 

processing and deep learning to construct automated and efficient 

plant disease detection systems, which might benefit plant disease 

management. 

The following paper is organized as follows: Section 2 discusses 

crop disease diagnostic and severity assessment research. Section 

3 introduces crop disease diagnosis study. Section 4 covered crop 

disease detection and severity analysis problems. Section 5 lists 

research goals. Research gaps are listed in Section 6. The multi-

variant crop disease detection and classification dataset is 

explained in Section 7. Section 8 describes the study approach, and 

Section 9 describes the experiments and compares them to existing 

procedures. Section 10 summarizes the study's findings and 

discusses crop disease diagnostics' future impact on agriculture. 

2. Literature of review 

Several different approaches to the diagnosis of plant diseases are 

discussed, and a comprehensive review of both conventional and 

cutting-edge methods is provided in the relevant literature.  

Zhang K. et al., (2021) explained that the quality of the soybean 

crop and the agricultural economy depend on early and precise 

diagnosis of leaf diseases in the soybean field. This study develops 

a multi-feature fusion Faster Region-CNN (MF3 R-CNN) to deal 

with the aforementioned difficult issue with a mean average 

precision of 83.34% in a real-world test dataset. Tesla et al., (2020) 

utilized five different DL architectures to classify images of 

soybean. The experimental results show that the fine-tuned DL 

architectures may achieve greater classification rates than 

alternative methods, with an accuracy of up to 93.82%. Jadhav et 

al., (2019) identified soybean leaf infections and grouped them 

using color images of infected leaves. Samples infected with 

blight, brown spots, and frog eye leaf spots may be correctly 

classified at an 87.3% rate, whereas healthy samples are classified 

at an 83.6% rate using the proposed classifiers system. Ghatol et 

al., (2019) observed that the main problem is ensuring the plants 

are healthy and identifying any diseases that may be affecting 

them. This study used variety of ML algorithms. Accuracy levels 

of 93.45% and 93.58% were achieved. Kumari et al., (2019) 

suggested a system to detect the leaf spot with the use of image 

processing methods. The detection rates of bacterial leaf spots and 

targeted spots in cotton leaf diseases are found to be 90% and 80%, 

respectively. Sarangdhar et al., (2017) present SVM-based 

regression approach for cotton leaf diseases detection and 

categorization. The proposed approach achieves an overall 

accuracy of 83.26% in its classifications. Parikh et al., (2016) 

observed that cotton leaf reflects most disease signs. The novelty 

of the idea is in the processing of images obtained in the field by 

an inexperienced person using a standard or mobile phone camera 

under uncontrolled conditions. The proposed work utilizes a 

cascade of KNN classifiers and various training sets to successfully 

detect this disease along with its stage from unconstrained images. 

Gharge et al., (2016) offers an algorithm for identifying the 

presence and severity of soybean diseases. The k-means 

segmentation algorithm is used to distinguish between healthy and 

diseased clusters. To categorize Various diseases of Soybeans, a 

neural network is employed. After processing 30 images, a success 

rate of 93.3% was achieved. Rothe et al., (2015) introduces a 

pattern recognition approach for identifying and classifying 

Alternaria, mesothelium, and bacterial blight leaf diseases in 

cotton. This study utilized an active contour model for picture 

segmentation and extract Hu's moments as features. When applied 

to images of diseased cotton leaves, back propagation neural 

networks had an average accuracy of 85.52%. Ranjan et al., (2015) 

suggested a method that makes use of a variety of image processing 

techniques and ANN to detect cotton leaf diseases early and 

reliably. The experiments revealed that using an ANN with a 

feature set improves classification performance by about 80%. The 

following table 1 presents the comparative analysis of reviewed 

literature.  

Authors Techniques Outcomes 

Zhang et al., (2021) MF3 R-CNN The suggested MF3 R-CNN achieved mean average precision of 83.34% 

in disease identification. 

Tetila et al., (2020) Hybrid fine-tuning DL 

Transfer learning 

The experimental results show that the fine-tuned DL architectures 

achieved better classification with an accuracy of up to 93.82%. 

Jadhav et al., (2019) GLCM, SVM, KNN The proposed classifiers system classified samples infected with blight, 

brown spot 

Ghatol et al., (2019) SVM, KNN Accuracy levels of 93.45% and 93.58% were achieved 
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Kumari et al., (2019) Neural network The detection rates for bacterial leaf spots and targeted spots in cotton 

leaves were 90% and 80%, using the NN classifier. 

Sarangdhar et al., (2017) SVM The proposed SVM-based regression approach achieves an overall 

accuracy of 83.26% in its classifications. 

Parikh et al., (2016) KNN This study successfully detected disease along with its stage from 

unconstrained images. 

Gharge et al., (2016)  K-means segmentation  

Neural Network  

Findings revealed that the proposed neural network achieved a success 

rate of 93.3% after processing 30 images. 

Rothe et al., (2015) Backpropagation neural 

networks 

Results revealed that back propagation neural networks had an average 

accuracy of 85.52% 

Ranjan et al., (2015) ANN The experiments revealed that using an ANN with a feature set improves 

classification performance by about 80%, 

Table 1. depicts the Summary of the Reviewed Literature 

3. Background study 

Infectious diseases of plants are a major cause of economic losses 

in agriculture because they reduce crop yields and reduce food 

quality. The use of deep learning, and in particular deep CNN with 

transfer learning, is becoming increasingly popular in the 

agriculture industry as a means of dealing with this problem. 

Recent research has improved upon previous approaches for 

identifying plant leaf diseases by using models such as VGGNet 

and Inception. The approach was shown to be reliable and 

successful in identifying plant diseases, with an average accuracy 

of 92.00% on a difficult dataset. [Chen et al. (2020)]. 

4. Problem formulation  

Plant diseases are the main cause of crop yield and quality losses 

worldwide. Plant diseases must be found early and accurately 

diagnosed to minimize crop losses and ensure food security. 

Cotton and soybean production need an accurate, efficient 

approach for detecting, categorizing, and assessing plant disease 

severity. Current illness diagnosis and severity assessment 

methods are time-consuming and manual. To solve this difficulty, 

image processing has been suggested. The suggested method 

would employ a CNN hybridized with the MRFO algorithm to 

improve cotton and soybean disease detection, classification, and 

severity assessment. 

5. Research objectives 

• To collect the several damaged cotton and soybean leaves for 

accurate disease detection. 

• To preprocess the images with a Gaussian filter to improve 

segmentation and feature extraction.  

• To create an excellent color and texture image segmentation 

system utilizing PWFCM clustering. 

• To enhance illness categorization by extracting key 

characteristics from segmented regions utilizing GLCM, LDP, and 

Global Filter. 

• To improve illness prediction and severity evaluation using a 

hybrid CNN-MRFO technique and construct a visual symptom 

severity estimate system. 

6. Research gaps 

• Insufficient cotton and soybean leaf disease databases reduce 

system accuracy. 

• Pre-processing challenges related to noise and blur reduction, 

segmentation, and feature extraction. 

• Limitations in image segmentation approaches for reliable area 

separation limit diseases categorization. 

•  Limited feature extraction strategies can affect disease 

prognosis and severity estimate for plant diseases classified by 

visual symptoms. 

7. Dataset description  

The dataset utilized in this study consists of real field images of 

Soybean and Cotton obtained from the Indian Council of 

Agriculture Research (ICAR) - Central Institute for Cotton 

Research (CICR), located in Nagpur. A phone camera recorded 

these photographs under varied lighting and environmental 

situations, revealing plant features. The collection comprises 

photos from top and bottom leaf sides, healthy and sick, and was 

classified by ICAR-CICR scientists. The soybean dataset for 

disease prediction includes 990 images of 9 soybean leaf illnesses 

and 110 healthy soybean leaf images. Disease types and healthy 

controls were studied using 110 images each. Some diseases of 

plants include yellow mosaic disease, frogeye leaf spot, healthy 

leaves, sudden death syndrome, target leaf spot, bacterial pustule, 

rust, and a combination of the three. This uniformly distributed 

sample of images allows researchers to study these diseases on 

soybean and cotton plants in their natural habitats. Figure 2 shows 

soybean leaves. The dataset contains soybean leaf samples, and the 

purpose is to determine whether disease is impacting them based 

on color, texture, etc. 

The cotton dataset for disease prediction consists of a total of 990 

images, which are classified into 9 diseases that occurred in cotton 

leaves including 110 images of healthy cotton leaves. The number 

of images in each category is recorded in the cotton plant disease 

dataset. Among the total, 39 portray healthy cotton leaves, 825 

exhibit diseased cotton plants, and the remaining 40 show bacterial 

blight, 38 show powdery mildew, 40 show armyworm infestations, 

41 show target spot, and 39 show aphids. In addition to the 421 

photographs of healthy cotton plants, there are also 288 images of 

cotton leaves that have been affected by disease. This extensive 

dataset represents a wide range of cotton plant conditions, making 

it useful for testing new methods of disease detection and 

classification. Figure 3 given below illustrates the image of cotton 

leaves. 
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Fig 1. Soybean leaf image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Cotton leaf image 

8. Research Methodology 

9.1. Technique used 

The various techniques used in the proposed methodology are 

discussed below: 

8.1.1. Piece-wise Fuzzy C-means clustering 

To segment an image is to divide it into smaller parts that each 

represent a different object or element of the background. 

Applying clustering methods, such as the PWFCM clustering 

algorithm, to the task of image segmentation is one possible 

strategy. In the realm of unsupervised machine learning, PWFCM 

is a spinoff of the traditional Fuzzy C-means (FCM) clustering 

algorithm used to solve problems of clustering and classification. 

PFCM clustering is a method for picture segmentation in which 

each pixel is assigned a fuzzy membership to one or more clusters 

[Sathish et al. (2020)]. The image is first partitioned into several 

sub-regions in PFCM, and then each of those is subjected to fuzzy 

clustering analysis. The mathematical formula for PFCM is as 

follows: 

Let X = {x1, x2, ..., xn} be a set of n pixels in an image, and let k 

be the number of clusters. Divide the image into sub-regions R1, 

R2, ..., and Rm. For each sub-region Ri, initialize the cluster 

centroids ci1, ci2, ..., cik. For each pixel xi in Ri, calculate the 

fuzzy membership of xi to each cluster centroid using the 

following formula: 

𝜇𝑖𝑗 = [1 + ((
𝑑(𝑥𝑖,𝑐𝑖𝑗)

𝑑(𝑥𝑖,𝑐𝑘+1)
)

2

)
−1

]  (1)                    

                             

where d(x_i,c_ij) is the Euclidean distance between pixel xi and 

cluster centroid c_ij, and d(x_i,c_k+1) is the Euclidean distance 

between pixel xi and the farthest cluster centroid c_k+1 in sub-

region Ri.Update the cluster centroids using the following formula: 

  

𝐶𝑖𝑗 = (
∑ 𝜇𝑖𝑗

𝑚𝑥𝑖

∑ 𝜇𝑖𝑗
𝑚 )   (2) 

   

where m is a fuzzifier parameter that controls the degree of 

fuzziness of the clustering. Repeat the above two steps until 

convergence. Merge the sub-region clusters to obtain the final 

segmentation result. PFCM is effective in segmenting images with 

non-uniform lighting and complex textures [Nandhini & 

Ashokkumar (2022)]. 

 

8.1.2. GLCM 

Digital image processing analyzes texture using GLCM. Pixel pair 

frequency and spatial connection are represented by GLCM. It 

extracts plant disease picture attributes to identify healthy and ill 

plants. Pixel intensity statistics are used to calculate second-order 

gray-level degrees for texture analysis using GLCM [Surya et al. 

(2017)]. It produces orientation patterns and metrics including 

comparison, dissimilarity, entropy, energy, IDM, and correlation. 

Pictures are classified and clustered using GLCM matrix contrast, 

energy, and correlation [Sari et al. (2021)]. 

8.1.3. Local Directional Pattern (LDP) 

LDP feature extraction can be utilized for object identification, 

segmentation, and classification. It creates texture descriptors for 

each pixel by calculating the local direction of edges [Chahi et al. 

(2018)]. The general mathematical formula for LDP is as follows: 

𝐿𝐷𝑃(𝑥, 𝑦) = ∑ [𝑔(𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 𝑟𝑖 , 𝑦 + 𝑐𝑖)) × 2𝑖]𝑚−1
𝑖=0   (3) 

where:(x,y) = pixel position in the image,I(x,y) = gray level of the 

pixel at (x,y), 

r_i and c_i = displacement vectors used to calculate the direction 

of edges at pixel (x,y),m = several bits used to represent the LDP 

code,g() = function that maps the intensity difference to a binary 

code (0 or 1) based on a threshold value T. 

Each pixel's binary LDP code encodes edge local direction 

[Ahmed et al. (2014)]. The gray level difference between the pixel 

and its neighbors along the displacement vectors ri and ci is used 

to calculate it. Using a threshold value T, the g() method converts 

this difference to a binary code that specifies the descriptor's noise 

sensitivity. An image analysis feature vector may be created from 

each pixel's LDP code. Compact and resilient, it collects local 

texture information and may be utilized with other feature 

extraction algorithms for more complicated jobs. 

8.1.4. Gabor Filter 

The following equation describes the band-pass nature of the 

Gabor filter, which provides its two-dimensional impulse response 

in the spatial domain:  

𝐺𝑎𝑏 (𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
[−

1

2
(

𝑥2+𝑦2

𝜎2 )+𝑗𝑤(𝑥𝑐𝑜𝑠𝜙+𝑦𝑠𝑖𝑛𝜙]
 (4) 

where, σ = spatial width,ϕ = orientation angle and ω = frequency. 

Based on its parameters, the Gaussian kernel function may 

estimate Gabor filter forms. It can enhance images, smooth them, 
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and extract texture features. This Gabor filter is for texture 

extraction. Best results for edge-shaped texture recognition use an 

odd filter. Input picture and filter are convolved [Madiwalar & 

Wyawahare (2017)]. 

8.1.5. CNN  

CNN is a popular deep learning technique for image 

categorization. CNNs can automatically assess plant leaf photos to 

classify cotton and soybean plant diseases. CNN has pooling, 

convolution, and totally linked layers [Yamashita et al. (2018)]. 

CNN construction is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

Fig 3. Structure of CNN [Gu et al. (2019)]. 

 

As seen in Fig 4., the fundamental components of CNN 

architecture could be separated into five categories.  

The input layer of the neural network gets the primary data set in 

the form of the pixel values of individual pictures. Unique 

characteristics are extracted from the input data using kernels in 

the convolutional layers, with different kernels capturing various 

qualities. The fully connected layer generates probability for 

different outcomes by combining and normalizing the 

characteristics collected from earlier convolutions. The number of 

neurons in the output layer is tailored to individual needs and is 

dictated by the nature of the layer itself. 

CNNs are trained on a massive dataset of annotated photos to 

identify disease and healthy plant traits. The network then 

classifies fresh pictures using this knowledge [Li et al. (2020)]. 

CNNs are good at picture categorization because they can 

recognize patterns at different abstraction levels [Picon et al. 

(2019)]. They use a hierarchical, multi-layered system that learns 

more complex information from incoming photos to detect healthy 

and ill plants. CNNs can swiftly and correctly classify cotton and 

soybean plant diseases, helping farmers and researchers control the 

illness and limit crop loss. This can boost agricultural yields and 

make agriculture more sustainable. 

8.1.6. MRFO 

Image processing and computer vision employ MRFO deep 

learning. Through feature extraction at different scales, MRFO 

improves picture classification. Conventional deep-learning 

algorithms extract features from images at a fixed resolution. 

Images may include useful information at different resolutions, 

improving categorization accuracy. The MRFO method extracts 

features at multiple sizes or resolutions and combines them into a 

feature vector. A deep learning model is updated to incorporate 

numerous branches that process the input picture at different scales 

to perform MRFO. The output of each node is merged before 

categorization by a fully connected layer. Combining CNN and 

MRFO to forecast cotton and soybean plant diseases improves 

accuracy. The model better captures modest plant disease 

symptom changes across scales by extracting information at 

numerous resolutions. This improves crop management and 

treatment forecasts. Overall, CNN-MRFO hybridization for cotton 

and soybean plant disease prediction can boost crop yields and 

minimize plant disease impacts on agricultural output. 

9.2. Proposed methodology 

The suggested approach uses image processing and deep learning 

algorithms to create a fully automated system for identifying plant 

diseases. Specifically, the system focuses on detecting diseases in 

cotton and soybean plants, two crops that are essential for global 

food security. The system involves collecting two separate datasets 

of images of cotton and soybean plant leaves affected by different 

diseases. The collected image datasets undergo pre-processing 

using a Gaussian filter to remove noise and blur the images. Then, 

the images are segmented into separate parts according to color and 

texture using PWFCM clustering. Features are extracted from each 

segmented region using GLCM, LDP, and Gabor Filter. Next, the 

extracted features are used to train a CNN classifier to classify the 

diseases present in the image. The CNN is hybridized with the 

MRFO algorithm to get a higher degree of precision in disease 

prediction. The MRFO algorithm optimizes the features at 

different scales to capture more information about the diseases 

present in the image. Finally, an algorithm is developed to estimate 

the severity of the diseases present in the image based on the size 

and number of lesions or other visual symptoms present in the 

image. The proposed system is expected to provide an accurate and 

efficient means of plant disease detection and severity estimation, 

which could help farmers make informed management decisions 

and minimize crop losses. The flowchart given below in Figure 5 

illustrates the working of the proposed methodology. 
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8.2.1. Proposed diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 proposed methodology 

 

 

 

 

 

 

 

 

 

 

Fig 6. Multi-disease classification and severity estimation model 

 

8.2.2. Proposed algorithm 

ALGORITHM 1:  Multi-disease classification and severity estimation  

Input assumptions:  

 1: Let Dc be the dataset of images of cotton leaves affected by different diseases, and Ds be the dataset of images of 

soybean plant leaves affected by different diseases. 

 2: Let Ii be the ith image in dataset Dc or Ds. 

 3: Let K and σ be the kernel size and standard deviation of the Gaussian filter, respectively. 

 4: Let Ci be the set of clusters obtained by applying Piecewise Fuzzy C-means clustering on image Ii, with the number of 

clusters denoted by N. 

 5: Let Fi,j be the set of features extracted from the jth cluster of image Ii using GLCM, LDP, and Global Filter. 

 6: Let Xi be the set of features extracted from image Ii, i.e., Xi = {Fi,1, Fi,2, ..., Fi, N}. 

 7: Let Y be the set of labels corresponding to the diseases present in the images. 

 8: Let M be the number of images in dataset Dc or Ds. 

 9: Let P(Xi) be the predicted label of image Ii using the trained CNN and MRFO algorithm. 

 10: Let S(Ii) be the severity level of the disease present in image Ii, estimated using an algorithm based on the size and 

number of lesions or other visual symptoms present in the image. 
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Start 

Phase I: Dataset collection : 

Step 1: Given datasets Dc and Ds, collect M images of cotton 

leaves and soybean plant leaves affected by different diseases. 

Phase II: Data pre-processing :  

Step 2: Apply a Gaussian filter to each image Ii in Dc and Ds to 

obtain filtered image Gi, with kernel size K and standard 

deviation σ. 

Phase III: Image segmentation : 

Step 3: Apply Piecewise Fuzzy C-means clustering on each 

filtered image Gi to segment it into N clusters Ci. 

Phase IV: Feature extraction : 

Step 4: Step 4: Extract features from each cluster of each image 

Ii using GLCM, LDP, and Global Filter to obtain feature set Fi,j. 

Phase V: Classification : 

Step 5: Train a CNN on the set of features X = {Xi | i=1 to M} 

and corresponding labels Y to classify the diseases present in the 

images and then further perform testing. 

Phase VII: Model performance enhancement: 

Step 6: Hybridize the trained CNN with the MRFO algorithm to 

improve the accuracy of disease prediction. 

Phase IX: Disease Prediction: 

Step 7: Given a new image I, apply the trained CNN-MRFO 

model to extract features Xi and predict the label P(X) 

corresponding to the disease present in the image. 

Phase X: Severity estimation using algorithm 1.1. 

Step 8: Estimate the severity level S(I) of the disease present in 

the image using an algorithm based on the size and number of 

lesions or other visual symptoms present in the image. 

End 

ALGORITHM 1.1: Multi-disease classification and severity 

estimation 

Start 

Let the input be a result array R of size (n × m), where n is the 

number of plant leaves and m is the number of disease types.  

Step 1: Let num be the maximum value of R: 

num = max(R) 

Step 2: Let Val be the severity score of the disease in the plant leaf, 

which is obtained by multiplying num by 100 

Val = num * 100 

Step 3: Let output be the string representation of Val with 9 

decimal places: 

output = "{:.9f}".format(Val) 

Step 4: Let a be the index of the maximum value in R, which 

represents the disease type: 

a = argmax(R, axis=1) 

Step 5: Let Type be the type of plant disease based on the value of 

a, where: 

Type = 'Disease name' if a = 0 and so on till a = 9 

Step 6: Let V be the severity of the disease based on the value of 

Val, where: 

V = 'Low' if Val <= 50 

V = 'Average' if 50 <= Val <= 80 

V = 'High' if Val > 80 

Step 7: Let St be the string that represents the severity of the 

disease in the plant leaf, where: 

St = "Severity of {} in this leaf is {}".format(Type, V) 

Step 8: Print St, which is the final output indicating the severity of 

the disease in the plant leaf identified by the algorithm. 

End 

9. Result and discussion 

9.1. Soybean disease classification 

The model was trained for a total of ten epochs; for each epoch, 

the loss and accuracy were recorded for both the training set and 

the validation set. The loss decreased significantly over the epochs, 

indicating that the model was improving in performance. At the 

end of the training, there was no overfitting because the model 

scored 97.50% accuracy on the training data and 95.51% accuracy 

on the validation data. The given table 4 shows the results of 

training a hybridized CNN and Multi-Resolution Feature 

Optimization model for predicting cotton disease. 

Table 4. Training and validation loss and accuracy for each 

epoch 

Epoch  Loss Accuracy Val_loss Val_acuracy 

Epoch 1 1.7342 0.4464 0.9813 0.7013 

Epoch 2 0.8017 0.7255 0.8047 0.6872 

Epoch 3 0.5930 0.7891 0.5591  0.8513 

Epoch 4 0.4573 0.8400 0.4766  0.8541 

Epoch 5 0.3658 0.8809 0.4028  0.9004 

Epoch 6 0.3351 0.8945 0.3054  0.9341 

Epoch 7 0.2905 0.9082 0.2818  0.9299 

Epoch 8 0.2513 0.9236 0.2412  0.9551 

Epoch 9 0.2256 0.9382 0.1774 0.9734 

Epoch 10 0.1841 0.9536 0.1748  0.9607 

 

Figure 7 is a graph depicting the model's training loss and accuracy 

throughout its 10 epochs of training. 

The classification of soybean plant disease using the proposed 

model yielded impressive results. The model obtained 0.96 

accuracy, which means it successfully recognized 96% of 

occurrences of diseases in soybean plants. The precision and recall 

values for each class of disease are also high, indicating that the 

model has good accuracy in identifying the different types of 

soybean plant diseases as shown in table 5. 

 

Table 5.  Performance metric values for different soybean plant 

diseases. 

Disease Precision Recall F1-

score 

Yellow Mosaic 1.00 1.00 1.00 

Frogeye Leaf Spot 1.00 1.00 0.69 

Healthy 0.75 1.00 1.00 

Sudden Death Syndrome 1.00 0.89 0.97 

Yellow Mosaic + Target Leaf Spot 1.00 1.00 1.00 

Target Leaf Spot 1.00 1.00 1.00 

Frogeye LS + Sudden Death 

Syndrome 

1.00 1.00 1.00 

Bacterial Pustule 0.83 1.00 1.00 
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Rust 1.00 1.00 1.00 

Accuracy   0.96 

Macro avg 0.96 0.95 0.94 

Weighted avg 0.97 0.95 0.95 

The highest precision and recall values were achieved for the 

Yellow Mosaic disease and Yellow Mosaic + Target Leaf Spot 

disease, both achieving perfect scores of 1.00 for precision, recall, 

and F1-score. The model also performed well for the other types 

of diseases, such as Rust and Frogeye Leaf Spot, achieving perfect 

precision and recall scores of 1.00. The only exception was the 

Frogeye Leaf Spot disease, which had a lower F1-score of 0.69, 

indicating that the model may have had difficulty identifying this 

disease. Precision, recall, and F1-score all averaged out to 0.96, 

0.95, and 0.94 across all classes on a global and weighted basis, 

respectively, demonstrating that the approach performs 

consistently across all classes. 

9.2. Cotton disease classification 

The given table 6 shows the results of training a hybridized CNN 

and Multi-Resolution Feature Optimization model for predicting 

cotton disease. The model was trained for 10 epochs, the training 

and validation loss and accuracy are recorded, and the graphical 

representation for each epoch is illustrated in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. Graphical plot of training and validation loss and accuracy 

The results indicated that the model's accuracy in estimating cotton 

disease greatly improved across epochs, suggesting that it 

performed very well. After finishing training, the model was 

97.50% accurate on the training data and 95.51% accurate on the 

validation data. This means the model is not overfitting and is 

successful on both data. 

 

 

 

 

 

Table 6. Training and validation loss and accuracy for each 

epoch 

Epoch Loss Accuracy Val_loss Val_acuracy 

Epoch 1 0.7201 0.7857 0.8432  0.7653 

Epoch 2 0.2476  0.9249 0.4321 0.8551 

Epoch 3 0.1810 0.9468 0.2677  0.9082 

Epoch 4 0.1382 0.9581 0.2323  0.9122 

Epoch 5 0.1134 0.9591 0.1942  0.9122 

Epoch 6 0.1070 0.9695 0.2072  0.9245 

Epoch 7 0.0958 0.9722 0.1191  0.9490 

Epoch 8 0.0888 0.9718 0.1379  0.9429 

Epoch 9 0.0758 0.9795 0.1083  0.9592 

Epoch 10 0.0722 0.9750 0.1262  0.9551 
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The classification result of cotton disease prediction obtained by 

hybridized CNN and MRFO illustrate that the overall accuracy 

achieved by the model is 0.95, which is a good indication of its 

performance. For each class, the recall, precision, and F1-score 

values are provided, which indicate the model's ability to correctly 

identify each class. The Aphids, Armyworm, Bacterial Blight, 

Powdery Mildew, and Target spot classes have a precision, recall, 

and F1-score of 1.00 given in Table 7 indicating that the model has 

correctly identified these classes without any false positives or 

false negatives. 

Table 7. Performance metric values for different cotton plant 

diseases 

Disease Precision Recall F1-score 

Aphids 1.00 1.00 1.00 

Armyworm 1.00 1.00 1.00 

Bacterial Blight 1.00 1.00 1.00 

Healthy leaf 1.00 0.54 0.70 

Powdery mildew 1.00 1.00 1.00 

Target spot 1.00 1.00 1.00 

Diseased cotton leaf 1.00 1.00 1.00 

Diseased cotton plant 1.00 1.00 1.00 

Fresh cotton leaf 0.59 0.59 0.74 

Fresh cotton plant 1.00 1.00 1.00 

Accuracy   0.95 

Macro avg 0.96 0.95 0.94 

Weighted avg 0.97 0.95 0.94 

The affected cotton leaf, diseased cotton plant, and fresh cotton 

plant classes all have scores of 1.00 for precision, recall, and F1-

score, which indicates that the model accurately identified each of 

these classes without producing any false positives or false 

negatives. The classes "healthy leaf" and "fresh cotton leaf" had a 

lower precision, recall, and F1 score, which indicates that the 

model had some difficulty detecting these classes. This is mostly 

true for the healthy leaf class. Particularly, the Healthy Leaf has a 

recall of only 0.54, which suggests that the model is not very good 

at recognizing this class when it is present. This is because the 

model is not very effective at distinguishing between different 

types of leaves. 

Overall, the model performs well with a macro-avgF1-score of 

0.94 and a weighted average F1-score of 0.95, indicating that it 

correctly identifies most classes with considerable precision and 

recall. 

9.3. Severity analysis of cotton and soybean plant disease 

The severity estimation of soybean leaves was calculated using the 

hybridized CNN and MRFO model. The predicted class was 

obtained by finding the index of the maximum value in the output, 

which corresponded to Bacterial Pustule with a severity score of 

99.127590656. Based on this score, the severity level was 

determined to be "High" as it was greater than 80%. Therefore, the 

severity estimation of the soybean leaf is "Severity of Bacterial 

Pustule in this leaf is High". Similarly, the severity estimation of 

cotton leaves was determined using the hybridized CNN and 

Multi-Resolution Feature Optimization model, which resulted in a 

severity score of 91.213607788. The disease type was identified as 

"Bacterial Blight" and the severity level was again determined to 

be "High" based on the severity score. Therefore, the final output 

is "Severity of Bacterial Blight in this leaf is High". 

10. Conclusion and Future Scope 

The hybrid CNN-MRFO model had an accuracy rate of 95% and 

96%, respectively, when it came to diagnosing cotton and soybean 

plant diseases. This indicates that the model did pretty well overall. 

This hybrid approach has the potential to help farmers in the early 

identification and management of plant diseases in cotton and 

soybean crops. This, in turn, will lead to increased crop yields and 

economic advantages. As evidenced by its good recall, accuracy, 

and F1 scores, this hybrid technique has the ability to assist farmers 

in this process. The model makes use of a combination of CNN 

and MRFO techniques, which is demonstrated by the exceptionally 

high accuracy with which it can forecast illnesses, particularly 

those affecting cotton. 

The hybrid CNN-MRFO model may be improved in the future for 

larger crop disease applications, integrated into agricultural 

monitoring systems, and the dataset can be expanded to better 

understand its potential in a variety of settings. The use of this 

approach has the potential to improve the monitoring and control 

of crop diseases. 
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