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Abstract: This study presents the development and optimization of an embedded VGG model for the purpose of gender classification in 

crowd videos. Traditional VGG models offer robust feature extraction for image classification but are computationally intensive, rendering 

them less practical for real-time analysis in embedded systems with limited resources. Addressing this, the research explores the 

implementation of VGG11 through a VGG22 architecture, analyzing their performance in terms of accuracy, precision, recall, and F1-

score. The findings indicate a trend of increasing performance with deeper architectures, with the VGG22 model achieving the highest 

scores across all metrics. The research methodology involved adapting the VGG architecture to the constraints of embedded systems 

through model compression techniques such as pruning and quantization, alongside optimization strategies like knowledge distillation. The 

models were evaluated using standard gender classification datasets, with a particular focus on the challenging conditions of crowd video 

data. The results confirmed that with careful optimization, it is possible to maintain high accuracy in gender classification while 

significantly reducing the computational demands of the model. 
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1. Introduction 

In the realm of computer vision, gender classification stands 

as a cornerstone task with substantial applications spanning 

from targeted advertising to enhanced user interfaces and 

security systems. The proliferation of crowd-sourced video 

data, captured by the omnipresent surveillance cameras, has 

necessitated the development of automated and reliable 

gender classification systems [1]. These systems are 

expected to function accurately despite the challenges posed 

by uncontrolled environments, such as variable lighting, 

diverse camera angles, and the presence of occlusions and 

motion blur. The introduction of deep learning, particularly 

Convolutional Neural Networks (CNNs), has significantly 

advanced the capabilities of such classification systems. 

Among the various CNN architectures, the Visual Geometry 

Group's VGG models have garnered attention due to their 

depth and robust feature extraction capabilities, leading to 

impressive performance in image classification tasks. 

However, the deployment of these sophisticated models in 

real-world scenarios is not without its challenges. The 

computational intensity required to run deep CNNs like 

VGG often exceeds the processing capabilities of the 

embedded systems that operate at the edge of the network, 

where real-time processing is crucial. To address this, there 

is a growing interest in developing an embedded VGG 

model that maintains the accuracy of its more 

computationally demanding counterparts while adhering to 

the constraints of embedded systems [2]. This involves 

optimizing the network architecture and leveraging model 

compression techniques to reduce the size and 

computational load without significantly impacting 

performance. 

This work focuses on adapting the VGG model for gender 

classification in crowd videos, specifically tailored for 

embedded systems. The goal is to achieve a balance 

between model complexity and computational efficiency, 

enabling accurate and real-time gender classification 

suitable for deployment in embedded devices. By 

compressing and optimizing the VGG architecture, the 

model can be made suitable for on-device processing, thus 

reducing the latency and bandwidth requirements associated 

with cloud processing. 

Moreover, this research delves into the practical 

considerations of deploying such models in real-world 

scenarios, including the ethical implications and privacy 

concerns of automated gender classification [3]. It aims to 

provide a solution that is not only technically feasible but 

also socially responsible. The expected outcome is a 

streamlined VGG-based model that sets a new standard for 

gender classification in crowd videos, paving the way for 

more advanced and accessible computer vision applications 

in everyday technology. 
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2. Background Study 

2.1 Overview of Gender Classification Challenges in 

Crowd Videos 

Gender classification within crowd videos encapsulates a 

multitude of challenges, forming a complex problem space 

for machine learning and computer vision. This complexity 

arises primarily due to the unconstrained nature of crowd 

environments where factors such as diverse lighting 

conditions, varying angles and distances of faces from the 

camera, motion blur due to movement, occlusions caused by 

objects or other individuals, and the sheer diversity in 

clothing and physical appearances add layers of difficulty. 

Each of these factors can significantly degrade the quality 

of the input data for classification models. Furthermore, the 

scalability of gender classification algorithms to process 

data from multiple video streams simultaneously while 

maintaining high accuracy and low latency presents a 

technical hurdle.  

These algorithms must be robust enough to handle the high 

variability and yet remain efficient enough to provide real-

time analytics, a critical requirement for applications such 

as surveillance, behavioral analysis, and crowd 

management. In crowd videos, faces are rarely perfectly 

posed; they appear at different orientations and are often 

partially visible. This results in a limited availability of 

clear, frontal facial features, which are crucial for accurate 

gender classification. Additionally, the variation in facial 

expressions and the transient presence of individuals in 

video frames complicate the extraction of reliable gender-

specific features [4]. The dynamic nature of crowds means 

that the algorithms must be adaptive, learning from new data 

and potentially retraining or updating models in the field to 

maintain accuracy over time. This is coupled with the need 

for privacy preservation and ethical considerations in 

deploying gender classification systems in public spaces. 

2.2 Evolution of Gender Classification Techniques 

The evolution of gender classification techniques is a tale of 

constant innovation spurred by technological advancements 

and the growing complexity of application demands. In the 

initial stages, gender classification relied heavily on 

geometric feature-based approaches, where algorithms 

focused on measuring distances and angles between key 

facial landmarks. These techniques, while foundational, 

were limited by their reliance on high-quality, frontal 

images and suffered significantly in accuracy when faced 

with real-world conditions. As machine learning became 

more sophisticated, statistical models like Support Vector 

Machines (SVM), Linear Discriminant Analysis (LDA), 

and simple neural networks came into play. These models 

could handle more variability in facial features and were 

better at managing differences in poses and expressions. 

They were, however, still limited in their ability to deal with 

low-resolution images and partial occlusions [5]. 

The breakthrough came with the advent of deep learning, 

particularly the development of Convolutional Neural 

Networks (CNNs). These models could learn hierarchical 

representations of face images, making them adept at 

recognizing and classifying gender even from low-quality 

images and under varied lighting conditions. Techniques 

such as transfer learning, where a model trained on one task 

is adapted for another, further enhanced the ability of CNNs 

to generalize from one dataset to another. In recent times, 

the focus has shifted towards creating models that are not 

only accurate but also efficient enough to run in real-time 

on embedded systems with limited computational resources. 

This has led to the development of lightweight deep learning 

models and the use of edge computing to bring processing 

closer to where data is captured. Simultaneously, there has 

been a growing emphasis on addressing bias and ensuring 

fairness in gender classification algorithms [6]. This 

involves training models on diverse datasets that represent 

different ethnicities, ages, and other demographic factors to 

avoid perpetuating stereotypes or inequality. The trajectory 

of gender classification techniques reflects a journey from 

rule-based algorithms to data-driven models, paralleling the 

broader trends in artificial intelligence and computational 

technology. The field continues to evolve rapidly, with 

ongoing research focusing on improving the robustness, 

efficiency, and ethical aspects of gender classification. 

2.3 Deep Learning Models for Image and Video Analysis 

Deep learning models have revolutionized image and video 

analysis, providing powerful tools for a myriad of 

applications ranging from facial recognition to autonomous 

driving. At the heart of this revolution is the Convolutional 

Neural Network (CNN), which has become synonymous 

with deep learning in visual domains. CNNs are adept at 

automatically and adaptively learning spatial hierarchies of 

features from image data. They are composed of multiple 

layers of convolutional filters that apply various 

transformations to the input, capturing features like edges, 

textures, and patterns that are essential for image 

classification tasks.  

Another critical model in deep learning for image and video 

analysis is the Recurrent Neural Network (RNN), especially 

its more advanced variants like Long Short-Term Memory 

(LSTM) networks. RNNs are designed to handle sequential 

data and are thus well-suited for video analysis where 

temporal dependencies between frames are crucial. Transfer 

learning, where a model developed for one task is reused as 

the starting point for a model on a second task, has been a 

key factor in the success of deep learning for image and 

video analysis [7]. Models pre-trained on large datasets, 
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such as ImageNet, can be fine-tuned with a smaller amount 

of data for tasks like gender classification in crowd videos. 

Generative Adversarial Networks (GANs) have also made 

significant contributions, particularly in image generation 

and enhancement. They can create high-resolution images 

from low-resolution inputs, which is beneficial for 

improving the quality of video frames before analysis. 

Autoencoders, particularly variational autoencoders, are 

used for unsupervised learning tasks such as feature 

extraction and dimensionality reduction in image data, 

which are essential for clustering and anomaly detection in 

video streams. Attention mechanisms, which allow models 

to focus on specific parts of an image, have improved the 

performance of deep learning models in tasks where the 

context and location of objects in the image are important. 

Deep learning in image and video analysis is not without its 

challenges [8]. Models require large amounts of data and 

computational power to train, and there are ongoing 

concerns regarding the interpretability of the models and the 

biases that can be encoded within them. Despite these 

challenges, deep learning models continue to push the 

boundaries of what's possible in image and video analysis, 

providing more accuracy and depth to the interpretation of 

visual data. As computational power increases and more 

sophisticated models are developed, their impact on image 

and video analysis will only grow stronger. 

2.4 Embedded Systems in Image Processing 

Embedded systems have become a cornerstone for real-time 

image processing due to their ability to integrate software 

and hardware to perform dedicated tasks efficiently. These 

systems are characterized by their resource-constrained 

nature, requiring optimized algorithms that can run with 

limited memory and computational power while still 

delivering fast and reliable results. In the context of image 

processing, embedded systems are typically designed to 

handle specific tasks such as facial recognition, object 

tracking, or gender classification in video streams. These 

tasks demand not only accuracy but also the ability to 

process data in real time, which can be challenging given 

the computational intensity of most image processing 

algorithms, especially those involving deep learning 

models. To address this, there has been a surge in the 

development of compact and efficient deep learning 

architectures that can operate within the constraints of 

embedded systems [9]. Techniques such as network 

pruning, quantization, and knowledge distillation are used 

to reduce the size of the models and the complexity of 

computations. This involves trimming unnecessary network 

weights, reducing the precision of the numerical 

representations, and transferring knowledge from a large 

model to a smaller one, respectively. Another critical aspect 

of embedded systems in image processing is the use of 

specialized hardware accelerators such as Field-

Programmable Gate Arrays (FPGAs) and Graphics 

Processing Units (GPUs).  

These accelerators can perform parallel processing, which 

is highly beneficial for the matrix and vector operations that 

are fundamental in image processing tasks. Embedded 

systems often employ edge computing, where data 

processing occurs close to the data source, minimizing 

latency and reducing the need for constant connectivity to 

central servers. This approach is particularly useful in 

scenarios where quick decision-making is crucial, such as 

autonomous vehicles or security surveillance systems [10]. 

The integration of artificial intelligence (AI) with embedded 

systems has also been a significant advancement, allowing 

for more intelligent and adaptive image processing. AI-

enabled embedded systems can learn from new data, 

improve their performance over time, and make decisions 

autonomously. Despite their potential, embedded systems in 

image processing must navigate challenges such as power 

consumption, heat dissipation, and the need for robustness 

against diverse operational environments. As technology 

continues to advance, the capabilities of these systems are 

expanding, enabling more complex and sophisticated image 

processing applications to be deployed in real-world 

scenarios [11]. 

3. Literature Review 

3.1 Gender classification in computer vision 

Gender classification in computer vision is a task that 

involves the identification and categorization of individuals 

into gender categories based on their facial features or other 

form factors. It is a subset of biometric classification that 

leverages the capabilities of artificial intelligence (AI) and, 

more specifically, machine learning algorithms to discern 

gender from images or video feeds. The process generally 

involves several steps, starting with face detection, where 

the system locates the face within an image. Once a face is 

detected, feature extraction occurs, which isolates and 

identifies the unique attributes of the face that are relevant 

to distinguishing gender. In the early days, these features 

were often handcrafted based on domain knowledge, such 

as the distance between facial landmarks. With the advent 

of deep learning, particularly Convolutional Neural 

Networks (CNNs), gender classification systems have made 

significant strides. These networks learn to identify gender-

distinguishing features directly from the data, often 

resulting in higher accuracy levels than methods relying on 

hand-engineered features [12].  

CNNs can handle a wide range of variances in facial images, 

including different expressions, poses, and lighting 

conditions, which are common in real-world scenarios. 
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However, gender classification systems face challenges 

related to the diversity and bias of training datasets. Systems 

trained on non-representative datasets may not perform 

equitably across all demographics. Hence, there's an 

ongoing effort in the community to create more balanced 

datasets and design algorithms that are fair and unbiased. 

Privacy and ethical considerations are also paramount, as 

gender classification can be sensitive. Ensuring that these 

systems are used responsibly and with consent is a critical 

concern for developers and end-users alike [13]. 

3.2 Deep learning for image and video analysis 

Deep learning has fundamentally transformed the field of 

image and video analysis. The core of these advancements 

is the Convolutional Neural Network (CNN), a deep 

learning architecture specifically designed to handle pixel 

data. CNNs and their variants have become the go-to 

methods for tasks such as object detection, image 

segmentation, facial recognition, and video analysis due to 

their ability to automatically extract and learn feature 

hierarchies from raw data. In image analysis, CNNs can 

identify patterns and objects in images with a high degree of 

accuracy, even under variable conditions such as different 

lighting or angles. For video analysis, CNNs are often 

combined with Recurrent Neural Networks (RNNs), 

especially Long Short-Term Memory (LSTM) networks, to 

capture temporal dependencies and analyze sequences of 

frames. Transfer learning, where a model pre-trained on a 

large dataset is fine-tuned for a specific task, has been 

particularly effective for image and video analysis, allowing 

for high performance even with smaller datasets [14].  

This approach is widely used in gender classification, where 

pre-trained models are adapted to focus on the features 

relevant to distinguishing between genders. Generative 

Adversarial Networks (GaN) have also made significant 

strides, particularly in video synthesis and in generating 

high-resolution images from low-resolution inputs, which is 

beneficial for video enhancement and restoration. 

Moreover, the use of attention mechanisms in deep learning 

models allows the network to focus on the most informative 

parts of an image, enhancing performance on tasks such as 

scene understanding and anomaly detection in videos. 

However, deep learning models, particularly those used for 

video analysis, require substantial computational resources. 

This necessitates the use of powerful GPUs and has led to 

the development of model compression techniques to allow 

deployment on less powerful devices, such as mobile 

phones and embedded systems. 

3.3 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep 

neural networks that have become the backbone of many 

computer vision systems. CNNs are particularly well-suited 

for analyzing visual imagery and are used extensively in 

image and video recognition, recommender systems, image 

classification, medical image analysis, natural language 

processing, and other machine learning tasks [15]. The 

architecture of a CNN is designed to mimic the human 

visual system and is composed of one or more convolutional 

layers often followed by pooling layers, fully connected 

layers (dense layers), and normalization layers. Here’s a 

breakdown of the key components in a CNN: 

1. Convolutional Layer: This is the core building block of 

a CNN that does most of the computational heavy lifting. 

It applies a convolution operation to the input, passing 

the result to the next layer. This layer's parameters 

consist of a set of learnable filters or kernels, which have 

a small receptive field but extend through the full depth 

of the input volume. As the filter slides (or convolves) 

around the input image, it learns features from the 

image. 

2. Activation Function: After each convolution operation, 

an activation function like ReLU (Rectified Linear Unit) 

is used to introduce non-linear properties into the 

network. This helps the network to learn more complex 

patterns in the data. 

3. Pooling (Subsampling or Downsampling): This layer 

reduces the spatial size of the representation to reduce 

the amount of parameters and computation in the 

network. Pooling layers partition the input image into a 

set of non-overlapping rectangles and, for each such sub-

region, outputs the maximum (Max Pooling) or average 

(Average Pooling). 

4. Fully Connected Layer: Neurons in a fully connected 

layer have full connections to all activations in the 

previous layer. Their activations can hence be computed 

with a matrix multiplication followed by a bias offset. 

5. Normalization Layer: Layers like Batch Normalization 

are used to stabilize learning by normalizing the input to 

each unit to have zero mean and unit variance. This helps 

in speeding up the training of the network and reduces 

the sensitivity to network initialization. 

6. Dropout: This is a regularization technique where, 

during training, some layer outputs are randomly 

ignored or "dropped out" to prevent overfitting. 

CNNs are effective for the following reasons: 

• Parameter Sharing: A feature detector (such as a filter) 

that is useful in one part of the image is probably useful 

across the entire image. 
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• Local Connectivity: Focusing on local connectivity 

allows the network to concentrate on low-level features 

in the early layers, and then assemble them into higher-

level features in later layers. 

3.4 The VGG architecture 

The VGG architecture is a defining model in the world of 

deep learning for computer vision, introduced by the Visual 

Geometry Group from Oxford University, which is where it 

gets its name. It was a breakthrough for its simplicity and 

depth at the time it was introduced [16]. 

Here are the main characteristics of the VGG architecture: 

1. Simplicity: Unlike many preceding models, VGG’s 

architecture is uniform. It uses a series of convolutional 

layers with small receptive fields followed by max-

pooling layers, then concludes with a stack of fully 

connected layers. 

2. Small Receptive Fields: The convolutional layers use 

small 3×33×3 filters, which is the smallest size to 

capture the notion of left/right, up/down, center. The 

small filter size allows for deeper architectures while 

keeping the number of parameters down. 

3. Depth: VGG models are deep, with configurations 

going up to 19 layers. This depth is achieved by stacking 

convolutional layers on top of each other before 

applying a max-pooling layer. The depth of the network 

allows it to learn a hierarchy of features at various levels 

of abstraction. 

4. Channels: The number of filters in the convolutional 

layers starts at 64 and is doubled after each max-pooling 

layer, until it reaches 512. 

5. Fully Connected Layers: After a series of 

convolutional and max-pooling layers, the architecture 

is concluded with three fully connected layers where the 

final layer is a softmax classification layer. 

6. ReLU Activation: The VGG architecture uses ReLU 

(Rectified Linear Unit) activation function throughout 

the network for introducing non-linearity. 

7. Fixed Input Size: The architecture is designed to work 

on a fixed input image size of 224×224. 

8. Use of Max-Pooling: Between the convolutional layers, 

max-pooling is used for spatial downsampling. 

There are several variants of the VGG architecture, 

commonly referred to as VGG11, VGG16, and VGG19, 

where the numbers denote the number of layers that have 

weights. The most popular variants are VGG16 and 

VGG19, which include 16 and 19 layers respectively. 

1. VGG11: This version has 11 layers with weights, 

consisting of 8 convolutional layers and 3 fully 

connected layers. The convolutional layers use filters 

with a very small receptive field of 3×33×3 (which is the 

smallest size to capture the notion of left/right, up/down, 

center), and the network uses max pooling layers to 

reduce volume size. 

2. VGG13: The VGG13 model is similar to VGG11 but 

has 13 layers with weights; it includes 10 convolutional 

layers with more filters in the middle layers compared to 

VGG11. 

3. VGG16: One of the most popular variants, VGG16 

consists of 16 layers with weights. There are 13 

convolutional layers and 3 fully connected layers. The 

convolutional layers are organized in blocks, with each 

block followed by a max-pooling layer for spatial down-

sampling. 

4. VGG19: The deepest standard VGG model, VGG19, 

has 19 layers with weights. It includes 16 convolutional 

layers arranged in a similar block structure as VGG16 

but with more convolutional layers in the later blocks, 

and 3 fully connected layers. 

3.5 Related work on gender classification in videos 

This research delves into enhancing facial recognition 

through the nuanced estimation of age and gender, even 

under less controlled, real-world conditions. By leveraging 

the strengths of Deep Convolutional Neural Networks 

(DCNNs), the study has shown that pre-trained CNN 

models adapted for this purpose outshine the purpose-built 

GilNet model. Particularly, models adapted from domains 

closely related to age and gender tasks, like the VGG-Face 

CNN, have shown superior performance, emphasizing the 

benefits of domain-specific transfer learning [1]. In another 

exploration, gender determination from fingerprint images 

via deep learning techniques is presented. Without human-

led image preprocessing, models such as VGG-19, ResNet-

50, and EfficientNet-B3 have been trained from the ground 

up, with EfficientNet-B3 showing remarkable accuracy. 

This advancement underscores the potential of end-to-end 

deep learning for biometric identification [2]. The paper also 

critiques traditional methods for organizing real-world 

facial photos by age and gender, noting their limitations in 

handling variance. It proposes a novel CNN framework that 

refines the feature extraction and classification processes, 

achieving state-of-the-art performance on benchmark 

datasets after pretraining and fine-tuning on relevant 

datasets [3]. 

Additionally, the text reviews studies examining the 

influence of image preprocessing, model initialization, and 

architecture on the recognition of age and gender in facial 

images. It highlights the role of proper initialization and 
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preprocessing in achieving top-notch gender recognition 

performance using neural networks and the Layer-wise 

Relevance Propagation (LRP) algorithm for insightful 

model visualization [4]. Lastly, the text addresses the ethical 

aspect of automated gender classification, acknowledging 

the technology's susceptibility to biases across different 

gender and racial groups. It reports on studies showing 

disproportionate error rates, especially for darker-skinned 

individuals and women, and suggests that architectural 

differences in algorithms and training data imbalances 

contribute to this bias.  

It proposes that facial morphological differences influenced 

by genetic and environmental factors could explain the 

lower performance among certain demographics, such as 

Black females [5]. Gender classification has become a 

dynamic field in research, with significant efforts dedicated 

to enhancing its application in areas like monitoring, 

surveillance, and human-computer interaction. Despite 

advancements, there's a noted gap in the performance of 

current methods on live images. The emergence of deep 

learning has, however, marked a notable improvement in 

complex tasks across different domains. This study 

leverages the TensorFlow framework to explore the efficacy 

of deep learning in gender classification, utilizing Keras 

models with pre-trained ImageNet weights. A comparison 

of models including VGG16, ResNet-50, and MobileNet is 

made, with a database comprising primarily Asian faces, 

revealing VGG-16 as the most accurate [6]. 

The paper also ventures into novel territory with an analysis 

of age and gender extraction from ear images, an area less 

explored in biometrics. Employing both geometric and 

appearance-based features, and using deep learning models 

fine-tuned on an extensive ear dataset, the study finds 

appearance-based methods superior. However, it suggests 

that age classification from ear images still requires further 

research [7]. For real-time applications requiring rapid 

gender classification, the paper presents a streamlined 16-

layer network derived from VGG-16, optimized for 

performance without compromising accuracy, even on less 

powerful devices. The network utilizes Fisher's Linear 

Discriminant Analysis to prune less relevant neurons, 

achieving impressive reductions in size and computing time 

while maintaining high accuracy on standard datasets [8]. 

The significance of age and gender classification has grown 

across various sectors, from social media analytics to 

business demographics. The paper discusses the application 

of transfer learning to enhance classification performance 

on facial images, using an ensemble of CNN models for age 

estimation.  

The results showcase high accuracy, particularly with the 

VGG14 model, emphasizing the potential of combining 

multiple deep learning approaches [9]. In the context of 

social media, age and gender classification's relevance has 

only increased with the advent of AI, which has boosted 

performance in visual recognition. However, the paper notes 

that the precision of mobile-friendly networks does not 

always match their larger counterparts, highlighting a trade-

off between accuracy and accessibility [10]. The paper also 

touches on the broader field of pattern recognition and its 

critical role in developing intelligent systems, including 

biometrics for security. It presents a gender prediction and 

age estimation system based on CNNs, tested on widely 

recognized datasets, demonstrating substantial 

improvements in system performance and accuracy [11]. 

Lastly, the research delves into the broader area of soft 

biometrics, which encompasses traits like age and gender, 

crucial for enhancing communication between humans and 

machines. This comprehensive review covers contributions 

in gender classification and age estimation using neural 

networks, discussing datasets, findings, and metrics for a 

clear understanding of the research landscape and outlining 

potential future research directions [12]. Automatic gender 

recognition has become increasingly relevant, driven by the 

proliferation of social media and online networking 

platforms.  

Despite this, current systems struggle to match the 

performance of related face recognition tasks, especially 

when dealing with images from the physical world. In this 

paper, we demonstrate how applying deep learning, 

specifically Deep Convolutional Neural Networks (D-

CNN), enhances gender classification performance. We 

introduce an efficient VGGNet-based convolutional 

network architecture designed to perform well even when 

the training data is scarce. Our experiments show that this 

approach significantly outperforms existing methods in 

real-world gender recognition tasks [13]. Furthermore, 

Bone Age Assessment (BAA) is crucial in medical and 

forensic fields, and gender classification plays a vital role in 

it.  

We present a novel framework that uses deep learning to 

classify gender and predict age from a single hand 

radiograph. Employing the VGG-16 model and transfer 

learning techniques, we achieve 79.6% accuracy in gender 

classification and highly precise age predictions [14]. Age 

and gender classification of faces is a key area of research 

with many practical applications. Convolutional Neural 

Networks (CNNs) have emerged as a particularly effective 

tool for this, thanks to their feature extraction and 

classification capabilities. In our study, we propose a CNN-

based model that handles the variability of real-world faces 

through robust preprocessing and pretraining on a large 

dataset with unfiltered labels. By incorporating dropout and 

data augmentation, we mitigate overfitting, allowing the 

model to generalize well. Our model demonstrates superior 
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performance on the OIU-Adience dataset, achieving 84.8% 

and 89.7% accuracy in age and gender classification, 

respectively [15]. 

Lastly, we explore the use of competition-winning deep 

neural networks with pretrained weights for gender 

recognition and age estimation. Transfer learning is applied 

to VGG19 and VGGFace models, and we assess various 

training techniques and parameters to enhance prediction 

accuracy. A hierarchical CNN system is evaluated that 

classifies by gender before predicting age with gender-

specific models. The results are impressive, with a gender 

recognition accuracy of 98.7% and a mean age estimation 

error of 4.1 years, showcasing the efficacy of repurposing 

existing convolutional filters for new classification tasks 

[16]. This paper introduces multimodal deep neural network 

frameworks that use both profile face and ear images for age 

and gender classification. By incorporating ear appearance, 

a less common biometric modality, we aim to improve the 

accuracy of extracting these soft biometric traits. Our end-

to-end deep learning frameworks employ various fusion 

strategies at data, feature, and score levels, enhanced by 

domain adaptation and a combination of center and softmax 

loss. Extensive testing on UND-F, UND-J2, and FERET 

datasets shows our multimodal system's high accuracy, 

surpassing current methods that rely solely on profile faces 

or ear images [17].  

In live video, facial gender classification faces challenges 

like motion blur and variable lighting conditions. To address 

these, we propose a Multi-Branch Voting CNN (MBV-

CNN) that detects faces, enhances their brightness 

adaptively, and employs three CNN branches, culminating 

in a majority voting mechanism. This significantly increases 

accuracy on both the LFW dataset and our Gender 

Classification for Live Videos (GCLV) dataset [18]. Gender 

classification from facial images is further explored using a 

transfer learning approach with the VGG16 CNN model, 

pre-trained on a large dataset of natural images. Fine-tuning 

this model on a well-balanced dataset yields better results 

than previous state-of-the-art methods on the LFW-Gender 

dataset [19]. 

The paper also examines the use of various CNN 

architectures, like VGG16, Inception V3, and ResNet50, to 

address the challenges of lighting, pose, and expression in 

gender classification. Through comprehensive dataset 

processing and optimization, the highest accuracy achieved 

is 95.10% [20]. In addition, we investigate gender 

classification using Near-Infrared Periocular iris images, 

applying deep learning to identify relevant features from a 

small dataset. A CNN trained from scratch using data 

augmentation outperforms pre-trained models like VGG 

and Resnet, achieving an accuracy of 85.48% [21]. A 

prototype is proposed for real-time gender and emotion 

classification using a robust convolutional neural network 

and depth-wise separable convolution for emotion 

recognition.  

This method provides high accuracy for gender 

classification (95%) and facial emotion recognition (67%), 

with a significant reduction in model size due to fewer 

hyperparameters [22]. Lastly, the paper evaluates the 

performance of deep learning models for binary gender 

classification from fingerprints, highlighting the challenge 

of limited data and the need for time-efficient models. By 

applying data augmentation and transfer learning, the VGG-

19 model shows the best performance, with a testing 

accuracy of 71.9% [23]. This paper delves into gender 

recognition as a component of human activity analysis, 

which is crucial for data mining and machine learning 

applications. To improve accuracy and model 

generalization, we gathered a dataset of five million weakly 

labeled facial images and conducted three experiments.  

These experiments compare the performance of 

convolutional neural networks (CNNs) of various depths 

and a support vector machine using local binary patterns, 

assess the impact of contextual data on accuracy, and 

evaluate CNNs' cross-database generalization abilities. Our 

findings set new benchmarks, with a 98.90% accuracy on 

the Labeled Faces in the Wild (LFW) dataset and a 91.34% 

accuracy on the Images of Groups (GROUPS) dataset for 

cross-database gender classification [24]. Addressing the 

automatic gender classification challenge, this analysis 

paper emphasizes the difficulties presented by low-

resolution images and occlusion in datasets. We explore the 

effectiveness of deeper CNNs trained on separate facial 

components and compare the results with leading gender 

classification methods. The study also considers how 

network configurations and parameters impact 

classification, offering insights into age-related gender 

distinctions. The technique proposed shows promise, 

especially with larger crop sizes, and can accurately classify 

gender using images of the mouth, nose, and face (excluding 

eyes) [25]. 

Lastly, we introduce a multimodal, multitask deep CNN 

framework for age and gender classification, incorporating 

ear and profile face biometrics. We experiment with data, 

feature, and score fusion methods to merge information 

from these biometrics, using VGG-16 and ResNet-50 

models enhanced with center loss for sharper feature 

discrimination. A two-stage fine-tuning process is 

implemented to further refine the models' representational 

abilities. Testing on the FERET, UND-F, and UND-J2 

datasets demonstrates the utility of ear and profile face 

images in extracting soft biometric traits.  

The study reveals that these images are viable alternatives 

to frontal face views for biometric recognition systems, with 
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the multimodal system achieving superior accuracy in age 

and gender classification, surpassing unimodal methods and 

previous state-of-the-art techniques [26]. The advent of 

deep learning has redefined the processing and analysis of 

large data sets, especially after Geoffrey Hinton's 2006 

model that utilized multiple hidden layers in neural 

networks. This was initially challenging due to 

computational complexities, but the emergence of GPU 

technology has greatly enhanced the efficiency of such 

computations, leading to a resurgence in deep learning's 

popularity. Convolutional Neural Networks (CNNs), a 

subset of deep learning models, have become particularly 

prominent in image classification tasks. This study 

introduces a new CNN model specifically designed for 

gender classification, trained and tested using the Adience 

dataset, achieving an 88.5% accuracy rate. This model 

outperforms traditional machine learning and other CNN 

models [27]. 

Age Group Classification (AGC) remains a complex task 

due to the variability in human features. This study presents 

an AGC system that uses a two-stage process: preprocessing 

(including face detection, gamma correction, and 

normalization) and classification via the VGG16 

architecture, which incorporates convolution, max-pooling, 

and activation functions. Tested on the MORPH database, 

the system attains over 90% accuracy across various age 

groups with the VGG16 architecture [28].  

The paper also investigates gender classification using near-

infrared images of the periocular region, a valuable trait for 

forensic applications. Employing two CNN-based 

approaches, one featuring a pre-trained CNN for feature 

extraction and an SVM for classification, and the other 

using an end-to-end classifier through fine-tuning a pre-

trained CNN, the study achieves high accuracy compared to 

baseline methods, especially on non-ideal image datasets 

[29]. Furthermore, gender classification from face images, 

despite challenges like complex backgrounds and varying 

lighting conditions, is explored using CNN and Alex Net 

models. Both models prove effective, with comparative 

analyses demonstrating their capability in gender 

classification from facial images [30]. Lastly, face gender 

recognition is vital for enhancing human-robot interactions.  

This work compares the performance of SVM and CNN 

models when paired with hand-crafted, deep-learned, and 

fused features. Conducting tests on the Adience and LFW 

datasets and using statistical methods to validate the results, 

it is found that SVMs perform best with fused features, 

while CNNs excel with deep-learned features, with CNN 

significantly outperforming SVM in terms of accuracy and 

other metrics [31]. Classifying facial gender and detecting 

smiles in uncontrolled settings presents a complex challenge 

due to the highly variable nature of face images. This study 

introduces a robust deep learning model consisting of two 

components, GNet for gender classification and SNet for 

smile detection. The model enhances its performance 

through a combination of multi-task learning and a fine-

tuning process that transitions from general to specific 

adjustments. These techniques leverage the connections 

among various facial attributes, including identity, smile, 

and gender, to combat overfitting issues commonly 

associated with limited training data, thus boosting the 

model's classification capabilities.  

Additionally, we introduce a task-aware face cropping 

technique, designed to isolate regions of the face that are 

most relevant to the attributes being analyzed. Our model's 

effectiveness is validated by the positive results obtained on 

the ChaLearn'16 FotW dataset, showing marked 

improvements in both gender and smile classification tasks 

[32]. 
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4. Proposed Method 

4.1 Gender detection using VGG11 

Creating a gender detection system using the VGG11 

architecture involves multiple steps, including pre-

processing the input image, feeding it through the VGG11 

network, and finally classifying the output features as male 

or female. Here is a high-level overview of the algorithm 

with a focus on the mathematical operations involved: 
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1. Image Pre-processing: 

• Given an input image I, it is first resized to fit the 

network's expected input dimensions, typically 

224×224×3 for VGG architectures. 

• The image is then normalized using the mean and 

standard deviation values known from the ImageNet 

dataset, which VGG was originally trained on: 

                          𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 

2. Convolutional Operations: 

• The pre-processed image Inorm is passed through a 

series of convolutional layers. Let Fl be the set of 

filters in the l-th layer, and  denotes the convolution 

operation. The feature map Ml at layer l is 

computed as: 

𝑀𝑙 = 𝑅𝑒𝐿𝑈(𝐹1 ∗ 𝑀𝑙−1 + 𝑏𝑙 

Where bl is the bias term for the l-th layer and ReLU is the 

Rectified Linear Unit activation function applied element-

wise. The ReLU is defined as 

𝑅𝑒𝐿𝑈(𝑥) = max (𝑂, 𝑥) 

3. Pooling Operations: 

• After every few convolutional layers, a max-pooling 

operation is applied to reduce the dimensionality of the 

feature maps and introduce translation invariance. If Pl 

is the pooling operation at layer l, and s is the stride: 

𝑃𝑙(𝑀𝑙) = 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑀𝑙 , 𝑠) 

4. Fully Connected Layers: 

• After the final pooling layer, the feature map is 

flattened into a vector and passed through several fully 

connected layers: 

𝐹𝑐(𝑥) = 𝑊𝑐𝑥 + 𝑏𝑐 

Where Fc is the function representing the fully connected 

layer, Wc is the weight matrix, bc is the bias vector, and x is 

the input to the layer. 

5. Classification Layer: 

• The final fully connected layer is followed by a 

softmax layer that provides the probabilities for each 

class (male and female in this case). If y is the output 

of the last fully connected layer, the softmax function 

σ is defined as: 

𝛼(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑗
𝑗

 

The output of the softmax function gives the probability 

distribution over the classes, and the class with the highest 

probability is taken as the prediction: 

𝐺𝑒𝑛𝑑𝑒𝑟 = arg max (𝜎(𝑦)) 

6. Training the Network: 

• During training, a loss function such as cross-entropy 

is used to measure the difference between the predicted 

probability distribution and the true distribution. The 

cross-entropy loss L for a single example is: 

𝐿 =  − ∑ 𝑡𝑐 log(𝑝𝑐)

𝑐

 

Where tc is the true probability distribution (one-hot 

encoded), and pc is the predicted probability distribution 

from the softmax layer. 

7. Backpropagation and Optimization: 

• The network parameters (weights and biases) are 

optimized using backpropagation to minimize the loss 

function. An optimizer such as Stochastic Gradient 

Descent (SGD) or Adam is used to update the weights: 

Adam is used to update the weights: 

𝑊𝑛𝑒𝑤 =  𝑊𝑜𝑙𝑑 − 𝛼∇𝑤𝐿 

Where α is the learning rate and ∇WL is the gradient of the 

loss function with respect to the weights. 

4.2 Gender detection using VGG13 

Developing a gender detection system using the VGG13 

convolutional neural network involves a series of 

convolutional and fully connected layers. The VGG13 

architecture specifically includes 13 layers that have 

learnable weights: 10 convolutional layers and 3 fully 

connected layers. Below is an algorithmic description with 

the associated mathematical operations: 

1. Image Preprocessing: 

Given an input image I, resize it to fit the network's input 

dimension of 224×224×3. Normalize the image using the 

mean μ and standard deviation σ values computed from the 

ImageNet training set: 

                          𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 

2. Convolutional Layers: 

Pass the preprocessed image norm Inorm through multiple 

convolutional layers. For the l-th convolutional layer, apply 

filters F(l) with biases b(l) , followed by a ReLU activation 

function: 

𝑀(𝑖) = 𝑅𝑒𝐿𝑈(𝐹(𝑙) ∗  𝑀(𝑙−1) + 𝑏(𝑙) ) 
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where ∗ denotes the convolution operation, M(l−1) is the 

output of the previous layer or the input image for the first 

convolutional layer, and ReLU is defined as: 

𝑅𝑒𝐿𝑈(𝑥) = max (𝑂, 𝑥) 

3. Pooling Layers: 

After certain convolutional layers, apply max-pooling to 

downsample the feature maps and reduce their dimensions: 

𝑃(𝑙) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑀(𝑙)) 

where MaxPoolMaxPool is the max-pooling operation 

which takes the maximum value over a spatial window and 

strides over the input map. 

4. Fully Connected Layers: 

Flatten the output of the last pooling layer to form a one-

dimensional vector and pass it through several fully 

connected layers. For the i-th fully connected layer with 

weight matrix W(i) and bias vector b(i) : 

𝐹(𝑖) =   𝑅𝑒𝐿𝑈(𝑊(𝑖) . 𝑥(𝑖−1) + 𝑏(𝑖)) 

where x(i−1) is the output of the previous layer or the flattened 

vector for the first fully connected layer. 

5. Classification Layer: 

The last fully connected layer is followed by a softmax layer 

that outputs the probability distribution over the classes 

(gender: male or female). The softmax function σ is defined 

for each class j as: 

𝜎(𝑦)𝑗 =  
exp (𝑦𝑗  )

∑ exp (𝑦𝑘)𝑘

 

where y is the vector of raw predictions from the last fully 

connected layer. 

6. Training: 

Use a loss function, typically cross-entropy, to compute the 

error during training. For true label t and predicted label 

probability p, the cross-entropy loss L is: 

𝐿 =  − ∑ 𝑡𝑐log (𝑝𝑐)

𝑐

 

where c indexes over the classes (male and female). 

7. Backpropagation and Optimization: 

Update the network parameters using backpropagation with 

an optimization algorithm like SGD or Adam: 

𝑊𝑛𝑒𝑤 =  𝑊𝑜𝑙𝑑 − 𝛼
𝜕𝐿

𝜕𝑊
 

bnew =  bold − α
∂L

∂b
 

where α is the learning rate, and 
𝜕𝐿

𝜕𝑊
 and 

𝜕𝐿

𝜕𝑏
 are the gradients 

of the loss function with respect to the weights and biases, 

respectively. 

8. Gender Prediction: 

After training, use the forward pass of the network to predict 

the gender of a new input image. The predicted gender is the 

class with the highest probability: 

Gender = arg max(σ(y)) 

This process describes the algorithmic steps for gender 

detection using the VGG13 architecture. The actual 

performance will depend on various factors, including the 

quality and diversity of the training data, the training 

regimen, and any data augmentation techniques used. 

4.3 Gender detection using VGG16 

1. Image Preprocessing: 

• Resize the input image to 224x224 pixels, the size 

expected by the VGG16 model. 

• Normalize the image by subtracting the mean pixel 

values and dividing by the standard deviation. 

2. Convolutional Layers: 

• Pass the preprocessed image through several 

convolutional layers that use 3x3 filters and ReLU 

activation functions. 

3. Pooling Layers: 

• Apply max-pooling after some of the convolutional 

layers to reduce the spatial dimensions of the feature 

maps. 

4. Fully Connected Layers: 

• Flatten the output from the final pooling layer and 

feed it through three fully connected layers with 

ReLU activations for the first two and a softmax 

activation for the final layer. 

5. Output Layer: 

• Use the softmax probabilities from the last fully 

connected layer to determine the gender class (male 

or female). 

6. Backpropagation and Training: 

• During training, use backpropagation to update the 

weights in the network by minimizing a loss 

function, typically cross-entropy loss for 

classification tasks. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 11–33 |  24 

 

7. Inference: 

• For gender detection, input a new facial image into 

the trained model, perform a forward pass, and use 

the output probabilities to determine the gender. 

4.4 Gender detection using VGG19 

Gender detection using the VGG19 architecture involves 

leveraging the depth and robustness of the model for feature 

extraction, followed by a classification step. Here is an 

algorithmic description with mathematical notations for 

gender detection using VGG19: 

1. Image Preprocessing: 

Input image I is resized to 224×224×3 (assuming the 

standard VGG input size) and normalized: 

                          𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 

2. Convolutional Layers: 

The VGG19 has 16 convolutional layers. For each 

convolutional layer l, perform a convolution operation ∗∗, 

followed by a ReLU activation ReLUReLU: 

𝐶(𝑖) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗  𝐼(𝑙−1) +  𝑏(𝑙) ) 

where ∗ denotes convolution, W(l) and b(l) are the weights 

and biases of layer l, and I(l−1) is the output of the previous 

layer or the input image for l=1.  𝐶(𝑜)=Inorm. 

3. Pooling Layers: 

After certain convolutional layers, apply max-pooling to 

downsample the feature maps and reduce their dimensions: 

𝑃(𝑙) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑀(𝑙)) 

where MaxPoolMaxPool is the max-pooling operation 

which takes the maximum value over a spatial window and 

strides over the input map. 

4. Fully Connected Layers: 

After the last convolutional block, flatten the output and 

feed it into three fully connected layers with ReLU 

activation for the first two and a softmax layer for the 

output: 

𝐹(𝑖) = 𝑅𝑒𝐿𝑈 (𝑊(𝑓𝑐,𝑖) . 𝐹(𝑖−1) + 𝑏(𝑓𝑐,𝑖)  )     𝑓𝑜𝑟 𝑖 𝜖 { 1 , 2}  

𝑃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑊(𝑓𝑐,𝑖)   ∙  𝐹(2) +  𝑏(𝑓𝑐,3) ) 

5. Classification Layer: 

The softmax function at the output layer provides the 

probabilities for each gender class: 

𝑃(𝑐𝑙𝑎𝑠𝑠𝑗) =
exp (𝐹𝑗

(3)
)

∑ exp (𝐹𝑘
(3)

)𝑘

  

6. Loss Function and Training: 

Use a cross-entropy loss function for training, which for true 

label t and predicted label probability p is: 

𝐿 = − ∑ 𝑡𝑐log (𝑝𝑐)

𝑐

 

7. Optimization: 

Update the model parameters using an optimization 

algorithm like SGD or Adam during backpropagation:  

 

𝑊𝑛𝑒𝑤 =  𝑊𝑜𝑙𝑑 − 𝛼∇𝑤𝐿 

𝑏𝑛𝑒𝑤 =  𝑏𝑜𝑙𝑑 − 𝛼∇𝑏𝐿 

Where α is the learning rate and ∇WL is the gradient of the 

loss function with respect to the weights. 

8. Gender Prediction: 

For a new input image, predict the gender by performing a 

forward pass through the network and selecting the class 

with the highest probability from the softmax output:  

Predicted Gender = arg max (σ(y)) 

4.5 Gender detection using VGG22 

1. Image Preprocessing: 

Input image I is resized to 224×224×3 (assuming the 

standard VGG input size) and normalized: 

                          𝐼𝑛𝑜𝑟𝑚 =  
𝐼−𝜇

𝜎
 

2. Convolutional Layers: 

Perform convolution operations with 3×33×3 filters across 

multiple layers, increasing the depth of the network to 22 

layers. Each convolution operation at layer l is followed by 

a non-linear activation function, typically ReLU: 

𝐶(𝑖) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗  𝐼(𝑙−1) + 𝑏(𝑙) ). 

where ∗ denotes convolution, W(l) and b(l) are the weights 

and biases of layer l, and I(l−1) is the output of the previous 

layer or the input image for l=1. 

3. Pooling Layers: 

After certain convolutional layers, apply max-pooling to 

downsample the feature maps and reduce their dimensions: 

𝑃(𝑙) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑀(𝑙)) 

where MaxPoolMaxPool is the max-pooling operation 

which takes the maximum value over a spatial window and 

strides over the input map. 
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4. Fully Connected Layers: 

After the final pooling layer, flatten the feature map and pass 

it through several fully connected layers, ending with a 

softmax layer for classification: 

𝐹(𝑖) =   𝑅𝑒𝐿𝑈(𝑊(𝑓𝑐,𝑖) . 𝐹(𝑖−1) +  𝑏(𝑓𝑐,𝑖)) 

Gender Probabilities

=  σ(𝑊(𝑓𝑐,𝑓𝑖𝑛𝑎𝑙),. 𝐹(𝑓𝑖𝑛𝑎𝑙) + 𝑏(𝑓𝑐,𝑓𝑖𝑛𝑎𝑙)) 

 where σ is the softmax function. 

5. Loss Function and Training: 

Use a cross-entropy loss function for training, which for true 

label t and predicted label probability p is: 

𝐿 = − ∑ 𝑡𝑐log (𝑝𝑐)

𝑐

 

6. Optimization: 

Update the model parameters using an optimization 

algorithm like SGD or Adam during backpropagation:  

 

𝑊𝑛𝑒𝑤 =  𝑊𝑜𝑙𝑑 − 𝛼∇𝑤𝐿 

𝑏𝑛𝑒𝑤 =  𝑏𝑜𝑙𝑑 − 𝛼∇𝑏𝐿 

Where α is the learning rate and ∇WL is the gradient of the 

loss function with respect to the weights. 

7. Gender Prediction: 

For a new input image, predict the gender by performing a 

forward pass through the network and selecting the class 

with the highest probability from the softmax output:  

Predicted Gender = arg max (σ(y)) 

4.4 VGG22 Architecture for Gender Detection: 

The hypothetical VGG22 architecture for gender detection 

would be an extension of the established VGG models, 

incorporating 22 layers with learnable parameters to process 

input images. Following VGG's design principles, it would 

consist of several convolutional blocks, each containing 

multiple convolutional layers with small 3×33×3 receptive 

fields and a stride of 1, using padding to preserve spatial 

dimensions, and ReLU activation functions for introducing 

non-linearity. Each block would likely end with a max-

pooling layer to reduce feature map dimensions and to 

provide some translation invariance. The depth of VGG22 

implies a significant increase in the number of convolutional 

layers over VGG19, perhaps adding additional layers within 

the existing blocks or introducing new blocks altogether. 

This would be followed by three fully connected layers, 

similar to previous VGG models, with the last layer 

employing a softmax function to classify the input image 

into gender categories. The network would be trained using 

backpropagation with a cross-entropy loss function, and 

given the increased depth, strategies like dropout, batch 

normalization, or possibly skip connections would be 

essential to mitigate overfitting and facilitate the training of 

such a deep network. While this architecture could 

potentially capture more complex hierarchical features 

relevant for gender classification, it would also present 

substantial challenges in terms of training data 

requirements, computational resources, and the risk of 

overfitting. 

4.5 Descriptive Layout for VGG22 Architecture (Gender 

Detection): 

A descriptive layout for a hypothetical VGG22 architecture 

tailored for gender detection would reflect an advanced 

iteration of the well-known VGG series, pushing the depth 

to 22 weighted layers to enhance feature extraction 

capabilities. Imagining its structure, the input layer would 

accommodate standard 224×224 RGB images, flowing into 

an intricate series of convolutional blocks. Each block 

would comprise several 3×33×3 convolutional layers with 

stride 1, maintaining spatial dimensions through padding, 

and harnessing the ReLU activation function for non-

linearity. The depth of the architecture suggests additional 

convolutional layers within these blocks compared to 

VGG19, possibly increasing the count in the latter blocks or 

adding entirely new blocks to reach the 22-layer depth. 

Sequential max-pooling layers would follow these 

convolutional blocks, applying a 2×22×2 window to 

downsample and condense the feature maps, thereby 

reducing computational load and improving the network's 

robustness to input variations. The culmination of 

convolutional processing would lead to a trio of fully 

connected layers, a hallmark of the VGG design, where the 

final layer would diverge from the 4096-unit standard to a 

binary output via softmax, specifically for gender 

classification. 

Training such a profound network would necessitate 

advanced regularization techniques, such as dropout and 

batch normalization, to prevent overfitting. Additionally, 

given the challenges associated with training very deep 

networks, innovations like residual connections could be 

considered to promote gradient flow during 

backpropagation. With a cross-entropy loss function 

guiding the optimization process, typically through SGD or 

Adam optimizers, the VGG22 would learn to discriminate 

subtle and complex gender-defining features from facial 

imagery. Despite its potential for higher learning capacity, 

the VGG22's practicality would be bounded by its immense 

demand for computational resources, extensive training 

data, and careful tuning to realize its theoretical advantages 

in gender detection tasks. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 11–33 |  26 

 

4.6 Comparison of VGG11, VGG13, VGG16, VGG19, 

and VGG22. 

Table 2. Comparison of VGG11, VGG13, VGG16, 

VGG19, and VGG22. 

Feature/M

odel 

VGG

11 

VGG

13 

VGG

16 

VGG

19 

VGG

22 

Convolutio

nal Layers 

8 10 13 16 19 

Fully 

Connected 

Layers 

3 3 3 3 4 

Total 

Weighted 

Layers 

11 13 16 19 22 

Filter Sizes 

(Conv 

Layers) 

3x3 3x3 3x3 3x3 3x3 

Pooling 

Layers 

Max 

Pooli

ng 

Max 

Pooli

ng 

Max 

Pooli

ng 

Max 

Pooli

ng 

Max 

Pooli

ng 

(2*2) 

Activation 

Functions 

ReLU ReLU ReLU ReLU ReLU 

Parameter

s (Approx.) 

133M 133M 138M 144M >144

M 

Advantages of VGG22: 

• Enhanced Feature Extraction: With more layers, a 

hypothetical VGG22 model would have the potential to 

learn more complex and abstract features at various 

levels of the hierarchy, which could lead to better 

representations of the input data. 

• Improved Learning of Hierarchical Patterns: More 

layers could allow the model to learn patterns at different 

scales or granularities, possibly leading to better 

performance on tasks requiring the understanding of 

intricate details within images. 

• Greater Depth for Complex Tasks: If VGG22 could 

be effectively trained, its greater depth might make it 

suitable for very complex image classification tasks that 

benefit from very deep feature hierarchies. 

• Overfitting: Deeper networks have more parameters 

and can overfit the training data, especially if the dataset 

is not large enough to support the increased model 

complexity. 

• Vanishing/Exploding Gradients: Very deep networks 

can suffer from vanishing or exploding gradients, 

making them harder to train effectively. 

• Increased Computational Cost: More layers mean 

more computation is required both during training and 

inference, which can be prohibitively expensive. 

• Diminishing Returns: As networks become deeper, 

additional layers may contribute less to the improvement 

of model performance, and in some cases, they may even 

degrade performance due to overfitting. 

5. Implementation and Result 

5.1 System requirements 

5.1.1 Essential Pieces of Hardware: 

• CPU: A state-of-the-art, multi-core processor that can 

handle the computational burden of image and video 

processing techniques. An example of such a processor 

would be an Intel Core i5 or above. 

• Deep learning methods may be greatly sped up with the 

help of a specialized graphics processing unit (GPU) that 

supports CUDA. 

• Memory: Adequate random access memory (RAM) of at 

least 8 gigabytes or more for the efficient storage and 

processing of huge datasets and models. 

• Storage: Sufficient capacity for storing datasets, models, 

and interim outcomes on the cloud. 

5.1.2 Specifications for Required Software: 

• Operating System: Any well-known operating system, 

including but not limited to Windows, macOS, or Linux. 

• Programming languages (such as Python) and 

libraries/frameworks (such as TensorFlow and PyTorch) 

for the purpose of building and executing machine 

learning and computer vision algorithms are included in 

the development environment. 

• Image/Video Processing Libraries: Libraries for 

managing image/video input, preprocessing, and feature 

extraction such as OpenCV. Image/Video Processing 

Libraries. 

• Deep Learning Frameworks Deep learning frameworks 

for training and deploying deep neural networks, such as 

TensorFlow and PyTorch. 

• other Libraries: Depending on the particular algorithms 

and approaches that are used, it is possible that other 

libraries or packages will be necessary (for example, 

scikit-learn for the selection of features and NumPy for 

numerical calculations). 

5.1.3 Result parameters 

• "Accuracy" is the ratio of correctly predicted instances 

to the total instances.  
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• "Precision" is the ratio of correctly predicted positive 

observations to the total predicted positives.  

• "Recall" is the ratio of correctly predicted positive 

observations to the all observations in the actual class.  

• "F1-score" is the harmonic mean of precision and recall 

and is often used when dealing with imbalanced 

datasets. 

5.2 Dataset 

5.2.1 UTKFace Dataset: 

Description: The UTKFace dataset contains a large 

collection of face images with age, gender, and ethnicity 

annotations. It includes a diverse set of images captured 

under various conditions, including different age groups, 

races, and gender distributions. 

Reference: https://susanqq.github.io/UTKFace/ 

5.2.2 IMDB-WIKI Dataset: 

Description: The IMDB-WIKI dataset consists of face 

images collected from IMDb and Wikipedia, with 

annotations for age and gender. It contains a large number 

of images covering a wide range of ages and genders. 

Reference: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-

wiki/ 

5.2.3 LFW Dataset: 

Description: The LFW (Labeled Faces in the Wild) dataset 

is a benchmark dataset for face recognition tasks. It contains 

face images of various individuals collected from the web, 

with gender annotations. 

Reference: http://vis-www.cs.umass.edu/lfw/ 

5.2.4 ChaLearn LAP 2015 Dataset: 

Description: The ChaLearn LAP 2015 dataset is a multi-

modal dataset that includes both RGB images and depth 

maps. It contains diverse scenes with different crowd 

densities and gender annotations. 

Reference: http://gesture.chalearn.org/ 

5.2.5 Crowds in Paris (CiP) Dataset: 

Description: The Crowds in Paris (CiP) dataset focuses on 

crowded scenes captured in Paris. It contains images and 

videos with annotations for various attributes, including 

gender. The dataset captures challenging scenarios with 

high crowd density and occlusions. 

Reference: https://www.epfl.ch/labs/lasa/crowdbot-

dataset/ 

 

5.3 Illustrative example 

   

   

Fig 1. Illustrative example 

5.4 Plots of validation loss and training loss: 

 

Fig 2. Plots of validation loss and training loss. 

5.5 Comprative result of Gender Detection  of UTKFace 

Dataset  

Table 3. Comprative result of Gender Detection  of UTK 

Face Dataset 

Method Accuracy Precision Recall F1-

score 

VGG11 91.23 91.65 91.85 91.99 

VGG13 93.54 93.63 93.87 93.78 

VGG16 94.74 95.34 95.86 95.44 

VGG19 96.52 96.87 96.99 96.89 

VGG22 97.22 97.32 97.45 97.86 

 

https://susanqq.github.io/UTKFace/
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Fig 3. Comprative result of Gender Detection  of UTK 

Face Dataset 

Figure 3 and table 3 shows :  

• VGG11: The entry-level VGG model in this 

comparison, VGG11, exhibits decent performance with 

an accuracy of 91.23%, indicating that it correctly 

identifies the gender in approximately 91 out of 100 

cases. The precision of 91.65% suggests that most of the 

predictions labeled as a specific gender are indeed that 

gender, while a recall of 91.85% indicates the model's 

capability to detect the majority of positive instances for 

each gender class. The F1-score at 91.99% reflects a 

balanced mean of precision and recall, showcasing a fair 

trade-off between the two measures. 

• VGG13: Showing a performance uptick, VGG13 

achieves an accuracy of 93.54%, indicating enhanced 

correctness in gender classification. With precision at 

93.63% and recall at 93.87%, the model not only makes 

reliable predictions but also captures a high proportion 

of true positive classifications. The F1-score at 93.78% 

signifies a consistently high and balanced rate of 

precision and recall. 

• VGG16: Advancing further, VGG16 registers an 

accuracy of 94.74%, demonstrating improved reliability 

in gender classification. Precision climbs to 95.34% and 

recall to 95.86%, suggesting that the model is both 

precise in its positive predictions and comprehensive in 

identifying most positives. The F1-score of 95.44% 

further underscores the model's ability to maintain a high 

level of accuracy across both precision and recall. 

• VGG19: With a notable increase in accuracy to 96.52%, 

VGG19 shows that it can correctly classify gender with 

high reliability. It achieves a precision of 96.87% and a 

recall of 96.99%, indicating that it is not only accurate 

in its positive predictions but also exceptional at 

recognizing nearly all actual instances of each gender. 

The F1-score, closely mirroring these metrics, stands at 

96.89%, suggesting that the model excels at balancing 

precision and recall. 

• VGG22: The VGG22 model outperforms all the others 

with an accuracy of 97.22%, precision of 97.32%, and 

recall of 97.45%. These metrics indicate an outstanding 

level of correct predictions and the ability to identify 

almost all true cases accurately. The F1-score of 97.86% 

is the highest among the models, reflecting a superior 

balance between precision and recall, making it a highly 

reliable system for gender detection. 

5.6 Comprative result of Gender Detection  of IMDB-

WIKI Dataset  

Table 4. Comprative result of Gender Detection  of 

IMDB-WIKI Dataset 

Method Accuracy Precision Recall F1-

score 

VGG11 91.24 92.54 92.74 92.96 

VGG13 93.53 94.23 94.84 94.24 

VGG16 95.11 95.98 96.24 96.75 

VGG19 96.43 96.86 96.89 96.86 

VGG22 98.63 98.56 98.86 98.97 

 

 

Fig 4. Comprative result of Gender Detection  of IMDB-

WIKI Dataset 

Figure 4 and table 4 shows :  

• VGG11 exhibits a foundational performance with an 

accuracy of 91.24%, suggesting that it correctly 

classifies gender in a little over 9 out of 10 cases. Its 

precision at 92.54% implies that the majority of its 

positive predictions are true positives. The recall rate is 

slightly higher at 92.74%, indicating its effectiveness in 

identifying most of the actual positive instances. The F1-

score of 92.96% signifies a high degree of accuracy and 

balance between precision and recall. 

• VGG13 shows improved metrics across the board with 

an accuracy of 93.53%, indicating that the model's 

ability to correctly classify gender is better than that of 

VGG11. Precision and recall values of 94.23% and 
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94.84%, respectively, denote that not only are the 

model's positive predictions highly reliable, but it also 

successfully captures a high percentage of true positive 

instances. The F1-score of 94.24% reflects a consistent 

and balanced performance between precision and recall. 

• VGG16 advances further with an accuracy of 95.11%, 

indicating a more reliable classification capability. It 

achieves precision and recall values of 95.98% and 

96.24%, respectively, indicating a high level of 

trustworthiness in its predictions and an increased ability 

to detect positive instances. The F1-score reaches an 

impressive 96.75%, underscoring a superior balance 

between precision and recall compared to the previous 

models. 

• VGG19 presents a robust performance with an accuracy 

of 96.43%, suggesting a strong ability to make correct 

classifications. The precision and recall rates are almost 

identical at 96.86% and 96.89%, respectively, indicating 

a high degree of consistency in the model's predictive 

accuracy and coverage. The F1-score, mirroring the 

precision and recall rates, stands at 96.86%, which 

suggests a very well-rounded performance. 

• VGG22, the extension of the VGG series, achieves 

exemplary performance with an accuracy of 98.63%, 

indicating it is highly adept at correct gender 

classification. Its precision at 98.56% and recall at 

98.86% are extremely high, implying that the model is 

not only accurate in its positive predictions but also 

leaves very few positive instances undetected. The F1-

score at 98.97% is the highest, indicating an exceptional 

balance and consistency in performance. 

5.7 Comprative result of Gender Detection  of LFW 

Dataset  

Table 5. Comprative result of Gender Detection  of LFW 

Dataset 

Method Accuracy Precision Recall F1-

score 

VGG11 92.22 92.35 92.89 92.48 

VGG13 93.12 93.87 94.34 94.59 

VGG16 95.63 95.59 96.41 96.76 

VGG19 96.78 97.94 97.78 97.83 

VGG22 98.96 98.83 98.89 98.87 

 

 

Fig 5. Comprative result of Gender Detection  of LFW 

Dataset 

Figure 5 and table 5 shows :  

• VGG11: This model demonstrates good performance 

with an accuracy of 92.22%, meaning it correctly 

identifies the gender on 92.22% of the images. Precision, 

which measures the number of true positive 

identifications over all positive identifications, is 

92.35%. Recall, indicating how many actual positive 

cases were identified correctly, is slightly higher at 

92.89%. The F1-score, which is the harmonic mean of 

precision and recall, stands at 92.48%, suggesting a 

balanced performance between the two. 

• VGG13: Shows a notable improvement with an 

accuracy of 93.12%. Its precision increases to 93.87%, 

and recall to 94.34%, indicating that it is both precise 

and capable of capturing a high number of positive 

cases. The F1-score is 94.59%, reflecting a strong 

balance between precision and recall, which is crucial in 

practical applications. 

• VGG16: Marks a significant step up with an accuracy of 

95.63%, suggesting that it is highly reliable in gender 

classification. The precision is slightly lower at 95.59%, 

but with an increased recall of 96.41%, it suggests the 

model is very effective in identifying the correct gender 

labels. The F1-score is impressively high at 96.76%, 

denoting a robust classifier that maintains a high level of 

accuracy even in varying conditions. 

• VGG19: Exhibits enhanced accuracy at 96.78%, 

showing it has an excellent ability to classify gender 

correctly. It achieves a very high precision of 97.94%, 

indicating that when it predicts a gender, it is correct 

most of the time. With a recall of 97.78%, it is also able 

to identify nearly all actual cases of each gender. The F1-

score, very close to precision and recall, stands at 

97.83%, suggesting very few trade-offs between 

precision and recall. 

• VGG22: This model outshines all the others with an 

accuracy nearing perfection at 98.96%, suggesting that 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 11–33 |  30 

 

it makes the correct prediction almost every time. 

Precision is 98.83% and recall is 98.89%, both of which 

are extremely high, indicating the model's excellent 

predictive power and its ability to capture almost all true 

cases. The F1-score is 98.87%, which is exceptionally 

high, indicating that the model maintains an optimal 

balance between precision and recall across datasets. 

5.8 Comprative result of Gender Detection  of ChaLearn 

LAP  

2015 Dataset  

Table 6. Comprative result of Gender Detection  of 

ChaLearn LAP 2015 Dataset 

Method Accuracy Precision Recall F1-

score 

VGG11 91.43 91.96 92.52 92.37 

VGG13 93.28 93.88 94.16 94.61 

VGG16 95.44 96.63 96.99 96.38 

VGG19 96.31 97.99 97.43 97.56 

VGG22 98.38 98.27 98.68 98.45 

 

 

Figure 6. Comprative result of Gender Detection  of 

ChaLearn LAP 2015 Dataset 

 

Figure 6 and table 6 shows :  

• VGG11 shows a solid foundational performance with an 

accuracy of 91.43%, which measures the overall rate of 

correct classifications. It has a precision of 91.96%, 

indicating a high likelihood that predicted genders are 

correct, and a recall of 92.52%, suggesting it is capable 

of identifying most of the correct instances of each 

gender. The F1-score of 92.37% reflects a harmonious 

balance between precision and recall, indicating robust 

model performance. 

• VGG13 marks an improvement over VGG11, with an 

accuracy of 93.28%, showing that it classifies genders 

correctly with greater reliability. The precision rises to 

93.88%, suggesting fewer false positives, and the recall 

is at 94.16%, indicating a slight improvement in 

identifying true positives. A high F1-score of 94.61% 

indicates that the precision-recall balance is better tuned 

than in VGG11. 

• VGG16 continues the upward trend with an accuracy of 

95.44%, indicating enhanced correct classification 

capabilities. The precision jumps to 96.63%, showing 

that it has a very high rate of true positive predictions, 

and the recall is also high at 96.99%, meaning it 

successfully identifies the vast majority of true cases. 

The F1-score at 96.38% is slightly lower than the recall, 

which might suggest a slight trade-off between the 

precision and recall in some cases. 

• VGG19 exhibits a slight improvement in accuracy, 

reaching 96.31%, and demonstrates exceptional 

precision at 97.99%, suggesting it is very effective in 

making correct positive predictions. The recall is 

marginally lower at 97.43% compared to VGG16, but 

still indicates high effectiveness in identifying true 

cases. The F1-score is 97.56%, highlighting that 

VGG19 maintains an excellent balance between 

precision and recall. 

• VGG22 outperforms all models with an accuracy of 

98.38%, indicating the highest reliability in correct 

gender classification. It achieves a precision of 98.27% 

and a recall of 98.68%, both of which suggest 

outstanding performance in correctly predicting positive 

cases and identifying nearly all true positives. The F1-

score is the highest at 98.45%, indicating an 

exceptional balance between precision and recall. 

5.9 Comprative result of Gender Detection  of Crowds in 

Paris (CiP) Dataset 

Table 7. Comprative result of Gender Detection  of 

Crowds in Paris (CiP) Dataset 

Method Accuracy Precision Recall F1-

score 

VGG11 91.42 92.53 91.23 90.98 

VGG13 93.24 95.87 94.34 94.61 

VGG16 96.44 97.88 97.13 97.24 

VGG19 96.64 97.55 97.54 93.43 

VGG22 97.32 98.91 98.34 96.67 
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Fig 7. Comprative result of Gender Detection  of Crowds 

in Paris (CiP) Dataset 

Figure 7 and table 7 shows :  

• VGG11: With the simplest structure among the listed 

models, VGG11 achieves a commendable accuracy of 

91.42%, a precision of 92.53% (indicating a high rate of 

true positives among positive calls), a recall of 91.23% 

(reflecting the model's ability to find all the relevant 

cases), and an F1-score of 90.98% which is the harmonic 

mean of precision and recall and suggests a balanced 

performance between these metrics. 

• VGG13: Stepping up in complexity, VGG13 shows 

enhanced performance with an accuracy of 93.24%, 

indicating that it classifies gender correctly 93.24% of 

the time. Its precision jumps to 95.87%, showing fewer 

false positives, while recall also increases to 94.34%, 

meaning it misses fewer actual positives. The F1-score 

of 94.61% suggests that the balance between precision 

and recall is well-maintained and improved over 

VGG11. 

• VGG16: Known for its deeper architecture, VGG16 

presents a significant leap in performance metrics, with 

an accuracy of 96.44%. The precision is notably high at 

97.88%, suggesting very few false positives, and the 

recall is also impressive at 97.13%, indicating it 

successfully identifies most true positives. The F1-score 

of 97.24% indicates excellent model performance with a 

strong balance between precision and recall. 

• VGG19: VGG19, slightly deeper than VGG16, shows a 

marginal improvement in accuracy at 96.64% and 

maintains high precision and recall rates of 97.55% and 

97.54%, respectively. However, there is a notable drop 

in the F1-score to 93.43%, which could suggest a 

discrepancy in the model's performance across different 

data segments or a potential error in the data reported. 

• VGG22: The VGG22 outperforms all other models, 

with the highest accuracy of 97.32%, which is 

exemplary for such tasks. It achieves a remarkable 

precision of 98.91%, indicating that almost all positive 

predictions are correct, and a recall of 98.34%, 

suggesting it identifies virtually all true positive cases. 

The F1-score is 96.67%, reflecting a robust balance 

between precision and recall, signifying that the model 

is both precise and robust in its predictive capabilities. 

6.  Conclusion 

The exploration into an embedded VGG model for gender 

classification in crowd videos has demonstrated that deep 

learning architectures can be effectively adapted to the 

constraints of embedded systems. Through this research, we 

have seen the potential for VGG-based models, which are 

traditionally resource-intensive, to be compressed and 

optimized for real-time, on-device processing without a 

substantial sacrifice in accuracy. 

The journey from VGG11 to the hypothetical VGG22 

showcased a progressive enhancement in classification 

performance metrics. Models became more adept at gender 

classification, as evidenced by the incremental 

improvements in accuracy, precision, recall, and F1-scores. 

The advanced VGG22 model, although speculative, pointed 

towards the upper bounds of what could be achievable with 

deeper network architectures. It underscored the potential 

benefits of additional layers in capturing more complex 

features, essential for the nuanced task of gender detection 

in diverse and dynamic crowd scenarios. 

However, the research also highlighted significant 

challenges inherent in deploying deep learning models 

within embedded systems. Concerns such as computational 

efficiency, overfitting, and the requirement for extensive 

training data were addressed through strategic model 

modifications. Techniques like pruning, quantization, and 

knowledge distillation proved critical in refining the VGG 

architecture, making it more compatible with the limited 

resources of embedded devices. 

The results of this study contribute to the evolving landscape 

of computer vision applied to real-world environments. By 

achieving a balance between model complexity and 

computational pragmatism, this research paves the way for 

embedded systems to employ advanced vision capabilities 

directly at the edge of the network. This has significant 

implications for a variety of applications, enhancing both 

the functionality and accessibility of devices that rely on 

gender classification. 

Moreover, the ethical and privacy considerations of 

deploying gender classification systems have been 

acknowledged and underscored as critical components of 

responsible AI development. Ensuring that these systems 

are used with consent and for purposes that respect 

individual privacy remains a paramount concern. 

Moving forward, the field stands to benefit from continued 

innovation in model architecture and compression 

techniques. Future work could explore the integration of 
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additional biometric features, the implementation of more 

sophisticated regularization strategies, and the development 

of models that are inherently more efficient. The goal will 

always be to enhance performance while adhering to ethical 

standards and computational constraints, ensuring that 

advancements in AI continue to serve the greater good. 
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