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1. Introduction 

Experts in the field of computers are now debating whether 

method is superior for data transfers across computer 

networks. ISPs are accountable for ensuring optimal 

network performance (ISPs). Network traffic is the initial 

step toward identifying and labeling uncharted groups 

inside the network [1]. Categorizing network data is 

critical for management and security applications like 

intrusion detection and QoS. In addition to a wide variety 

of other applications, this tactic may be used by network 

administrators to manage resources and prevent certain 

flows. The proliferation of network-based software is 

another possibility. 

Classification, the process of putting things into distinct 

groups, occurs naturally. In each of these groups, we see 

how several data points are interconnected. In a network, 

communication takes place between nodes since they are 

connected. The term "traffic categorization" refers to a 

method for organizing the information sent through a 

network according to predetermined criteria. When these 

conditions hold, it becomes significantly less difficult to 

structure large data sets according to the relationships 

between them. If this technique is used, it may be less 

difficult to isolate the impacts of service network traffic. 

This, together with the use of protocols and ports, may 

help determine the load a node is under [2]. Different 

techniques are discussed below that may be used to secure 

network for IDS. Port identifiers, In addition to the IP 

address, The Third: Procedures, Network nodes are the 

building blocks of a computer system. Keeping an eye on 

network traffic might be useful for evaluating bandwidth 

use and server load. It may be enlarged all the way up to 

the detailed application design and the preliminary plan for 

the network upgrade. There are many types of network 

traffic, and they are as follows: One, very bandwidth-

hungry traffic. Indulging in fake-traffic-watching 

throughout the workday, because there is no way to traffic, 

a high response rate is to be expected for interactive traffic 

yet may be disappointing. Sensitive traffic is a factor in the 

battle for bandwidth. This all-encompassing study 

concludes that rapid network growth causes an increase in 

both network traffic and resource usage. Network traffic 

categorization has the potential to enhance the precision of 

performance metrics while also reducing resource 

consumption. Analyzing bandwidth use allows for 

informed upgrades to existing systems. 

Over the last two decades, several different categorization 

algorithms for network traffic have been published [3]. The 

first approach is the port-based method. This technology 

provides several opportunities for identifying network 

traffic. Ports need registration with the Internet Assign 

Numbers Authority before they may be used (lANA). It's 

possible that the widespread usage of P2P (Peer to Peer) 

programs in [5], which make use of dynamic port numbers, 

is to blame for the failure of this strategy.  

To distinguish them from static port numbers, which have 

already been registered with the IANA, we use the term 
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"dynamic" (lANA). The second tactic puts more emphasis 

on the payload. When applied to network traffic 

classification, the results of this method are quite exact [4]. 

Deep Packet Inspection is an abbreviation for this 

technique. There is a catch, though, to this approach. There 

is no way to combine network apps that encrypt data to 

avoid interception with apps that utilize encrypted data.  

The use of password-protected software also had a role in 

the strategy's downfall. The researchers devised a 

revolutionary method, which they called Machine Learning 

(ML), to categorize internet traffic and identify the various 

applications that are sent across the network. Incorporating 

machine learning techniques for network traffic 

classification improves accuracy significantly.  

It is necessary to make use of a training set in addition to a 

test set in order to appropriately identify unknown classes 

[5]. Using standard methods of machine learning, such as 

classification of network data needs feature extraction to 

be carried out by subject matter experts. In recent years, 

deep learning-based systems for automatically extracting 

features have gained traction as a safer alternative to the 

traditional manual procedure due to the possibility of 

human error.  

This is because of the nature of the patches being applied. 

However, in order for these algorithms to reach the 

training stage, a substantial quantity of data is necessary. 

These models contain many hidden layers, making it 

challenging to properly update their weights with a small 

sample of data. The findings of the research indicate that a 

sufficient amount of training data is essential for producing 

the best and most desired outputs, and that a model that 

lacks adequate training data performs badly. 

However, deep network models have greatly improved the 

reliability of traffic classification via the discovery and 

incorporation of new data. Although it has become easier, 

it may still be challenging to find the right features and 

sufficient data for a given traffic [6]. Due to these 

challenges, accurate categorization of network data is 

challenging in most cases. Network traffic is classified by 

deep learning algorithms using an end-to-end deep 

learning-based classification strategy, eliminating the need 

for human feature extraction or further algorithm tuning.  

In contrast to the standard practice of categorizing network 

traffic, this is a relatively new development. Improving the 

algorithm's classification performance isn't enough to make 

a network traffic classifier useful; it's also important to 

refine the approach used to arrive at those results. To get 

over the limitations of deep learning, the method was fine-

tuned employing meta-heuristic techniques. Simple 

techniques and procedures allowed for many iterations, 

which in turn led to the identification of a workable and 

excellent solution. 

Using reinforcement learning (RL) methods, a system may 

learn from its interactions with a novel environment and 

improve its performance over time. The agent's ability to 

learn from its experiences in the world is what makes this a 

reality. To control its actions, an RL agent will consult its 

policy, which may be seen of as a mapping from inputs to 

predetermined actions. 

The term "supervised practice" refers to a kind of learning 

whereby a set of labeled examples is used to learn how to 

produce a desired result (in this case, an output). Learning 

by reinforcement is quite different from the 

aforementioned approach. The main difference is that the 

RL agent is never advised on what to do, but rather 

provided an assessment signal that shows it whether or not 

the action it chose was a good one. Determine the actions 

taken and the reward function in order to maximize the 

total cumulative discount rewards earned by reinforcement 

learning agents.  

Using the provided template, the agent will be able to take 

part in the process of creating new memory cells. These 

memory cells initially store the agent's input vector, but the 

agent may later use other information it has stored there to 

make decisions on how to proceed. The challenge of traffic 

classification multiplies in a setting with a large amount of 

data, sometimes known as "Big Data" [7], and a high 

degree of diversity. Due to its large volume, wide variety, 

high veracity, and high velocity, big data has introduced a 

new dimension to the study of networking and traffic [8].  

This research makes many recommendations for the big 

data ecosystem, including the categorization of network 

traffic using reinforcement learning. To solve this problem, 

researchers have created a new model for classification 

called DRL, which combines the decision-making powers 

of reinforcement learning with the modeling capabilities of 

deep learning. 

As for the rest of the paper, it's organized as follows: In 

Section 2, numerous different approaches to traffic data are 

described along with a thorough analysis of the related 

literature. In section 3, we explained the reinforcement 

learning framework and offered a recommendation for 

applying RL to the problem of traffic classification. 

Section 4 presents the experimental results, while Section 5 

wraps things up. 

2. Background Study and Literature Review  

In this part, we will do a cursory examination of the 

relevant literature. All aspects of machine learning, 

including methods, algorithms, performance assessments, 

traffic classification and forecasting, as well as machine 
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learning in the internet of things and internet of things 

networks, are covered. 

A. Machine Learning  

Researchers in the field of "machine learning" compile 

massive volumes of data in order to train statistical models 

that may be applied to real-world issues. Through the use 

of learning algorithms and a data collection known as a 

training set, machines may acquire new skills without 

being specifically programmed to do so. Learn with 

supervision, with little supervision, without supervision, or 

with reinforcement [10, 11]. 

In the case of supervised learning, the dataset is made up 

of samples that have been labeled. An algorithm for 

supervised learning produces a model when it is provided 

with a dataset. This model takes in a feature vector and 

produces the label that corresponds to that vector. In 

supervised learning, the goal is to predict an output given 

an input. Unsupervised learning uses unlabeled samples. 

For this form of learning, training set labels are not 

necessary. 

Teaching a model to reconstruct a feature vector or a real-

world value from a given one is the ultimate objective of 

unsupervised learning. In unsupervised learning, the 

training set is not used until it has been labeled. The 

dataset used for semi-supervised training contains 

instances that have been tagged as well as those that have 

not been labeled. The vast majority of occurrences do not 

have names.  

Although a supervised learning algorithm and a semi-

supervised learning algorithm ultimately strive for the 

same thing, supervised learning algorithms have more 

direct human oversight, it differs in that it can potentially 

produce a more accurate model by making use of a large 

number of unlabeled cases. One branch of artificial 

intelligence is known as reinforcement learning. Feature 

vectors are used for training robots to operate in their 

intended surroundings. Your machine's ability to carry out 

your commands is not dependent on its current state. 

Your efforts will be rewarded, and the robot will travel 

around the planet. Calculates the best course of action to 

maximize ROI in any given scenario. In time, a 

reinforcement learning algorithm may be trained to choose 

the best action, given a state and a property of that state. 

An ideal move is one that maximizes the mean average 

return [10, 11]. The labels in problems of classification in 

machine learning are limited. When the labels to be 

predicted are continuous in nature, the corresponding 

machine learning assignment is known as a regression 

problem [11]. 

Data analysis is the primary emphasis of Deep Learning 

(or DL for short), a branch of machine learning. It is a 

group of algorithms predicated on a deep ANN whose 

architecture mimics that of the human brain's biological 

neural network. [12] To draw inferences, deep learning 

models assess data in a way that is conceptually similar to 

human reasoning. Computer vision, NLP, voice 

recognition, visual object identification, bioinformatics, 

and medicine are just some of the many areas where DL is 

now being put to use. However, its use is restricted in the 

data network sector for a variety of reasons [9], including a 

lack of data, transparency, and computational resources. 

Keep in mind that DL models have an insatiable appetite 

for data. They require access to a staggering amount of 

information in order to learn. Example: Due to the nano-

restricted network's processing capabilities, it is difficult to 

implement Tesla's self-driving software on a nano-network 

since the program requires millions of pictures and video 

hours in order to operate effectively. 

In addition, there is a broad variety of issues with how DL 

models are seen and understood. Their black box-like 

design makes it hard to grasp how they function [9], 

despite the fact that they are able to select features from 

input data and provide accurate predictions of output. The 

appropriate characteristics are chosen based on the 

provided data. Many computing resources are needed for 

deep learning. Training a deep learning network may now 

only take a few hours instead of a few weeks thanks to 

cloud computing and high-performance GPUs. However, 

the GPU is not optimal for implementing nano-networks, 

despite its higher training computation speeds [9]. 

Learn More About the Algorithms That Drive Machine 

Learning 

Machine learning can solve practically every data 

challenge. There are benefits and cons to every algorithm. 

In the process of analyzing the traffic at the micro/nano 

gateway associated with electromagnetic nano-networks, 

which kind of machine learning model is going to be the 

most effective choice? In the following article, we'll 

investigate the most popular and often discussed 

techniques for analyzing and categorizing information 

gathered from wireless networks. The decision tree 

classifier, support vector machines, k-nearest neighbors, 

random forests, and neural networks are all examples of 

machine learning algorithms. It's possible that optimizing a 

learning algorithm's hyper-parameter settings is all that's 

needed to make the algorithm more effective. 

First, a Decision Tree 

Decision trees are choice-making acyclic networks. Inner 

nodes correspond to input vector attributes, while leaves 

indicate the final result. The left branch is followed if a 
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characteristic value falls below a threshold. The terminal of 

the leaf node initializes the class of the example. 

Classification trees are widely used because they're easy to 

implement and can be modified for rule-based systems. 

They may also be drawn. Top-down greedy algorithm 

trains the model. This technique separates nodes 

frequently, and its optimization criteria is typically 

information obtained. Many DTC usage include 

categorization. It works for continuous and categorical 

dependent variables [12]. 

Seond Support Vector Machine-based  Systems (SVM) 

Separate-Variable Models (SVMs) are a kind of binary 

classifier that does not use probabilities. Their strategy 

entails representing each feature vector in a 

multidimensional space and looking for a linear separation 

between classes. Their systems cause this. There are cases 

when linear space partitioning is not only impractical, but 

also unable to give a workable solution. Therefore, the 

dimension of the space is increased using the kernel 

method [11], [12] to facilitate a separation that is much 

easier in a space with a substantially greater number of 

dimensions. 

Third, K-Nearest Neighbors (K-NN) 

Classification and regression may both benefit from the 

non-parametric K-NN technique. The K-closest training 

instances in the feature space will be the output in either 

scenario. When using K-NN to categorize data, a class 

membership is the result. An object is assigned to the 

category in which it is most popular among its K nearest 

neighbors, as decided by the votes of its neighbors [11]. 

In this paper, we present three new techniques that inject 

UAP into network traffic. By injecting a UAP into the 

packet content, the AdvPad attack may assess how well 

packet classifiers can handle unexpected data. The AdvPay 

attack modifies a faked packet by inserting a UAP into the 

packet's payload in order to gauge the efficacy of flow 

content classifiers.  

The AdvBurst attack is used to test the robustness of flow 

time series classifiers by including a predetermined 

number of spoofed packets in the intended burst of a flow. 

These bogus packets have been crafted using statistical 

characteristics that were taken from an actual UAP. When 

even a little amount of UAP was introduced to the traffic, 

the overall performance of DL-based network traffic 

classifiers dropped dramatically, as shown by the findings 

[13]. 

The author of this piece examines and evaluates a number 

of well-known techniques for machine learning, any of 

which may be put to use in conjunction with information 

obtained from the network activity of Internet of Things 

(IoT) devices. We make use of a data collection that is 

available to the public and contains network traces 

spanning 20 days from 20 well-known Internet of Things 

devices. In order to extract useful features, first the 

network traces are evaluated.  

In the next step, We conducted an analysis of recent survey 

papers to determine the most innovative machine learning 

approaches for the classification of Internet of Things 

traffic. In the next step, we compared several machine 

learning algorithms' results across a range of metrics, such 

as their classifying prowess, training duration, and overall 

processing speed. Finally, based on the data we gathered, 

we provided some guidelines for selecting the best 

machine learning algorithm for various applications [14]. 

In the last stage of the process, the hybrid suggested model 

is put into action by making use of the machine learning 

strategy known as Random Forest (RF) to choose relevant 

characteristics from the merged dataset (which includes 

V2V and V2R communications). The Gated Recurrent 

Unit (GRU) approach is used to forecast the flow of 

network traffic; it is the deep learning algorithm that has 

been shown to be the most accurate. The results of the 

simulations reveal that the proposed RF-GRU-NTP model 

beats the most advanced algorithms currently available for 

network traffic prediction [15] in terms of runtime and the 

number of inaccurate predictions. 

Micro- and nano-gateway traffic from nano-networks will 

be categorized. The nano-network traffic will be evaluated 

and classified using five supervised machine learning 

methods. This study seeks to find the best classifier for 

nano-network traffic by testing suggested models, 

evaluating them, and comparing their accuracy and 

performance to other classifiers [16]. 

In SSDDQN's current network, an autoencoder 

reconstructs traffic characteristics and a deep neural 

network classifies. The present network handles both of 

these tasks. K-means clustering and deep neural network 

prediction are used in the target network. Training and 

testing use the NSL-KDD and AWID datasets. 

Additionally, a full comparison of different machine 

learning models is offered. Experiments show that 

SSDDQN is beneficial in terms of time complexity and 

yielded good results across a range of evaluation measures 

[17]. 

A detailed overview of the procedure for acquiring the 

data, which includes its preparation and anonymization, is 

presented here. To display the data on network traffic, we 

make use of t-distributed stochastic neighbor embedding 

(t-SNE). This makes it much easier to understand the 

dynamics of traffic and the communication channels [18]. 
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The diagram in footnote 18 illustrates a high-level pipeline 

architecture and flow-based routing applications. 

Our results show that even with massive imbalanced 

datasets, our technique is able to categorize network 

traffics accurately and quickly. Our research leads us to 

believe that it might help modern NIDS systems based on 

machine learning deal with the serious issue of imbalanced 

datasets. [19]. 

3. Proposed Method 

3.1 Reinforcement Learning 

In order to address problems that can't be handled by either 

machine learning or traditional learning alone, artificial 

intelligence researchers have developed a technique called 

reinforcement learning. To deal with unpredictable and 

ever-changing environments, reinforcement learning may 

be used (RL). The approach is based on the tactical utility 

function and is sequential and multi-step. The intended 

result of this strategy is maximum effectiveness. The actor 

network in an actor-critic architecture is the part 

responsible for acting on the basis of the system's 

interactions with its external environment and the states it 

is in at any given time. One possible approach to 

implementing real-time thinking is this (RL). The strategic 

utility function is built by the critic network and relies on 

the effectiveness of the actor network. Next, the critic 

network use this function to fine-tune itself and improve 

estimate precision [20]. 

Reinforcement learning has matured into a very 

sophisticated learning framework in comparison to the 

numerous models of machine learning that are now in use. 

During play, players craft a policy by combining various 

actions and incentives. Having this policy in place 

guarantees that the necessary educational traits are met. 

More and more scientists from many different technology 

fields have used it in the last decade. Resource 

management, intelligent systems, optimization problems, 

and image processing are all examples [21]. It is possible 

that difficult tasks requiring sequential decision-making 

might be simplified and made easier to solve by combining 

deep learning with reinforcement learning. This approach 

takes on one of the central problems in AI head-on: the 

development of self-sufficient creatures that learn to 

interact with their surroundings.  

It is important to us to make decisions that will have 

lasting, far-reaching effects. With RL, the agents are the 

primary focus of the optimization. But unlike humans, RL 

agents can frequently learn how to do things well from 

scratch. This is one of the main reasons why there is a huge 

gap between how RL bots utilize data and how people do. 

This illustrates that agents can tackle a wider range of 

problems if given the means to make use of the knowledge 

they currently possess. Employing it to manage load 

balancing issues in distributed SDN controllers has been 

found to be beneficial in recent study [22]. 

Agents, states, and incentives all play a role in RL learning 

from its dynamic environment. To modify its state, the 

agent acts in response to input it receives through a critical 

evaluation of its surroundings; this feedback is the reward 

[23]. The agent's state is a representation of the 

environment's current state. The policy function for a state 

space S defines the conditional distribution of an action, 

indicated by a, in a Markov Decision Process (MDP).  

( ),s a 
 and the respective next state transition 

dynamics 
( ),s a 

. The task function is defined 

as
( )p 

 where every task comprises of the initial state 

distribution 0( )p s
, transition distribution and the reward 

function. The policy evaluation is performed through the 

reward function :r S A → where S and A represent 

the state space and action respectively. The objective of 

reinforcement learning is to derive a policy which 

maximizes the expected return 
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. Here 

 0,1 
is the discount function to add flexibility 

3.2. Proposed working flow 

The model for network traffic is the topic of this section. 

Part of this model is a method with discrete operations, as 

in Figure 1. A step-by-step procedure for network traffic 

using machine learning is outlined here. 

 

Fig 1. Proposed working flow 
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A. The Capture of Network Traffic 

The first step, which is also the most crucial, is to gather 

data. During this part of the process, real-time recordings 

of the network traffic are being made. The same activity 

may also be referred to by the phrase "data collection." 

Even though there are a number of other tools available, 

the Tcpdump application may still be used to capture live 

information from the network. This is the case despite the 

fact that there are other programs accessible. We monitor 

and record activities on the network with the help of the 

Wire Shark tool (IS), which does this by collecting and 

examining data packets. During that one minute, traffic 

from WWW, DNS, FTP, P2P, and Telnet applications was 

logged. 

B. Feature Extraction 

After collecting information on network traffic, the next 

step is to choose and extract features from the data. This 

process involves the extraction of characteristics such as 

packet length, inter-arrival time protocol, and so on. After 

the characteristics have been extracted, a machine learning 

classifier may be trained using them. It is feasible to 

extract features from a recorded dataset by using a script 

written in the programming language Perl. On the other 

hand, the 23 characteristics are extracted using the Netmate 

program. For the purpose of storing the dataset required by 

the Weka analysis tool, Comma Separated Values (CSV) 

files created in Microsoft Excel are used. 

C. Taking Samples During the Training Process 

The supervised learning method draws examples for its 

practice from both of these data sets. During the initial step 

of the supervised learning process, data are tagged in order 

to network applications that have not yet been classified. 

D. The RL Algorithm Is Put Into Implementation 

RL algorithms have the capability of learning how to 

swiftly complete a new job by making use of the 

information gained from past attempts. In this approach, 

examples from previously completed activities are utilized 

to assist in the learning of new ones. For meta-

reinforcement learning approach, the family of tasks ( ) 

is defined through the MDP which have been 

parameterized as 
( ) 0, , , , ( ),S A r p s







 and 

produces distinct reward functions while maintaining the 

same transfer dynamics. The value function on a task with 

policy , dynamics  and reward 
r is denoted as 

,V 





. 

Also, the respective expected return function is denoted 

by
( )  ,

0, , ( )TT E V s

   =
.  

The meta-training method utilizes the history of past 

transition dynamics or context  , which is referred to as 

c, in order to learn a policy from the specific task that is 

being considered and adapt to it accordingly. The sum total 

of the knowledge gained throughout the training period 

may be symbolically represented as:  1:n Nc= where nc
is 

one transition in a task. It is expected that the policy will 

be able to adapt to the new task selected from the family of 

tasks based on information gleaned from context variables 

during the testing phase. These parameters are sampled and 

recorded frequently during the whole event to increase the 

depth of the investigation. Priors of the trajectory over the 

context variables are created and used in the fast adaptation 

at the trajectory level [21]. The actor network in the RL 

paradigm is in charge of enacting action, while the critic 

network is in charge of evaluating the effectiveness of that 

action and deciding whether or not to reward it. The policy 

framework is derived from this structure via the 

application of several tuning rules. 

3.3 Inverse Monte Carlo Learning 

Learning about MDP transitions is not necessary thanks to 

the Monte Carlo method of reinforcement learning. 

Instead, it's via specific experiences that growth occurs. In 

this instance, the rate of return or reward is decided by 

chance. 

Note that it is restricted to episodic MDPs, which is a 

significant caveat. It's fair to ask why now that things have 

gotten to this point. This is because we can't calculate 

profits until the show is over. In this section, we do not 

update for each and every single action or behavior; rather, 

we do it after each and every episode. We are able to 

determine the value by using the most basic concept 

imaginable, which states that the value is equivalent to the 

typical return of all of the sample trajectories for each 

condition. 

It is essential to bear in mind the concept of multi-armed 

bandits that was presented in this article; each state 

represents a unique instance of the issue of multi-armed 

bandits, and the goal is to conduct actions that are optimum 

for all of the multi-armed bandits at the same time. 

The value function for a particular random policy may be 

determined in a process called policy assessment, and the 

optimal policy can be determined in a process called policy 

improvement. These two procedures are quite similar to 

what's done in dynamic programming. Both of these 

phases will be discussed at length in the following two 

sections. 
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 3.4 Monte Carlo Policy Evaluation 

Again, the goal is to learn the value function vpi(s) by 

repeated practice under the constraints of some policy pi 

[24]. Please keep in mind that the return is calculated by 

subtracting the discount from the total award: 

S1, A1, R2, ….Sk ~ pi 

The issue that has to be answered is how these sample 

returns may be obtained. In order to do this, we will need 

to go through a number of episodes in order to produce 

them [25]. 

A progression of states and prizes will be available to us 

for each episode that we play. In addition, using these 

rewards, we are able to compute the return, which, by 

definition, is just the accumulation of all future rewards. 

Only for the very first time that Monte Carlo is visited 

during an episode do average returns apply. 

The following is an explanation of the method in step-by-

step format: 

1.Perform the initialization of the policy and the state-

value function. 

2.To begin, an episode should be created in accordance 

with the existing guidelines. 

  1. Maintain a record of the states that were visited 

during the episode. 

3.Choose a state in section 2.1. 

1. Include in a list the result that was obtained 

following the occurrence of this state for the first 

time. 

2. Average over all returns 

3. The value of the state should be set to the calculated 

average of those values. 

4.Repeat step 3 

5.Repeat 2-4 until satisfied 

Every time you go to Monte Carlo: These are the average 

returns for each time you go there throughout an episode. 

Altering the wording of this method's step #3.1 so that it 

reads "Add to a list the return received after every 

occurrence of this condition" is all that is needed to get the 

outcomes that are wanted. 

In order to have a better grasp on this idea, let's look at a 

straightforward illustration. Imagine there is a setting in 

which we have access to two different states: A and B. 

Let's imagine that we watched two different episodes as a 

sample: 

A+3 -> A+2 -> B-4 -> A+4 -> B-3 -> Terminate 

B-2 ->  A+3 -> B-3 -> Terminate  

The transition from state A to state A, with a reward of +3, 

is denoted by the expression "A+3 => A." Let's figure out 

the value function by combining the two approaches: 

First Visit Evert  visit 

V(A) = ½(2+0)=1 

V(B) = ½ (-3+-2) = -

5/2 

V(A) =1/4(2+-1+1+0)=1/2 

V(B) = ¼( -3 + -3 + -2 + -3 ) = 

-11/4 

 

 3.5 Proposed working algorithm for IDS 

1. Environment Setup: Define the network environment 

where the IDS will operate. This includes setting up 

network traffic data for training and testing, and 

defining the state space that represents different 

network scenarios. 

2. Choosing a Reinforcement Learning Model: Select an 

appropriate RL algorithm Deep Q-Networks suitable 

for the IDS's objectives. 

3. Defining Rewards and Penalties: Establish a reward 

system to reinforce desirable actions (correctly 

identifying threats) and penalties for undesirable 

actions (false positives/negatives). 

4. Feature Extraction: Process the network traffic data to 

extract relevant features that the RL model can 

understand and use for decision-making. 

5. Training the Model: Train the RL model using the 

network traffic data, allowing it to learn from 

interactions with the environment and improve its 

decision-making process over time. 

6. Policy Development: Develop a policy for the model to 

decide what action to take in different states (e.g., 

raising an alert for potential threats). 

3.6 Proposed Deep Q-Networks algorithm for IDS 

1. Preprocessing: Collect and preprocess network traffic 

data. Normalize or standardize the features for effective 

learning. 

2. Defining the Environment: Define the state space 

(network scenarios), action space (alerts, no action), 

and reward system (positive for correct detections, 

negative for false alarms). 

3. Initialize Deep Q-Network: Initialize a neural network 

with input layers (matching the number of features in 

your data), hidden layers, and output layers 

(representing possible actions). 
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4. Set Hyperparameters: Set hyperparameters like 

learning rate, discount factor, and exploration rate. 

5. Experience Replay Memory: Initialize a replay memory 

to store experiences (state, action, reward, next state). 

6. Training Loop: 

• Collect Data: For each episode, collect state 

information from the network environment. 

• Select Action: Use the network to select an action 

based on the current state (employ exploration vs. 

exploitation strategy). 

• Execute Action & Observe Reward: Perform the 

selected action and observe the reward and new 

state. 

• Store Experience: Store this experience in the 

replay memory. 

• Sample Mini-batch: Randomly sample a mini-batch 

of experiences from the memory. 

• Compute Q-Value: Use the network to compute the 

Q-value for each mini-batch experience. 

• Update Network: Update the neural network 

weights using backpropagation to minimize the loss 

between predicted Q-values and target Q-values. 

7. Model Evaluation: Regularly evaluate the model on a 

separate validation dataset to monitor its performance. 

3.7 Advantages of proposed method 

1. Efficient Learning from High-Dimensional Sensory 

Inputs: DQNs are particularly adept at processing and 

learning from high-dimensional data, a common 

characteristic of network traffic. 

2. Stability and Convergence: The use of experience 

replay in DQNs helps in stabilizing the learning process 

and ensures convergence, which can be an issue in 

traditional reinforcement learning methods. 

3. Handling Large Action Spaces: DQNs are effective in 

environments with large action spaces, making them 

suitable for complex IDS scenarios where numerous 

potential actions and responses are possible. 

4. Integration of Deep Learning Advantages: By 

combining Q-learning with deep learning, DQNs 

leverage the pattern recognition capabilities of neural 

networks, enhancing the ability to detect sophisticated 

and novel intrusion patterns. 

5. Overcoming Limitations of Traditional RL: Traditional 

reinforcement learning methods can struggle with 

correlated data and non-stationary distributions, issues 

that DQNs can handle more effectively. 

4. Implementation and Result 

4.1. Performance Metrics  

It might be difficult to determine a model's quality without 

monitoring its progress as it is trained and tested. The 

identification of an error category, the extent to which the 

model is in agreement with the data, or some other relevant 

measure is commonly used to do this. Using a 

categorization strategy, we can make predictions about one 

of four possible outcomes. The performance metrics are 

controlled by a matrix constructed from these data; this 

matrix is termed the confusion matrix. Using this matrix, 

the efficacy of a classifier may be assessed.  

Components off the diagonal represent data points for 

which the classifier made an incorrect label prediction, 

whereas diagonal elements represent the proportion of 

points for which the predicted and actual labels were 

identical. Having a big number of right guesses is an 

indication of a high confusion matrix diagonal value. 

While testing for network traffic prediction, accuracy is 

determined by how close network traffic samples are to 

one another. The precision with which one can identify 

network traffic is proportional to the closeness of a given 

number. Exponent 1 represents the accuracy of the data on 

network traffic.  

Accuracy = (TP + TN) / (TP + TN + FP + FN)  (1)  

When a TP indicates a true positive and a TN indicates a 

true negative, an FP indicates a false positive and a FN 

indicates a false negative.  

4.2 Dataset Details 

Magnetic nano-network communication and its protocol 

stack may be simulated using NS2, also known as 

Simulator. The simulations in Simulator are based on 

events. The packet size is determined by the user, and the 

simulator's message processing unit generates random 

packets at regular intervals. Networking abstraction layer 

allows the inclusion of Fig. 2. Minimal Header Format for 

Network Messages [27]. Through transparent-MAC [27], 

packets are transmitted from the network layer to the 

physical interface of the nano-router with a network header 

that is not reliant on the routing approach and a MAC layer 

that follows a strategy over which it has no control.  

 

Fig 2. Template for the header of nano-network messages 

[27]. 
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Table 2. Micro- and nano-gateway traffic categorization 

and forecasting input characteristics [33]. 

Field Feature description 

flag_id Flag identification 

ttl Time to live 

Source_dev_id Source nano-device 

identification 

Sender_dev_id Sender nano_device 

identification 

Next_hop_dev_id Next hop nano-device 

identification 

Packet_id Packet identification 

Source_IP Source IP address 

Destination_IP Destination IP address 

Transport_protocol IP transport protocol 

number 

Source_port Source port number 

Destination_port Destination port  number 

Payload Message 

Payload_size Message size 

Header_size Header size 

Packet_size Packet size 

Source_mac Source MAC address 

Destination_mac Destination MAC address 

 

Table 3. Labels that are outputted for the purpose of 

micro- and nano-gateway traffic categorization and 

prediction. 

 

4.3 Decision Tree 

Figure 3 depicts the variation in the learning curves of the 

unoptimized model when the training set and cross-

validation set sizes are varied. This is the fruit of using 

accessible data to train a decision tree classifier. 

Overfitting is evident at 50 training points, when the model 

achieves perfect accuracy on both the training and testing 

data. 

 

Fig 3 : Learning curves that are typical for the DTC model, 

which has not yet been optimize. 

 

Fig 4 : The DTC model's learning curves, which have been 

optimized. 

The enhanced learning curves are shown in Figure 4. 

When the number of training samples is equal to 110, the 

training score and cross-validation score are nearly 

identical. The DTC model will experience overfitting as 

the number of training points increases. 

 

Fig 5 : Normalized confusion matrix for optimized DTC 

model. 

Figure 5 shows DTC's normalized confusion matrix. This 

displays how successfully the model categorizes TCP, 

UDP, and NN1 packets. Since it expects all NN0 packets 

to be NN1, it doesn't detect any. The model can 

discriminate between conventional and nano-network 

traffic, but not nano domain packets. 
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4.4 Support Vector Machines 

Figure 6 is a representation of the unoptimized model's 

learning curves that was created by fitting the support 

vector machine model. The training score and the cross-

validation score both rise as more training points are 

accumulated, eventually reaching their respective 

maximums of (85%) and (90%) when a total of 

approximately 150 training points have been earned. The 

SVM model will become more susceptible to overfitting as 

the amount of training data continues to grow. 

 

Fig 6 : Typical learning curves for an unoptimized support 

vector machine model. 

 

Fig 7: Optimal SVM model learning curves. 

The improved model's learning curves are shown in Figure 

7, which may be found here. Both the training score and 

the cross-validation score go up when the number of 

training points goes up, but the training score goes down, 

while the cross-validation score goes up. These two scores 

do not overlap for any of the training samples. 

 

Fig 8 : For an improved SVM model, the normalized 

confusion matrix. 

Figure 8 depicts the enhanced support vector machine's 

normalized confusion matrix. These results demonstrate 

that the model correctly detects TCP and UDP packets. 

Only 24% of NN0 packets can be expected effectively, 

whereas 82% of NN1 packets can. The model 

differentiates effectively between big and small network 

traffic, however it predicts erroneously for nano-domain 

packet transmission. Predictions from the model indicate 

that 76% of all NN0 packets will be NN1 ones. 

4.5 KNN model 

 

Fig 9: Curves of learning for an unoptimized KNN model 

The model's learning curves before and after being fitted to 

the K-nearest neighbors model are shown in Figure 9. It 

demonstrates that, without converging, training and cross-

validation scores climb together as training points increase. 

 

Fig 10: Curves of learning for the best KNN model. 

Figure 10 depicts the improved KNN model's learning 

curves. This model avoids overfitting and underfitting for 

all training points, and it has an accuracy rate of 91.11% 

overall. 

 

Fig 11 : The optimized KNN model features a normalized 

confusion matrix. 
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KNN confusion matrix with enhancements is shown in 

Figure 11. TCP and UDP packets are separately modeled 

in this framework. 97% of NN2 packets are accurately 

anticipated, compared to 82% of NN1 and 35% of NN0. 

The model can tell the difference between traffic on large 

and small networks, but its estimates for packet traffic in 

the nano-domain are off. Despite its preference for NN1 

packets, the model outperforms its optimized SVM 

counterpart. Only 35% of NN0 packets are predicted 

properly by the KNN model; the rest are incorrectly 

labeled as NN1. 

4.6 The comparison of the proposed system 

with existing systems 

Table 4. Comparisons of various ML and DL precision 

metrics with the proposed algorithm. 

Algorithm used Accuracy (%) 

KNN , RF 72.08 , 90.53 

ANN 78.00 

KNN 94 

CNN 94 

SVM 94.2 

KNN, RF, NN, and NB 79.6,84.8,84.6,and 87.6 

Proposed method 96.8 

 

The table 4 provided data compares the accuracy of 

various algorithms used in an Intrusion Detection System 

(IDS). The accuracies are as follows: KNN and RF 

(72.08%, 90.53%), ANN (78.00%), KNN (94%), CNN 

(94%), SVM (94.2%), a combination of KNN, RF, NN, 

and NB (79.6%, 84.8%, 84.6%, and 87.6% respectively), 

and the proposed method (96.8%). This indicates that the 

proposed method outperforms the others in terms of 

accuracy. 

5. Conclusion 

Intrusion Detection System (IDS) significantly 

outperforms other methods in terms of accuracy. With an 

accuracy of 96.8%, it surpasses traditional approaches like 

KNN, RF, ANN, CNN, and SVM, which show varied 

accuracies with the highest being 94.2% for SVM. The 

data also highlights the effectiveness of combining 

multiple methods (KNN, RF, NN, and NB) but still shows 

that the proposed method holds a clear advantage in 

accurately detecting intrusions. This indicates a strong 

potential for the proposed method to be more effective in 

real-world applications of IDS. 
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