

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 34

Enhancing Intrusion Detection System using Deep Q-Network

Approaches based on Reinforcement Learning

Ankit Chakrawarti *1, Dr. Shiv Shakti Shrivastava2

Submitted: 17/11/2023 Revised: 29/12/2023 Accepted: 09/01/2024

Abstract: This study presents a comparative analysis of various algorithms for Intrusion Detection Systems (IDS), including KNN, RF,

ANN, CNN, SVM, and a multi-method approach combining KNN, RF, NN, and NB. The proposed method, which integrates these

techniques, achieves a notable accuracy of 96.8%. Additionally, the study explores a Deep Q-Networks (DQN) based IDS, detailing steps

from data pre-processing and environment definition to model training and deployment. This DQN approach, with its structured learning

and adaptation mechanism, complements the comprehensive analysis, highlighting the potential of combined and advanced techniques in

enhancing IDS accuracy and effectiveness.

Keywords: K-Nearest Neighbors , Random Forest, Artificial Neural Network, Convolutional Neural Network, Support Vector Machine,

Deep Q-Networks , reinforcement learning, Intrusion Detection System.

1. Introduction

Experts in the field of computers are now debating whether

method is superior for data transfers across computer

networks. ISPs are accountable for ensuring optimal

network performance (ISPs). Network traffic is the initial

step toward identifying and labeling uncharted groups

inside the network [1]. Categorizing network data is

critical for management and security applications like

intrusion detection and QoS. In addition to a wide variety

of other applications, this tactic may be used by network

administrators to manage resources and prevent certain

flows. The proliferation of network-based software is

another possibility.

Classification, the process of putting things into distinct

groups, occurs naturally. In each of these groups, we see

how several data points are interconnected. In a network,

communication takes place between nodes since they are

connected. The term "traffic categorization" refers to a

method for organizing the information sent through a

network according to predetermined criteria. When these

conditions hold, it becomes significantly less difficult to

structure large data sets according to the relationships

between them. If this technique is used, it may be less

difficult to isolate the impacts of service network traffic.

This, together with the use of protocols and ports, may

help determine the load a node is under [2]. Different

techniques are discussed below that may be used to secure

network for IDS. Port identifiers, In addition to the IP

address, The Third: Procedures, Network nodes are the

building blocks of a computer system. Keeping an eye on

network traffic might be useful for evaluating bandwidth

use and server load. It may be enlarged all the way up to

the detailed application design and the preliminary plan for

the network upgrade. There are many types of network

traffic, and they are as follows: One, very bandwidth-

hungry traffic. Indulging in fake-traffic-watching

throughout the workday, because there is no way to traffic,

a high response rate is to be expected for interactive traffic

yet may be disappointing. Sensitive traffic is a factor in the

battle for bandwidth. This all-encompassing study

concludes that rapid network growth causes an increase in

both network traffic and resource usage. Network traffic

categorization has the potential to enhance the precision of

performance metrics while also reducing resource

consumption. Analyzing bandwidth use allows for

informed upgrades to existing systems.

Over the last two decades, several different categorization

algorithms for network traffic have been published [3]. The

first approach is the port-based method. This technology

provides several opportunities for identifying network

traffic. Ports need registration with the Internet Assign

Numbers Authority before they may be used (lANA). It's

possible that the widespread usage of P2P (Peer to Peer)

programs in [5], which make use of dynamic port numbers,

is to blame for the failure of this strategy.

To distinguish them from static port numbers, which have

already been registered with the IANA, we use the term

1Department of Computer Science and Engineering, Rabindranath Tagore

University, Raisen (M.P.). chak03ankit@gmail.com
2Department of Computer Science and Engineering, Rabindranath Tagore

University, Raisen (M.P.). shivshakti18@gmail.com

* Corresponding Author: Ankit Chakrawarti

 Email: chak03ankit@gmail.com

mailto:shivshakti18@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 35

"dynamic" (lANA). The second tactic puts more emphasis

on the payload. When applied to network traffic

classification, the results of this method are quite exact [4].

Deep Packet Inspection is an abbreviation for this

technique. There is a catch, though, to this approach. There

is no way to combine network apps that encrypt data to

avoid interception with apps that utilize encrypted data.

The use of password-protected software also had a role in

the strategy's downfall. The researchers devised a

revolutionary method, which they called Machine Learning

(ML), to categorize internet traffic and identify the various

applications that are sent across the network. Incorporating

machine learning techniques for network traffic

classification improves accuracy significantly.

It is necessary to make use of a training set in addition to a

test set in order to appropriately identify unknown classes

[5]. Using standard methods of machine learning, such as

classification of network data needs feature extraction to

be carried out by subject matter experts. In recent years,

deep learning-based systems for automatically extracting

features have gained traction as a safer alternative to the

traditional manual procedure due to the possibility of

human error.

This is because of the nature of the patches being applied.

However, in order for these algorithms to reach the

training stage, a substantial quantity of data is necessary.

These models contain many hidden layers, making it

challenging to properly update their weights with a small

sample of data. The findings of the research indicate that a

sufficient amount of training data is essential for producing

the best and most desired outputs, and that a model that

lacks adequate training data performs badly.

However, deep network models have greatly improved the

reliability of traffic classification via the discovery and

incorporation of new data. Although it has become easier,

it may still be challenging to find the right features and

sufficient data for a given traffic [6]. Due to these

challenges, accurate categorization of network data is

challenging in most cases. Network traffic is classified by

deep learning algorithms using an end-to-end deep

learning-based classification strategy, eliminating the need

for human feature extraction or further algorithm tuning.

In contrast to the standard practice of categorizing network

traffic, this is a relatively new development. Improving the

algorithm's classification performance isn't enough to make

a network traffic classifier useful; it's also important to

refine the approach used to arrive at those results. To get

over the limitations of deep learning, the method was fine-

tuned employing meta-heuristic techniques. Simple

techniques and procedures allowed for many iterations,

which in turn led to the identification of a workable and

excellent solution.

Using reinforcement learning (RL) methods, a system may

learn from its interactions with a novel environment and

improve its performance over time. The agent's ability to

learn from its experiences in the world is what makes this a

reality. To control its actions, an RL agent will consult its

policy, which may be seen of as a mapping from inputs to

predetermined actions.

The term "supervised practice" refers to a kind of learning

whereby a set of labeled examples is used to learn how to

produce a desired result (in this case, an output). Learning

by reinforcement is quite different from the

aforementioned approach. The main difference is that the

RL agent is never advised on what to do, but rather

provided an assessment signal that shows it whether or not

the action it chose was a good one. Determine the actions

taken and the reward function in order to maximize the

total cumulative discount rewards earned by reinforcement

learning agents.

Using the provided template, the agent will be able to take

part in the process of creating new memory cells. These

memory cells initially store the agent's input vector, but the

agent may later use other information it has stored there to

make decisions on how to proceed. The challenge of traffic

classification multiplies in a setting with a large amount of

data, sometimes known as "Big Data" [7], and a high

degree of diversity. Due to its large volume, wide variety,

high veracity, and high velocity, big data has introduced a

new dimension to the study of networking and traffic [8].

This research makes many recommendations for the big

data ecosystem, including the categorization of network

traffic using reinforcement learning. To solve this problem,

researchers have created a new model for classification

called DRL, which combines the decision-making powers

of reinforcement learning with the modeling capabilities of

deep learning.

As for the rest of the paper, it's organized as follows: In

Section 2, numerous different approaches to traffic data are

described along with a thorough analysis of the related

literature. In section 3, we explained the reinforcement

learning framework and offered a recommendation for

applying RL to the problem of traffic classification.

Section 4 presents the experimental results, while Section 5

wraps things up.

2. Background Study and Literature Review

In this part, we will do a cursory examination of the

relevant literature. All aspects of machine learning,

including methods, algorithms, performance assessments,

traffic classification and forecasting, as well as machine

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 36

learning in the internet of things and internet of things

networks, are covered.

A. Machine Learning

Researchers in the field of "machine learning" compile

massive volumes of data in order to train statistical models

that may be applied to real-world issues. Through the use

of learning algorithms and a data collection known as a

training set, machines may acquire new skills without

being specifically programmed to do so. Learn with

supervision, with little supervision, without supervision, or

with reinforcement [10, 11].

In the case of supervised learning, the dataset is made up

of samples that have been labeled. An algorithm for

supervised learning produces a model when it is provided

with a dataset. This model takes in a feature vector and

produces the label that corresponds to that vector. In

supervised learning, the goal is to predict an output given

an input. Unsupervised learning uses unlabeled samples.

For this form of learning, training set labels are not

necessary.

Teaching a model to reconstruct a feature vector or a real-

world value from a given one is the ultimate objective of

unsupervised learning. In unsupervised learning, the

training set is not used until it has been labeled. The

dataset used for semi-supervised training contains

instances that have been tagged as well as those that have

not been labeled. The vast majority of occurrences do not

have names.

Although a supervised learning algorithm and a semi-

supervised learning algorithm ultimately strive for the

same thing, supervised learning algorithms have more

direct human oversight, it differs in that it can potentially

produce a more accurate model by making use of a large

number of unlabeled cases. One branch of artificial

intelligence is known as reinforcement learning. Feature

vectors are used for training robots to operate in their

intended surroundings. Your machine's ability to carry out

your commands is not dependent on its current state.

Your efforts will be rewarded, and the robot will travel

around the planet. Calculates the best course of action to

maximize ROI in any given scenario. In time, a

reinforcement learning algorithm may be trained to choose

the best action, given a state and a property of that state.

An ideal move is one that maximizes the mean average

return [10, 11]. The labels in problems of classification in

machine learning are limited. When the labels to be

predicted are continuous in nature, the corresponding

machine learning assignment is known as a regression

problem [11].

Data analysis is the primary emphasis of Deep Learning

(or DL for short), a branch of machine learning. It is a

group of algorithms predicated on a deep ANN whose

architecture mimics that of the human brain's biological

neural network. [12] To draw inferences, deep learning

models assess data in a way that is conceptually similar to

human reasoning. Computer vision, NLP, voice

recognition, visual object identification, bioinformatics,

and medicine are just some of the many areas where DL is

now being put to use. However, its use is restricted in the

data network sector for a variety of reasons [9], including a

lack of data, transparency, and computational resources.

Keep in mind that DL models have an insatiable appetite

for data. They require access to a staggering amount of

information in order to learn. Example: Due to the nano-

restricted network's processing capabilities, it is difficult to

implement Tesla's self-driving software on a nano-network

since the program requires millions of pictures and video

hours in order to operate effectively.

In addition, there is a broad variety of issues with how DL

models are seen and understood. Their black box-like

design makes it hard to grasp how they function [9],

despite the fact that they are able to select features from

input data and provide accurate predictions of output. The

appropriate characteristics are chosen based on the

provided data. Many computing resources are needed for

deep learning. Training a deep learning network may now

only take a few hours instead of a few weeks thanks to

cloud computing and high-performance GPUs. However,

the GPU is not optimal for implementing nano-networks,

despite its higher training computation speeds [9].

Learn More About the Algorithms That Drive Machine

Learning

Machine learning can solve practically every data

challenge. There are benefits and cons to every algorithm.

In the process of analyzing the traffic at the micro/nano

gateway associated with electromagnetic nano-networks,

which kind of machine learning model is going to be the

most effective choice? In the following article, we'll

investigate the most popular and often discussed

techniques for analyzing and categorizing information

gathered from wireless networks. The decision tree

classifier, support vector machines, k-nearest neighbors,

random forests, and neural networks are all examples of

machine learning algorithms. It's possible that optimizing a

learning algorithm's hyper-parameter settings is all that's

needed to make the algorithm more effective.

First, a Decision Tree

Decision trees are choice-making acyclic networks. Inner

nodes correspond to input vector attributes, while leaves

indicate the final result. The left branch is followed if a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 37

characteristic value falls below a threshold. The terminal of

the leaf node initializes the class of the example.

Classification trees are widely used because they're easy to

implement and can be modified for rule-based systems.

They may also be drawn. Top-down greedy algorithm

trains the model. This technique separates nodes

frequently, and its optimization criteria is typically

information obtained. Many DTC usage include

categorization. It works for continuous and categorical

dependent variables [12].

Seond Support Vector Machine-based Systems (SVM)

Separate-Variable Models (SVMs) are a kind of binary

classifier that does not use probabilities. Their strategy

entails representing each feature vector in a

multidimensional space and looking for a linear separation

between classes. Their systems cause this. There are cases

when linear space partitioning is not only impractical, but

also unable to give a workable solution. Therefore, the

dimension of the space is increased using the kernel

method [11], [12] to facilitate a separation that is much

easier in a space with a substantially greater number of

dimensions.

Third, K-Nearest Neighbors (K-NN)

Classification and regression may both benefit from the

non-parametric K-NN technique. The K-closest training

instances in the feature space will be the output in either

scenario. When using K-NN to categorize data, a class

membership is the result. An object is assigned to the

category in which it is most popular among its K nearest

neighbors, as decided by the votes of its neighbors [11].

In this paper, we present three new techniques that inject

UAP into network traffic. By injecting a UAP into the

packet content, the AdvPad attack may assess how well

packet classifiers can handle unexpected data. The AdvPay

attack modifies a faked packet by inserting a UAP into the

packet's payload in order to gauge the efficacy of flow

content classifiers.

The AdvBurst attack is used to test the robustness of flow

time series classifiers by including a predetermined

number of spoofed packets in the intended burst of a flow.

These bogus packets have been crafted using statistical

characteristics that were taken from an actual UAP. When

even a little amount of UAP was introduced to the traffic,

the overall performance of DL-based network traffic

classifiers dropped dramatically, as shown by the findings

[13].

The author of this piece examines and evaluates a number

of well-known techniques for machine learning, any of

which may be put to use in conjunction with information

obtained from the network activity of Internet of Things

(IoT) devices. We make use of a data collection that is

available to the public and contains network traces

spanning 20 days from 20 well-known Internet of Things

devices. In order to extract useful features, first the

network traces are evaluated.

In the next step, We conducted an analysis of recent survey

papers to determine the most innovative machine learning

approaches for the classification of Internet of Things

traffic. In the next step, we compared several machine

learning algorithms' results across a range of metrics, such

as their classifying prowess, training duration, and overall

processing speed. Finally, based on the data we gathered,

we provided some guidelines for selecting the best

machine learning algorithm for various applications [14].

In the last stage of the process, the hybrid suggested model

is put into action by making use of the machine learning

strategy known as Random Forest (RF) to choose relevant

characteristics from the merged dataset (which includes

V2V and V2R communications). The Gated Recurrent

Unit (GRU) approach is used to forecast the flow of

network traffic; it is the deep learning algorithm that has

been shown to be the most accurate. The results of the

simulations reveal that the proposed RF-GRU-NTP model

beats the most advanced algorithms currently available for

network traffic prediction [15] in terms of runtime and the

number of inaccurate predictions.

Micro- and nano-gateway traffic from nano-networks will

be categorized. The nano-network traffic will be evaluated

and classified using five supervised machine learning

methods. This study seeks to find the best classifier for

nano-network traffic by testing suggested models,

evaluating them, and comparing their accuracy and

performance to other classifiers [16].

In SSDDQN's current network, an autoencoder

reconstructs traffic characteristics and a deep neural

network classifies. The present network handles both of

these tasks. K-means clustering and deep neural network

prediction are used in the target network. Training and

testing use the NSL-KDD and AWID datasets.

Additionally, a full comparison of different machine

learning models is offered. Experiments show that

SSDDQN is beneficial in terms of time complexity and

yielded good results across a range of evaluation measures

[17].

A detailed overview of the procedure for acquiring the

data, which includes its preparation and anonymization, is

presented here. To display the data on network traffic, we

make use of t-distributed stochastic neighbor embedding

(t-SNE). This makes it much easier to understand the

dynamics of traffic and the communication channels [18].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 38

The diagram in footnote 18 illustrates a high-level pipeline

architecture and flow-based routing applications.

Our results show that even with massive imbalanced

datasets, our technique is able to categorize network

traffics accurately and quickly. Our research leads us to

believe that it might help modern NIDS systems based on

machine learning deal with the serious issue of imbalanced

datasets. [19].

3. Proposed Method

3.1 Reinforcement Learning

In order to address problems that can't be handled by either

machine learning or traditional learning alone, artificial

intelligence researchers have developed a technique called

reinforcement learning. To deal with unpredictable and

ever-changing environments, reinforcement learning may

be used (RL). The approach is based on the tactical utility

function and is sequential and multi-step. The intended

result of this strategy is maximum effectiveness. The actor

network in an actor-critic architecture is the part

responsible for acting on the basis of the system's

interactions with its external environment and the states it

is in at any given time. One possible approach to

implementing real-time thinking is this (RL). The strategic

utility function is built by the critic network and relies on

the effectiveness of the actor network. Next, the critic

network use this function to fine-tune itself and improve

estimate precision [20].

Reinforcement learning has matured into a very

sophisticated learning framework in comparison to the

numerous models of machine learning that are now in use.

During play, players craft a policy by combining various

actions and incentives. Having this policy in place

guarantees that the necessary educational traits are met.

More and more scientists from many different technology

fields have used it in the last decade. Resource

management, intelligent systems, optimization problems,

and image processing are all examples [21]. It is possible

that difficult tasks requiring sequential decision-making

might be simplified and made easier to solve by combining

deep learning with reinforcement learning. This approach

takes on one of the central problems in AI head-on: the

development of self-sufficient creatures that learn to

interact with their surroundings.

It is important to us to make decisions that will have

lasting, far-reaching effects. With RL, the agents are the

primary focus of the optimization. But unlike humans, RL

agents can frequently learn how to do things well from

scratch. This is one of the main reasons why there is a huge

gap between how RL bots utilize data and how people do.

This illustrates that agents can tackle a wider range of

problems if given the means to make use of the knowledge

they currently possess. Employing it to manage load

balancing issues in distributed SDN controllers has been

found to be beneficial in recent study [22].

Agents, states, and incentives all play a role in RL learning

from its dynamic environment. To modify its state, the

agent acts in response to input it receives through a critical

evaluation of its surroundings; this feedback is the reward

[23]. The agent's state is a representation of the

environment's current state. The policy function for a state

space S defines the conditional distribution of an action,

indicated by a, in a Markov Decision Process (MDP).

(),s a 
 and the respective next state transition

dynamics
(),s a 

. The task function is defined

as
()p 

 where every task comprises of the initial state

distribution 0()p s
, transition distribution and the reward

function. The policy evaluation is performed through the

reward function :r S A → where S and A represent

the state space and action respectively. The objective of

reinforcement learning is to derive a policy which

maximizes the expected return

() ()
0 0

,

0, :
s p

V s  


  =   

where
(),

0

TV s

is the

value function for a policy  at a state s over the transition

dynamics , such that

(),

0
, ,

0

: (,) |
t t

t

t t
a s

t

V s r s a s s







 
=

 
  =  =  

 


. Here

 0,1 
is the discount function to add flexibility

3.2. Proposed working flow

The model for network traffic is the topic of this section.

Part of this model is a method with discrete operations, as

in Figure 1. A step-by-step procedure for network traffic

using machine learning is outlined here.

Fig 1. Proposed working flow

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 39

A. The Capture of Network Traffic

The first step, which is also the most crucial, is to gather

data. During this part of the process, real-time recordings

of the network traffic are being made. The same activity

may also be referred to by the phrase "data collection."

Even though there are a number of other tools available,

the Tcpdump application may still be used to capture live

information from the network. This is the case despite the

fact that there are other programs accessible. We monitor

and record activities on the network with the help of the

Wire Shark tool (IS), which does this by collecting and

examining data packets. During that one minute, traffic

from WWW, DNS, FTP, P2P, and Telnet applications was

logged.

B. Feature Extraction

After collecting information on network traffic, the next

step is to choose and extract features from the data. This

process involves the extraction of characteristics such as

packet length, inter-arrival time protocol, and so on. After

the characteristics have been extracted, a machine learning

classifier may be trained using them. It is feasible to

extract features from a recorded dataset by using a script

written in the programming language Perl. On the other

hand, the 23 characteristics are extracted using the Netmate

program. For the purpose of storing the dataset required by

the Weka analysis tool, Comma Separated Values (CSV)

files created in Microsoft Excel are used.

C. Taking Samples During the Training Process

The supervised learning method draws examples for its

practice from both of these data sets. During the initial step

of the supervised learning process, data are tagged in order

to network applications that have not yet been classified.

D. The RL Algorithm Is Put Into Implementation

RL algorithms have the capability of learning how to

swiftly complete a new job by making use of the

information gained from past attempts. In this approach,

examples from previously completed activities are utilized

to assist in the learning of new ones. For meta-

reinforcement learning approach, the family of tasks ()

is defined through the MDP which have been

parameterized as
() 0, , , , (),S A r p s







 and

produces distinct reward functions while maintaining the

same transfer dynamics. The value function on a task with

policy , dynamics  and reward
r is denoted as

,V 





.

Also, the respective expected return function is denoted

by
()  ,

0, , ()TT E V s

   =
.

The meta-training method utilizes the history of past

transition dynamics or context  , which is referred to as

c, in order to learn a policy from the specific task that is

being considered and adapt to it accordingly. The sum total

of the knowledge gained throughout the training period

may be symbolically represented as: 1:n Nc= where nc
is

one transition in a task. It is expected that the policy will

be able to adapt to the new task selected from the family of

tasks based on information gleaned from context variables

during the testing phase. These parameters are sampled and

recorded frequently during the whole event to increase the

depth of the investigation. Priors of the trajectory over the

context variables are created and used in the fast adaptation

at the trajectory level [21]. The actor network in the RL

paradigm is in charge of enacting action, while the critic

network is in charge of evaluating the effectiveness of that

action and deciding whether or not to reward it. The policy

framework is derived from this structure via the

application of several tuning rules.

3.3 Inverse Monte Carlo Learning

Learning about MDP transitions is not necessary thanks to

the Monte Carlo method of reinforcement learning.

Instead, it's via specific experiences that growth occurs. In

this instance, the rate of return or reward is decided by

chance.

Note that it is restricted to episodic MDPs, which is a

significant caveat. It's fair to ask why now that things have

gotten to this point. This is because we can't calculate

profits until the show is over. In this section, we do not

update for each and every single action or behavior; rather,

we do it after each and every episode. We are able to

determine the value by using the most basic concept

imaginable, which states that the value is equivalent to the

typical return of all of the sample trajectories for each

condition.

It is essential to bear in mind the concept of multi-armed

bandits that was presented in this article; each state

represents a unique instance of the issue of multi-armed

bandits, and the goal is to conduct actions that are optimum

for all of the multi-armed bandits at the same time.

The value function for a particular random policy may be

determined in a process called policy assessment, and the

optimal policy can be determined in a process called policy

improvement. These two procedures are quite similar to

what's done in dynamic programming. Both of these

phases will be discussed at length in the following two

sections.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 40

 3.4 Monte Carlo Policy Evaluation

Again, the goal is to learn the value function vpi(s) by

repeated practice under the constraints of some policy pi

[24]. Please keep in mind that the return is calculated by

subtracting the discount from the total award:

S1, A1, R2, ….Sk ~ pi

The issue that has to be answered is how these sample

returns may be obtained. In order to do this, we will need

to go through a number of episodes in order to produce

them [25].

A progression of states and prizes will be available to us

for each episode that we play. In addition, using these

rewards, we are able to compute the return, which, by

definition, is just the accumulation of all future rewards.

Only for the very first time that Monte Carlo is visited

during an episode do average returns apply.

The following is an explanation of the method in step-by-

step format:

1.Perform the initialization of the policy and the state-

value function.

2.To begin, an episode should be created in accordance

with the existing guidelines.

 1. Maintain a record of the states that were visited

during the episode.

3.Choose a state in section 2.1.

1. Include in a list the result that was obtained

following the occurrence of this state for the first

time.

2. Average over all returns

3. The value of the state should be set to the calculated

average of those values.

4.Repeat step 3

5.Repeat 2-4 until satisfied

Every time you go to Monte Carlo: These are the average

returns for each time you go there throughout an episode.

Altering the wording of this method's step #3.1 so that it

reads "Add to a list the return received after every

occurrence of this condition" is all that is needed to get the

outcomes that are wanted.

In order to have a better grasp on this idea, let's look at a

straightforward illustration. Imagine there is a setting in

which we have access to two different states: A and B.

Let's imagine that we watched two different episodes as a

sample:

A+3 -> A+2 -> B-4 -> A+4 -> B-3 -> Terminate

B-2 -> A+3 -> B-3 -> Terminate

The transition from state A to state A, with a reward of +3,

is denoted by the expression "A+3 => A." Let's figure out

the value function by combining the two approaches:

First Visit Evert visit

V(A) = ½(2+0)=1

V(B) = ½ (-3+-2) = -

5/2

V(A) =1/4(2+-1+1+0)=1/2

V(B) = ¼(-3 + -3 + -2 + -3) =

-11/4

 3.5 Proposed working algorithm for IDS

1. Environment Setup: Define the network environment

where the IDS will operate. This includes setting up

network traffic data for training and testing, and

defining the state space that represents different

network scenarios.

2. Choosing a Reinforcement Learning Model: Select an

appropriate RL algorithm Deep Q-Networks suitable

for the IDS's objectives.

3. Defining Rewards and Penalties: Establish a reward

system to reinforce desirable actions (correctly

identifying threats) and penalties for undesirable

actions (false positives/negatives).

4. Feature Extraction: Process the network traffic data to

extract relevant features that the RL model can

understand and use for decision-making.

5. Training the Model: Train the RL model using the

network traffic data, allowing it to learn from

interactions with the environment and improve its

decision-making process over time.

6. Policy Development: Develop a policy for the model to

decide what action to take in different states (e.g.,

raising an alert for potential threats).

3.6 Proposed Deep Q-Networks algorithm for IDS

1. Preprocessing: Collect and preprocess network traffic

data. Normalize or standardize the features for effective

learning.

2. Defining the Environment: Define the state space

(network scenarios), action space (alerts, no action),

and reward system (positive for correct detections,

negative for false alarms).

3. Initialize Deep Q-Network: Initialize a neural network

with input layers (matching the number of features in

your data), hidden layers, and output layers

(representing possible actions).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 41

4. Set Hyperparameters: Set hyperparameters like

learning rate, discount factor, and exploration rate.

5. Experience Replay Memory: Initialize a replay memory

to store experiences (state, action, reward, next state).

6. Training Loop:

• Collect Data: For each episode, collect state

information from the network environment.

• Select Action: Use the network to select an action

based on the current state (employ exploration vs.

exploitation strategy).

• Execute Action & Observe Reward: Perform the

selected action and observe the reward and new

state.

• Store Experience: Store this experience in the

replay memory.

• Sample Mini-batch: Randomly sample a mini-batch

of experiences from the memory.

• Compute Q-Value: Use the network to compute the

Q-value for each mini-batch experience.

• Update Network: Update the neural network

weights using backpropagation to minimize the loss

between predicted Q-values and target Q-values.

7. Model Evaluation: Regularly evaluate the model on a

separate validation dataset to monitor its performance.

3.7 Advantages of proposed method

1. Efficient Learning from High-Dimensional Sensory

Inputs: DQNs are particularly adept at processing and

learning from high-dimensional data, a common

characteristic of network traffic.

2. Stability and Convergence: The use of experience

replay in DQNs helps in stabilizing the learning process

and ensures convergence, which can be an issue in

traditional reinforcement learning methods.

3. Handling Large Action Spaces: DQNs are effective in

environments with large action spaces, making them

suitable for complex IDS scenarios where numerous

potential actions and responses are possible.

4. Integration of Deep Learning Advantages: By

combining Q-learning with deep learning, DQNs

leverage the pattern recognition capabilities of neural

networks, enhancing the ability to detect sophisticated

and novel intrusion patterns.

5. Overcoming Limitations of Traditional RL: Traditional

reinforcement learning methods can struggle with

correlated data and non-stationary distributions, issues

that DQNs can handle more effectively.

4. Implementation and Result

4.1. Performance Metrics

It might be difficult to determine a model's quality without

monitoring its progress as it is trained and tested. The

identification of an error category, the extent to which the

model is in agreement with the data, or some other relevant

measure is commonly used to do this. Using a

categorization strategy, we can make predictions about one

of four possible outcomes. The performance metrics are

controlled by a matrix constructed from these data; this

matrix is termed the confusion matrix. Using this matrix,

the efficacy of a classifier may be assessed.

Components off the diagonal represent data points for

which the classifier made an incorrect label prediction,

whereas diagonal elements represent the proportion of

points for which the predicted and actual labels were

identical. Having a big number of right guesses is an

indication of a high confusion matrix diagonal value.

While testing for network traffic prediction, accuracy is

determined by how close network traffic samples are to

one another. The precision with which one can identify

network traffic is proportional to the closeness of a given

number. Exponent 1 represents the accuracy of the data on

network traffic.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

When a TP indicates a true positive and a TN indicates a

true negative, an FP indicates a false positive and a FN

indicates a false negative.

4.2 Dataset Details

Magnetic nano-network communication and its protocol

stack may be simulated using NS2, also known as

Simulator. The simulations in Simulator are based on

events. The packet size is determined by the user, and the

simulator's message processing unit generates random

packets at regular intervals. Networking abstraction layer

allows the inclusion of Fig. 2. Minimal Header Format for

Network Messages [27]. Through transparent-MAC [27],

packets are transmitted from the network layer to the

physical interface of the nano-router with a network header

that is not reliant on the routing approach and a MAC layer

that follows a strategy over which it has no control.

Fig 2. Template for the header of nano-network messages

[27].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 42

Table 2. Micro- and nano-gateway traffic categorization

and forecasting input characteristics [33].

Field Feature description

flag_id Flag identification

ttl Time to live

Source_dev_id Source nano-device

identification

Sender_dev_id Sender nano_device

identification

Next_hop_dev_id Next hop nano-device

identification

Packet_id Packet identification

Source_IP Source IP address

Destination_IP Destination IP address

Transport_protocol IP transport protocol

number

Source_port Source port number

Destination_port Destination port number

Payload Message

Payload_size Message size

Header_size Header size

Packet_size Packet size

Source_mac Source MAC address

Destination_mac Destination MAC address

Table 3. Labels that are outputted for the purpose of

micro- and nano-gateway traffic categorization and

prediction.

4.3 Decision Tree

Figure 3 depicts the variation in the learning curves of the

unoptimized model when the training set and cross-

validation set sizes are varied. This is the fruit of using

accessible data to train a decision tree classifier.

Overfitting is evident at 50 training points, when the model

achieves perfect accuracy on both the training and testing

data.

Fig 3 : Learning curves that are typical for the DTC model,

which has not yet been optimize.

Fig 4 : The DTC model's learning curves, which have been

optimized.

The enhanced learning curves are shown in Figure 4.

When the number of training samples is equal to 110, the

training score and cross-validation score are nearly

identical. The DTC model will experience overfitting as

the number of training points increases.

Fig 5 : Normalized confusion matrix for optimized DTC

model.

Figure 5 shows DTC's normalized confusion matrix. This

displays how successfully the model categorizes TCP,

UDP, and NN1 packets. Since it expects all NN0 packets

to be NN1, it doesn't detect any. The model can

discriminate between conventional and nano-network

traffic, but not nano domain packets.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 43

4.4 Support Vector Machines

Figure 6 is a representation of the unoptimized model's

learning curves that was created by fitting the support

vector machine model. The training score and the cross-

validation score both rise as more training points are

accumulated, eventually reaching their respective

maximums of (85%) and (90%) when a total of

approximately 150 training points have been earned. The

SVM model will become more susceptible to overfitting as

the amount of training data continues to grow.

Fig 6 : Typical learning curves for an unoptimized support

vector machine model.

Fig 7: Optimal SVM model learning curves.

The improved model's learning curves are shown in Figure

7, which may be found here. Both the training score and

the cross-validation score go up when the number of

training points goes up, but the training score goes down,

while the cross-validation score goes up. These two scores

do not overlap for any of the training samples.

Fig 8 : For an improved SVM model, the normalized

confusion matrix.

Figure 8 depicts the enhanced support vector machine's

normalized confusion matrix. These results demonstrate

that the model correctly detects TCP and UDP packets.

Only 24% of NN0 packets can be expected effectively,

whereas 82% of NN1 packets can. The model

differentiates effectively between big and small network

traffic, however it predicts erroneously for nano-domain

packet transmission. Predictions from the model indicate

that 76% of all NN0 packets will be NN1 ones.

4.5 KNN model

Fig 9: Curves of learning for an unoptimized KNN model

The model's learning curves before and after being fitted to

the K-nearest neighbors model are shown in Figure 9. It

demonstrates that, without converging, training and cross-

validation scores climb together as training points increase.

Fig 10: Curves of learning for the best KNN model.

Figure 10 depicts the improved KNN model's learning

curves. This model avoids overfitting and underfitting for

all training points, and it has an accuracy rate of 91.11%

overall.

Fig 11 : The optimized KNN model features a normalized

confusion matrix.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 44

KNN confusion matrix with enhancements is shown in

Figure 11. TCP and UDP packets are separately modeled

in this framework. 97% of NN2 packets are accurately

anticipated, compared to 82% of NN1 and 35% of NN0.

The model can tell the difference between traffic on large

and small networks, but its estimates for packet traffic in

the nano-domain are off. Despite its preference for NN1

packets, the model outperforms its optimized SVM

counterpart. Only 35% of NN0 packets are predicted

properly by the KNN model; the rest are incorrectly

labeled as NN1.

4.6 The comparison of the proposed system

with existing systems

Table 4. Comparisons of various ML and DL precision

metrics with the proposed algorithm.

Algorithm used Accuracy (%)

KNN , RF 72.08 , 90.53

ANN 78.00

KNN 94

CNN 94

SVM 94.2

KNN, RF, NN, and NB 79.6,84.8,84.6,and 87.6

Proposed method 96.8

The table 4 provided data compares the accuracy of

various algorithms used in an Intrusion Detection System

(IDS). The accuracies are as follows: KNN and RF

(72.08%, 90.53%), ANN (78.00%), KNN (94%), CNN

(94%), SVM (94.2%), a combination of KNN, RF, NN,

and NB (79.6%, 84.8%, 84.6%, and 87.6% respectively),

and the proposed method (96.8%). This indicates that the

proposed method outperforms the others in terms of

accuracy.

5. Conclusion

Intrusion Detection System (IDS) significantly

outperforms other methods in terms of accuracy. With an

accuracy of 96.8%, it surpasses traditional approaches like

KNN, RF, ANN, CNN, and SVM, which show varied

accuracies with the highest being 94.2% for SVM. The

data also highlights the effectiveness of combining

multiple methods (KNN, RF, NN, and NB) but still shows

that the proposed method holds a clear advantage in

accurately detecting intrusions. This indicates a strong

potential for the proposed method to be more effective in

real-world applications of IDS.

Author contributions

Ankit Chakrawarti: Conceptualization, Methodology,

Software, Field study, Data curation, Writing-Original

draft preparation, Software, Validation., Field study. Dr.

Shiv Shakti Shrivastava: Visualization, Investigation,

Writing-Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Sharon A, Mohanraj P, Abraham TE, Sundan B,

Thangasamy A. An intelligent intrusion detection

system using hybrid deep learning approaches in cloud

environment. InInternational Conference on Computer,

Communication, and Signal Processing 2022 Feb 24

(pp. 281-298). Cham: Springer International Publishing.

[2] Friha O, Ferrag MA, Benbouzid M, Berghout T,

Kantarci B, Choo KK. 2DF-IDS: Decentralized and

differentially private federated learning-based intrusion

detection system for industrial IoT. Computers &

Security. 2023 Apr 1;127:103097.

[3] Sultana N, Chilamkurti N, Peng W, Alhadad R. Survey

on SDN based network intrusion detection system using

machine learning approaches. Peer-to-Peer Networking

and Applications. 2019 Mar;12:493-501.

[4] Rao KN, Rao KV, PVGD PR. A hybrid intrusion

detection system based on sparse autoencoder and deep

neural network. Computer Communications. 2021 Dec

1;180:77-88.

[5] Amir MS, Bhatti G, Anwer M, Iftikhar Y. Efficient &

Sustainable Intrusion Detection System Using Machine

Learning & Deep Learning for IoT. In2023 4th

International Conference on Computing, Mathematics

and Engineering Technologies (iCoMET) 2023 Mar 17

(pp. 1-6). IEEE.

[6] Elsayed R, Hamada R, Hammoudeh M, Abdalla M,

Elsaid SA. A Hierarchical Deep Learning-Based

Intrusion Detection Architecture for Clustered Internet

of Things. Journal of Sensor and Actuator Networks.

2022 Dec 28;12(1):3.

[7] Rullo A, Midi D, Mudjerikar A, Bertino E. Kalis2. 0-a

SECaaS-Based Context-Aware Self-Adaptive Intrusion

Detection System for the IoT. IEEE Internet of Things

Journal. 2023 Nov 20.

[8] Balamurugan E, Mehbodniya A, Kariri E, Yadav K,

Kumar A, Haq MA. Network optimization using

defender system in cloud computing security based

intrusion detection system withgame theory deep neural

network (IDSGT-DNN). Pattern Recognition Letters.

2022 Apr 1;156:142-51.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 34–45 | 45

[9] Seifi S, Beaubrun R, Bellaiche M, Halabi T. A Study on

the Efficiency of Intrusion Detection Systems in IoT

Networks. In2023 International Conference on

Computer, Information and Telecommunication

Systems (CITS) 2023 Jul 10 (pp. 1-8). IEEE.

[10] Iwendi C, Srivastava G, Khan S, Maddikunta PK.

Cyberbullying detection solutions based on deep

learning architectures. Multimedia Systems. 2023

Jun;29(3):1839-52.

[11] Sethi M, Verma J, Snehi M, Baggan V, Chhabra G.

Web Server Security Solution for Detecting Cross-site

Scripting Attacks in Real-time Using Deep Learning.

In2023 International Conference on Artificial

Intelligence and Applications (ICAIA) Alliance

Technology Conference (ATCON-1) 2023 Apr 21 (pp.

1-5). IEEE.

[12] Javeed D, Gao T, Jamil Z. Artificial Intelligence (AI)-

based Intrusion Detection System for IoT-enabled

Networks: A State-of-the-Art Survey. InProtecting User

Privacy in Web Search Utilization 2023 (pp. 269-289).

IGI Global.

[13] Raheema AQ. Threat Analysis in IOT Network Using

Evolutionary Sparse Convolute Network Intrusion

Detection System. International Journal of Online &

Biomedical Engineering. 2023 Mar 1;19(3).

[14] Isaza G, Ramirez F, Duque N, Lopez JA, Montes J.

DDoS Attacks Detection with Deep Learning Model

Using a Cloud Architecture. InSustainable Smart Cities

and Territories International Conference 2023 Jun 21

(pp. 87-96). Cham: Springer Nature Switzerland.

[15] Flak P, Czyba R. RF Drone Detection System Based on

a Distributed Sensor Grid With Remote Hardware-

Accelerated Signal Processing. IEEE Access. 2023 Dec

5.

[16] Satheesh N, Rathnamma MV, Rajeshkumar G, Sagar

PV, Dadheech P, Dogiwal SR, Velayutham P, Sengan S.

Flow-based anomaly intrusion detection using machine

learning model with software defined networking for

OpenFlow network. Microprocessors and Microsystems.

2020 Nov 1;79:103285.

[17] Hamidouche M, Popko E, Ouni B. Enhancing IoT

Security via Automatic Network Traffic Analysis: The

Transition from Machine Learning to Deep Learning.

arXiv preprint arXiv:2312.00034. 2023 Nov 20.

[18] C. Hardegen, B. Pfülb, S. Rieger and A. Gepperth,

"Predicting Network Flow Characteristics Using Deep

Learning and Real-World Network Traffic," in IEEE

Transactions on Network and Service Management, vol.

17, no. 4, pp. 2662-2676, Dec. 2020, doi:

10.1109/TNSM.2020.3025131.

[19] Y. Uhm and W. Pak, "Service-Aware Two-Level

Partitioning for Machine Learning-Based Network

Intrusion Detection With High Performance and High

Scalability," in IEEE Access, vol. 9, pp. 6608-6622,

2021, doi: 10.1109/ACCESS.2020.3048900.

[20] S. Mo, X. Pei and C. Wu, "Safe Reinforcement

Learning for Autonomous Vehicle Using Monte Carlo

Tree Search," in IEEE Transactions on Intelligent

Transportation Systems, vol. 23, no. 7, pp. 6766-6773,

July 2022, doi: 10.1109/TITS.2021.3061627.

[21] X. Mo, S. Tan, B. Li and J. Huang, "MCTSteg: A

Monte Carlo Tree Search-Based Reinforcement

Learning Framework for Universal Non-Additive

Steganography," in IEEE Transactions on Information

Forensics and Security, vol. 16, pp. 4306-4320, 2021,

doi: 10.1109/TIFS.2021.3104140.

[22] J. Lu, D. He and Z. Wang, "Secure Routing in Multihop

Ad-Hoc Networks With SRR-Based Reinforcement

Learning," in IEEE Wireless Communications Letters,

vol. 11, no. 2, pp. 362-366, Feb. 2022, doi:

10.1109/LWC.2021.3128582.

[23] P. Ladosz et al., "Deep Reinforcement Learning With

Modulated Hebbian Plus Q-Network Architecture," in

IEEE Transactions on Neural Networks and Learning

Systems, vol. 33, no. 5, pp. 2045-2056, May 2022, doi:

10.1109/TNNLS.2021.3110281.

[24] P. Xu et al., "Active Power Correction Strategies Based

on Deep Reinforcement Learning—Part I: A

Simulation-driven Solution for Robustness," in CSEE

Journal of Power and Energy Systems, vol. 8, no. 4, pp.

1122-1133, July 2022, doi:

10.17775/CSEEJPES.2020.07090.

[25] H. Shuai and H. He, "Online Scheduling of a

Residential Microgrid via Monte-Carlo Tree Search and

a Learned Model," in IEEE Transactions on Smart Grid,

vol. 12, no. 2, pp. 1073-1087, March 2021, doi:

10.1109/TSG.2020.3035127.

[26] J. Kim, B. Kang and H. Cho, "SpecMCTS: Accelerating

Monte Carlo Tree Search Using Speculative Tree

Traversal," in IEEE Access, vol. 9, pp. 142195-142205,

2021, doi: 10.1109/ACCESS.2021.3120384.

[27] G. Piro, L. A. Grieco, G. Boggia, and P. Camarda,

‘‘Nano-sim: Simulating electromagnetic-based

nanonetworks in the network simulator 3,’’ in Proc. 6th

Int. Conf. Simulation Tools Techn., Jul. 2013, pp. 203–

210.

