

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 60

OE-MDL: Optimized Ensemble Machine and Deep Learning for Fake

News Detection

Mr. Raut Rahul Ganpat *1, Dr. Sonawane Vijay Ramnath 2

Submitted: 19/11/2023 Revised: 29/12/2023 Accepted: 09/01/2024

Abstract: The escalating spread of fake news in the modern digital landscape has sparked significant concerns over the reliability and

integrity of online content. Identifying and mitigating fake news is critical for protecting individuals, organizations, and broader society

from the adverse effects of misinformation. However, conventional fake news detection methods, such as rule-based systems, supervised

machine learning, and natural language processing (NLP) techniques, are impeded by notable drawbacks. Rule-based strategies are rigid

and inflexible, supervised learning models often fail to generalize beyond their training data, and NLP methods struggle to fully

understand the subtleties and context of language. In response to these challenges, this study presents the Optimized Ensemble Machine

and Deep Learning (OE-MDL) algorithm, a sophisticated approach designed to efficiently and accurately detect fake news. The OE-

MDL algorithm enhances detection capabilities by incorporating a series of preprocessing steps: converting text to lowercase,

tokenization, eliminating stop words, applying word stemming and lemmatization, and conducting spell-checks. It also involves

generating n-grams and calculating term frequency-inverse document frequency (TF-IDF) scores, capturing a wide spectrum of linguistic

and statistical features that help distinguish between genuine and fraudulent news. The OE-MDL framework enhances classification

precision and robustness by integrating optimized machine learning (OML) and optimized deep learning (ODL) phases. In the OML

phase, advanced classifiers, including optimized RandomForest, J48, SMO, LSTM, NaiveBayes, and IBk, are amalgamated with an

optimized Multilayer Perceptron serving as the Meta classifier. This amalgamation forms the foundation for a bagging classifier, which is

then utilized within an AdaBoostM1 boosting classifier. Similarly, the ODL phase employs a Dl4jMlpClassifier as a basis for another

bagging and AdaBoostM1 boosting sequence. The OML and ODL classifiers are then synergized through a blending classifier using

weighted voting to accurately categorize the training data. The well-trained blending classifier is subsequently deployed to determine the

authenticity of news articles in the test dataset. Empirical results underscore the superior performance of the OE-MDL algorithm,

achieving unprecedented accuracy (99.87%), precision (99.88%), recall (95.87%), and F1-Score (99.96%). This performance indicates

that the OE-MDL algorithm is an exceptionally effective tool in the ongoing battle against the proliferation of fake news, providing a

robust and reliable means of upholding the integrity of information in the digital age.

Keywords: Fack news, RandomForest, J48, SMO, NaiveBayes, OE-MDL, Ibk, LSTM .

1. Introduction

During the current age of digital technology, the

widespread dissemination of false news has emerged as a

major cause for worry, since it undermines the authenticity

and reliability of information that is found online [1, 20].

The term "fake news" refers to material that has been

purposefully created or that is deceptive and is presented as

true news. There is a vast variety of misleading

information that falls under this category. Some examples

of this include propaganda, hoaxes, rumours, fake tales,

and altered photographs or videos. In order to garner

attention and spread false information, fake news often

makes use of sensationalism, clickbait headlines, and

emotional appeals. Fake news has attained an unparalleled

reach and influence as a result of the proliferation of social

media and the ease with which information can be shared

online. This presents a huge threat to democratic processes

and public debate [18].

Consequently, the identification of fake news has become

an important effort in order to safeguard against the

possible repercussions that might result from the

dissemination of false information [19, 20]. As a result of

the potentially detrimental effects that false news may have

on both persons and society, there is a pressing need for an

efficient identification system for fake news. The

following are some of the most important major reasons

for the need of detecting false news:

Fake news damages the credibility of media organisations

and erodes public faith in credible sources of information.

This is an important consideration when it comes to

maintaining credibility. Identifying and combating fake

news is something that is absolutely necessary in order to

preserve the credibility of news organisations and to regain

trust in genuine journalism.

Fake news may lead to the transmission of inaccurate

information regarding important matters such as health,

1,2Department of Computer Science and Engineering
1 Research Scholar, Dr. A. P. J. Abdul Kalam University, Indore
2 Research Supervisor, Dr. A. P. J. Abdul Kalam University, Indore,

(M.P.), India.
 E-mail Id: 1 braut_rahul@yahoo.co.in, 2vijaysonawane11@gmail.com

* Corresponding Author: Mr.Raut Rahul Ganpat

 Email: braut_rahul@yahoo.co.in

mailto:braut_rahul@yahoo.co.in
mailto:vijaysonawane11@gmail.com
mailto:braut_rahul@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 61

politics, and public safety. One way to mitigate the spread

of misinformation is to take it into consideration. An

individual's ability to make choices based on accurate

information is facilitated by the detection and debunking of

false news, which helps reduce the negative effects of

disinformation.

Fake news has the capacity to manipulate public opinion,

influence elections, and disrupt democratic processes.

Protecting democratic processes is essential by preventing

these negative outcomes. A significant contribution to the

maintenance of democratic institutions' fairness and

openness is the accurate detection and abatement of false

news.

Various approaches have been employed to detect fake

news, including rule-based methods, supervised machine

learning, and natural language processing (NLP)

techniques. However, each approach has its limitations:

• Rule-Based Methods: Rule-based techniques rely on

predefined sets of rules or heuristics to identify fake

news. While they can be effective in detecting certain

patterns, they lack adaptability and struggle to keep pace

with the evolving nature of fake news [5].

• Supervised Machine Learning: Supervised machine

learning approaches utilize labeled datasets to train

classifiers that can distinguish between real and fake

news. However, they often struggle with generalization,

as fake news can exhibit diverse characteristics and

evolve rapidly over time [6].

• NLP Techniques: NLP techniques leverage linguistic

and semantic features to analyze the textual content of

news articles. However, they face challenges in capturing

the nuanced language, context, and subtle cues that

differentiate fake news from real news [7].

The limitations of existing fake news detection techniques

can impede their accuracy and reliability. Some key

disadvantages include:

• Limited Adaptability: Rule-based methods lack the

flexibility to adapt to new patterns and variations of fake

news, making them less effective against sophisticated

manipulation techniques.

• Generalization Challenges: Supervised machine

learning models often struggle to generalize well to

unseen or evolving types of fake news, leading to

reduced accuracy and robustness.

• Contextual and Nuanced Understanding: NLP

techniques face difficulties in capturing the complex

contextual information, nuanced language, and subtle

semantic cues necessary for accurate fake news

detection.

The study presents the Optimised Ensemble Machine and

Deep Learning (OE-MDL) algorithm as a solution to

address the shortcomings of current methods in detecting

false news. The OE-MDL algorithm seeks to mitigate the

drawbacks of current methods by providing many

enhancements:

• The OE-MDL algorithm utilises comprehensive

preprocessing techniques, including lowercase

conversion, tokenization, stop word elimination, word

stemming, lemmatization, and spell-checking. These

strategies improve the quality and consistency of the

textual material, hence enhancing the accuracy of future

analysis.

• The programme employs the production of n-grams and

the calculation of term frequency-inverse document

frequency (TF-IDF) scores to analyse linguistic and

statistical features. OE-MDL seeks to capture the subtle

indicators that distinguish false news from authentic

news by examining a wide variety of linguistic and

statistical characteristics. This methodology improves the

algorithm's capacity to identify nuanced patterns and

contextual hints in news stories.

• In the Optimised Machine Learning (OML) phase, the

OE-MDL algorithm employs a stacking technique to

combine base classifiers, including optimised

RandomForest, optimised J48, optimised SMO,

optimised NaiveBayes, and optimised IBk. The Meta

classifier used in this phase is an optimised Multilayer

Perceptron. This collection of classifiers serves as the

foundation for a bagging classifier, which then becomes

the classifier for an AdaBoostM1 boosting classifier.

Integrating several classifiers improves the accuracy and

resilience of the algorithm's classification.

• During the Optimised Deep Learning (ODL) phase, the

OE-MDL method used a Dl4jMlpClassifier as the

foundation for a bagging classifier. This bagging

classifier is subsequently used as the classifier for an

AdaBoostM1 boosting classifier. This phase of deep

learning use the capabilities of neural networks to

effectively capture the patterns and correlations present

in the data. The method leverages the complementing

qualities of the bagging and boosting approach together

with the deep learning technique, resulting in enhanced

overall performance.

• The OML and ODL classifiers are merged using a

blending classifier that use weighted voting to categorise

the training set. This methodology combines the

forecasts generated by many classifiers, guaranteeing a

more resilient and dependable decision-making

procedure.

This study report presents numerous significant advances

to the area of false news detection:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 62

• The Optimised Ensemble Machine and Deep Learning

(OE-MDL) method is introduced for the purpose of

detecting bogus news.

• Thorough preparation methods to enhance the quality

and uniformity of textual data.

• The incorporation of both linguistic and statistical

characteristics, such as n-grams and TF-IDF scores, to

accurately catch subtle signals.

• The integration of optimised machine learning (OML)

and optimised deep learning (ODL) stages to enhance

accuracy and resilience.

• Implementation of a blended classifier using weighted

voting to improve the decision-making process.

• The experimental findings clearly establish the

superiority of the OE-MDL algorithm compared to

current methodologies in terms of accuracy, precision,

recall, and f1-score.

The proposed OE-MDL algorithm aims to effectively

detect fake news to protect individuals, organizations, and

societies from the harmful effects of misinformation. The

algorithm's utilization extends to various domains and

applications, including but not limited to:

• Social media platforms: Identifying and mitigating the

spread of fake news on social media, where

misinformation can quickly reach a large audience.

• News organizations: Assisting news outlets in verifying

the authenticity of news articles and preventing the

inadvertent dissemination of fake news.

• Online content platforms: Supporting content

moderation efforts by automatically flagging or removing

fake news articles from online platforms.

• Fact-checking organizations: Enhancing the

capabilities of fact-checkers in identifying and debunking

fake news, facilitating their efforts to provide accurate

information to the public.

The subsequent sections of the paper are structured in the

following manner: Section 2 offers an elaborate

examination of relevant research and current methods for

detecting false news. Section 3 outlines the approach of the

proposed OE-MDL algorithm, including preprocessing

methods, linguistic and statistical aspects, as well as the

incorporation of machine learning and deep learning

stages. Section 4 provides a detailed description of the

experimental setup, which encompasses the dataset used,

the evaluation metrics employed, the obtained results, and

the performance assessment of the OE-MDL algorithm. It

also compares the OE-MDL algorithm with current

methodologies, analyses the findings, and discusses the

merits of the proposed algorithm. Section 5 serves as the

concluding section of the study, providing a concise

summary of the main discoveries and addressing potential

areas for future research in the realm of false news

identification.

2. Related works

Researchers and practitioners have recently focused on

detecting false news. This part presents a comprehensive

examination of previous research and established methods

for identifying false information, including findings from

many studies in the domain.

Mridha et al. [8] performed a thorough and perceptive

analysis on the identification of false information utilising

advanced machine learning techniques. Their study

included a comprehensive investigation of several deep

learning structures and methodologies used for the purpose

of identifying false news. Mridha et al. provide insights

into the capabilities and constraints of deep learning in

addressing the spread of disinformation via a

comprehensive analysis of several methodologies.

Thota et al. [9] introduced an innovative deep-learning

method explicitly tailored for identifying fabricated news.

Their approach centred on using neural networks to

scrutinise textual material and detect deceptive

information. Thota et al. sought to develop a powerful

system that could accurately identify and classify bogus

news items by using the capabilities of deep learning.

Their research emphasised the capacity of neural networks

to autonomously acquire significant characteristics and

patterns from textual material in order to differentiate

between trustworthy and falsified news.

Kong et al. [10] made a significant contribution to the area

by conducting an extensive investigation on the

identification of false news using deep learning models.

Their study mainly aimed to examine the efficacy of

various neural network topologies in discerning authentic

and fabricated news items. Kong et al. conducted a

thorough evaluation of multiple methodologies to

determine the efficiency of various deep learning

algorithms in detecting false news. Their study yielded

useful insights into the strengths and limits of these

strategies.

Konagala and Bano [11] used deep learning and semantic

similarity techniques to examine social media data for the

purpose of identifying bogus news. Their strategy used the

capabilities of deep learning models to capture semantic

connections and resemblances between news items and

user-generated material. Konagala and Bano sought to

improve the precision of identifying false information in

the ever-changing realm of social media by integrating

semantic data.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 63

In their study, Monti et al. [12] presented an innovative

method based on geometric deep-learning to identify false

information on social media sites. Their approach used the

inherent structural information in social networks to detect

misleading content. Monti et al. demonstrated the

effectiveness of geometric deep learning algorithms in

capturing the relational elements and network dynamics of

false news dissemination by using the graph representation

of the network.

Wani et al. [13] conducted a study to assess the

effectiveness of deep learning methods in identifying false

information pertaining to the COVID-19 pandemic. Their

study attempted to fulfil the pressing need for precise

identification of disinformation within this worldwide

health problem. Wani et al. conducted an analysis of

several deep learning models to get insights into how well

they function and how they might be used to stop the

spread of false news during the COVID-19 epidemic.

Jiang et al. [14] introduced an innovative stacking method

to achieve precise identification of bogus news. Their

approach included amalgamating many classifiers to

enhance the overall detection efficacy. Jiang et al. sought

to improve the resilience and dependability of false news

detection systems by using the unique capabilities of

various classifiers and their varied decision-making

approaches.

The authors Umer et al. [15] created a specialised deep

learning framework called CNN-LSTM to accurately

identify the position or attitude of false news. Their study

aimed to ascertain the position (supporting, opposing, or

neutral) of a specific news piece. Umer et al. sought to

properly determine the attitude of news items by using a

blend of convolutional neural networks (CNN) and long

short-term memory (LSTM) networks. This approach

enabled them to capture both the specific characteristics

and broader contextual information present in the text.

Lee et al. [16] examined the use of deep learning methods

in the identification of false information. Their research

investigated multiple deep-learning models and analysed

the influence of different input characteristics on the

accuracy of detection. Lee et al. conducted a thorough

analysis of several models and characteristics to get useful

insights into the design decisions and aspects that impact

the efficiency of deep learning methods in detecting false

news.

Bahad et al. [17] used a bi-directional LSTM-recurrent

neural network to detect false news. Their approach

centred on examining language patterns and contextual

information to accurately identify fraudulent material.

Bahad et al. used a bi-directional LSTM architecture to

capture the temporal dependencies and contextual

subtleties seen in news items. This allowed the model to

generate more precise predictions on the legitimacy of the

material.

Collectively, these research demonstrate the extensive

variety of deep learning methods used in the identification

of false news. The researchers investigate various neural

network structures, linguistic characteristics, and

contextual data in order to improve the precision and

efficiency of detection techniques. Although each

technique has its own advantages and disadvantages, the

combined efforts contribute to the progress of the subject

and provide significant insights for future study.

The purpose of this literature review is to provide a

thorough comprehension of the current methodologies and

their respective contributions in identifying fabricated

news. Expanding on past research investigations, the

technique provided in this study aims to overcome the

constraints and difficulties related to identifying false

news. This will eventually enhance the creation of stronger

and more dependable methods for detecting fake news.

3. Methodology

The OE-MDL algorithm is a specialised approach

developed for the purpose of identifying and detecting

false news. It leverages the advantages of both

conventional machine learning and deep learning

methodologies to enhance the precision of categorization.

The approach commences with a preprocessing step in

which the input dataset is transformed to lowercase,

tokenized, and eliminates stop words. The words are

further subjected to stemming and lemmatization, followed

by spell check and correction being performed to the

dataset.

During the feature extraction step, the preprocessed dataset

is used to produce n-grams, and the term frequency-inverse

document frequency (TF-IDF) is calculated for these n-

grams. This stage facilitates the extraction of pertinent

characteristics from the textual data. Subsequently, the

dataset is divided into several sets for training and testing

purposes. The TF-IDF dataset is partitioned appropriately,

and the resultant subsets are saved to files for further

analysis.

The optimized machine-learning phase involves using a

stacking classifier. Base classifiers such as Optimized

Random Forest, Optimized J48, Optimized SMO,

Optimized Naive Bayes, and Optimized IBk are combined

with an Optimized Multilayer Perceptron (meta classifier)

in the stacking classifier. These base classifiers are chosen

to create a diverse set of classifiers that capture different

aspects of the data and exploit different learning

algorithms. The Optimized MLP is used as the meta

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 64

classifier in the stacking classifier due to its ability to

capture complex nonlinear relationships in data and its

flexibility in handling various types of problems, including

classification tasks like fake news detection. By combining

the diverse predictions from the base classifiers with the

MLP meta classifier, the stacking classifier can effectively

leverage the complementary strengths of different

algorithms. The base classifiers may capture different

aspects of the data, and the MLP meta classifier can learn

to combine and weight their predictions appropriately,

leading to improved overall performance in fake news

detection. The stacked classifier is used as the base for a

bagging classifier, and this bagging classifier is then used

as the classifier for an AdaBoostM1 boosting classifier.

This approach offers several advantages:

• Ensemble diversity: The stacking classifier combines

the predictions of multiple base classifiers, which helps

in capturing diverse perspectives and learning

complementary patterns from the data. By using a

diverse set of base classifiers, the ensemble can

overcome biases and limitations that might be present in

individual classifiers. Bagging and boosting further

enhance ensemble diversity by introducing variations in

the training data and classifier weights, respectively.

• Reduction of overfitting: Bagging (Bootstrap

Aggregating) is a technique that creates multiple

bootstrap samples by resampling the training data, and

each sample is used to train a separate classifier. By

aggregating the predictions of these classifiers, bagging

reduces overfitting and increases the model's

generalization ability. This is achieved by incorporating

different subsets of the data in each classifier, leading to

reduced variance and improved stability.

• Focus on challenging instances: AdaBoostM1

(Adaptive Boosting) is a boosting algorithm that

iteratively assigns weights to training instances based on

their classification performance. It places higher weights

on misclassified instances, which allows subsequent

classifiers to focus more on challenging cases. By

adapting to the difficulty of each instance, AdaBoostM1

emphasizes the importance of accurately classifying

difficult instances, thereby improving the overall

performance of the ensemble.

• Improved overall performance: The combination of

bagging and boosting in this stacked classifier setup can

lead to improved overall performance in fake news

detection. Bagging reduces variance and overfitting,

while boosting focuses on challenging instances and

iteratively improves the ensemble's predictive accuracy.

By leveraging the strengths of both bagging and

boosting, the ensemble can achieve better generalization,

increased robustness, and higher classification accuracy.

In general, utilising a stacked classifier as the foundation

for a bagging classifier and then employing the bagging

classifier as the classifier for an AdaBoostM1 boosting

classifier provides benefits such as ensemble diversity,

mitigation of overfitting, focus on difficult instances, and

enhanced overall performance in identifying fake news.

During the optimised deep learning phase, a bagging

classifier is used, with the Dl4jMlpClassifier serving as the

classifier. Next, the bagging classifier is used as the

classifier for the AdaBoostM1 classifier. The

Dl4jMlpClassifier, a robust classifier based on deep

learning, serves as the foundational classifier for the

bagging classifier. Bagging is a method that generates

several classifiers by repeatedly sampling the training data.

The objective is to improve the performance and

robustness of the bagging classifier by including the

Dl4jMlpClassifier.

The bagging classifier, which comprises numerous

Dl4jMlpClassifiers, harnesses the capabilities of the

Dl4jMlpClassifier by including diverse training data.

Every classifier inside the bagging classifier is trained on a

distinct subset of the resampled data, resulting in a varied

collection of classifiers. The inclusion of many ensembles

enhances the efficiency of the Dl4jMlpClassifier. The

ensemble classifier uses many Dl4jMlpClassifiers in a

bagging approach to effectively collect diverse patterns

and representations from the data. The aggregated

prediction of the bagging classifier is often more accurate

and resilient compared to that of any individual

Dl4jMlpClassifier.

The bagging classifier, augmented by the capabilities of

the Dl4jMlpClassifier, is then used as the foundational

classifier for the AdaBoostM1 boosting classifier.

AdaBoostM1 is a dynamic boosting technique that

allocates weights to training examples and repeatedly

trains weak classifiers. By using the bagging classifier as

the weak classifier in AdaBoostM1, the AdaBoostM1

ensemble may get additional advantages from the

increased diversity and enhanced performance of the

bagging classifier. The AdaBoostM1 method provides

more weights to cases that pose a challenge in terms of

proper classification. The AdaBoostM1 ensemble is able to

concentrate on difficult situations and gradually improve

its accuracy.

By integrating the Dl4jMlpClassifier into the bagging

classifier and then using the bagging classifier as the weak

classifier in AdaBoostM1, the effectiveness of the

Dl4jMlpClassifier is improved. The use of bagging and

boosting methodologies enables the identification of a

wide range of patterns, enhances the ability to generalise,

and attains superior accuracy in the detection of false

news.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 65

Ultimately, during the optimised ensemble machine and

deep learning stage, a blended classifier is formed by

merging the Optimised Machine Learning (OML)

classifier with the Optimised Deep Learning (ODL)

classifier by weighted voting. The blending classifier is

trained using the training set and then used to forecast

counterfeit news in the testing set.

The OE-MDL algorithm is introduced as a solution to

effectively identify false information. The goal is to

enhance classification performance by using the

capabilities of both optimised machine learning and deep

learning approaches via ensemble methods. The OE-MDL

method offers many benefits due to its capacity to analyse

diverse forms of textual input using preprocessing

techniques such as lowercasing, tokenization, stop word

removal, stemming, lemmatization, and spell check. In

addition, the method utilises feature extraction techniques

such as n-grams and TF-IDF, which enable the collection

of significant information from the text.

Moreover, the use of optimised machine learning and deep

learning approaches, in conjunction with ensemble

methods, improves the algorithm's performance by

amalgamating the predictive capabilities of many

classifiers. This technique enables for more accurate and

resilient false news identification compared to individual

classifiers.

The OE-MDL algorithm offers a thorough and efficient

solution to identifying false news. It does this by using

optimised ensemble techniques that combine machine

learning and deep learning methods. method 1 provides a

detailed explanation of the proposed OE-MDL method.

Algorithm 1: Optimized Ensemble Machine and Deep

Learning (OE-MDL) for Fake News Detection

Input : LIAR dataset

Output : Classification of news articles as “mostly-true”,

“false”, “barely-true”, “pants-fire”, “true”, and

“half-true”

// Preprocessing Phase

Step 1 : Convert dataset to lowercase

Step 2 : Tokenize the dataset

Step 3 : Remove stop words from the dataset

Step 4 : Stem words in the dataset

Step 5 : Perform lemmatization on the dataset

Step 6 : Apply spell check and correction to the dataset

// Feature Extraction Phase

Step 7 : Generate n-grams from the dataset

Step 8 : Compute term frequency-inverse document

frequency (TF-IDF) for the n-grams

// Split dataset into training and testing sets Phase

Step 9 : Split the TF-IDF dataset into training and

testing sets

Step 10 : Write the training and testing sets to files

/* Optimized Machine Learning Phase */

Step 11 : Stacking Classifier:

• Optimized Random Forest, Optimized

J48, Optimized SMO, Optimized

Naive Bayes, and Optimized IBk are

used as base classifiers.

• Optimized Multilayer Perceptron is

used as the meta classifier.

• Combine the base classifiers and meta

classifier in the stacking classifier.

Step 12 : Bagging Classifier 1:

• Set the stacking classifier as the

classifier for the bagging classifier.

Step 13 : Boosting Classifier 1:

• Set the bagging classifier as the

classifier for the AdaBoostM1

classifier.

• This ensemble classifier is referred to

as the Optimized Machine Learning

(OML) classifier.

/* Optimized Deep Learning Phase */

Step 14 : Bagging Classifier 2:

Set the Dl4jMlpClassifier as the classifier for

the bagging classifier.

Step 15 : Boosting Classifier 2:

• Set the bagging classifier as the

classifier for the AdaBoostM1

classifier.

• This ensemble classifier is referred to

as the Optimized Deep Learning

(ODL) classifier.

/* Optimized Ensemble Machine and Deep Learning

Phase*/

Step 16 : Blending Classifier:

• Combine the OML classifier and ODL

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 66

classifier using weighted voting.

Step 17 : Training and Prediction:

• Train the blending classifier using the

training set, and then use the trained

blending classifier to predict fake

news in the testing set.

3.1 Optimized Random Forest:

The random forest classifier is a widely used machine-

learning technique used for classification applications. It is

a technique of ensemble learning that merges many

decision trees to provide predictions. The random forest

consists of many decision trees that function

independently. The final forecast is made by combining the

predictions of all the individual trees.

The optimised random forest classifier is an enhanced

iteration of the conventional random forest method. It

incorporates optimisations and parameter adjustments to

improve the performance and overcome certain constraints

of the conventional technique.

An optimised random forest classifier is necessary for the

following reasons:

• Improved Performance: The optimised version seeks to

enhance the accuracy and generalisation abilities of the

random forest classifier. By judiciously choosing the most

advantageous options, it may provide superior outcomes

compared to the default setup.

• Preventing Overfitting: Overfitting is the phenomenon

when a model gets too intricate and adapts too closely to

the training data, leading to inadequate generalisation to

unfamiliar data. The optimised random forest classifier

resolves this problem by including techniques such as

imposing a maximum depth for the trees, which effectively

manages the intricacy and mitigates the risk of overfitting.

• Optimization methods are used to efficiently search for

the optimal parameter combination for the random forest

classifier. This procedure entails methodically

investigating various parameter values to determine the

configuration that produces the most optimal performance.

The operational procedure of an optimised random forest

classifier generally comprises the following stages:

• Data Preparation: The incoming data undergoes

preprocessing, which involves activities such as feature

scaling and addressing missing values.

• Constructing Decision Trees: Multiple decision trees are

built using a randomly selected portion of the training data.

The growth of each tree is achieved by recursive

partitioning of the data, using various attributes and

thresholds, with the objective of minimising impurity or

maximising information acquisition.

• Stochastic Feature Selection: During each split of a

decision tree, a subset of features is randomly chosen for

consideration in the splitting process. This stochasticity

facilitates the introduction of variability among the trees

and diminishes the degree of correlation.

• Voting and Aggregation: In the random forest, each tree

independently classifies the input instance while

generating predictions. The ultimate forecast is established

by using majority vote or by taking into account the

average likelihood across all the trees.

The optimised random forest classifier has many benefits:

• Enhanced Precision: The optimisation process facilitates

the identification of the optimal parameter configuration,

resulting in improved accuracy in classification jobs as

compared to the default settings.

• Resilience to Overfitting: Through the imposition of

limitations such as the maximum depth of trees, the

optimised classifier mitigates the risk of overfitting and

enhances its ability to make accurate predictions on new,

unknown data.

• Versatility: The random forest classifier is capable of

handling both category and numerical characteristics

without the need for considerable data preparation.

Additionally, it has the ability to process data with a large

number of dimensions and properly manage missing

values.

• Feature value: The random forest classifier can provide

valuable information on the value of features, enabling the

identification of the most significant characteristics in the

classification process.

• Outlier Robustness: The random forest's ensemble

structure mitigates the influence of outliers or noisy data

points on the overall classification performance.

In general, the optimised random forest classifier improves

the performance and overcomes the constraints of the

standard random forest method. Through the adjustment of

parameters, management of overfitting, and optimisation

of feature selection, it enhances accuracy, resilience, and

adaptability for classification tasks.

Algorithm :

First, import the required libraries.

• Utilize the necessary libraries, such as NumPy for

numerical computations, RandomForestClassifier for the

random forest model, train_test_split for dividing the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 67

dataset, and metrics for assessing the model's

performance.

Step 2: Import and preprocess the dataset • Import the

dataset from a CSV file called "fake_news_dataset.csv."

• Partition the dataset into input features (X) and labels

(y).

• Divide the data into training and testing sets using an

80-20 split ratio.

• Specify a random seed to ensure that the results may be

reproduced.

Step 3: Specify Hyperparameters • Specify

hyperparameters for the random forest model,

including the number of estimators (n_estimators),

maximum depth of trees (max_depth), minimum

samples required to split a node (min_samples_split),

minimum samples required at a leaf node

(min_samples_leaf), and the number of features to

consider for the best split (max_features).

Step 4: Initialise and Train the Random Forest Classifier

Instantiate a RandomForestClassifier object using the

provided hyperparameters.

• To assure repeatability, use the random_state

parameter. Additionally, utilise all available CPU cores

for parallel processing by setting n_jobs to -1.

• Train the random forest classifier using the training data

(X_train, y_train).

Step 5: Generate Forecasts

Utilise the random forest classifier that has been trained

to provide predictions on the test data (X_test).

Save the anticipated classifications in the variable

y_pred.

Step 6: Assess the Model • Compute several evaluation

metrics, such as accuracy, precision, recall, and F1 score,

by comparing the predicted labels (y_pred) with the real

labels (y_test), in order to evaluate the performance of

the model.

Step 7: Display Evaluation Metrics

Display the computed evaluation metrics, such as

accuracy, precision, recall, and F1 score, on the console.

3.2 Optimized J48:

The J48 classifier is a decision tree method derived from

the C4.5 algorithm. This method is well recognised and

extensively used in the field of machine learning. The J48

algorithm generates a decision tree by iteratively dividing

the data using the characteristic that has the most

information gain or reduction in impurity.

A refined J48 classifier is required to enhance its efficiency

and overcome some drawbacks or limitations of the

conventional J48 classifier. Optimisation seeks to improve

the accuracy, efficiency, or resilience of the classifier by

modifying its settings or parameters.

The optimised J48 classifier overcomes the limitations of

the regular J48 classifier by providing the ability to

customise it using different settings. These choices may be

used to regulate the conduct of the decision tree creation

process, the management of missing data or unclassified

occurrences, and other facets of the classifier. By choosing

suitable alternatives, the optimised J48 classifier may

alleviate the constraints of the conventional J48 classifier

and provide superior outcomes.

The working process of the optimized J48 classifier is

similar to the traditional J48 classifier. It follows the basic

steps of decision tree construction, such as selecting the

best attribute for splitting, creating child nodes, and

recursively repeating the process until all instances are

classified.

However, the optimized J48 classifier incorporates

additional customization through the selected options. For

example, the options set the minimum number of instances

in leaf nodes, handle unclassified instances, and enforce

binary splits. These options modify the default behavior of

the decision tree construction process and improve the

classifier's performance according to the specified criteria.

The advantages of the optimized J48 classifier include:

• Improved performance: Optimization can enhance the

classifier's accuracy by adjusting parameters to better fit

the data.

• Customization: Options allow for customization of the

classifier's behavior, making it more adaptable to

different datasets or specific requirements.

• Handling of unclassified instances: The optimized J48

classifier can handle instances with missing attribute

values or instances that cannot be classified, making it

more robust in real-world scenarios.

• Control over decision tree construction: By specifying

options such as the minimum number of instances in leaf

nodes, the classifier's structure can be controlled to avoid

overfitting or underfitting.

• Efficient binary splits: The use of binary splits can

simplify the decision tree structure and improve

computational efficiency.

These advantages make the optimized J48 classifier a

powerful tool for classification tasks, providing better

results and more flexibility compared to the traditional J48

classifier.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 68

Algorithm :

1. Function J48(Data, TargetAttribute)

2. Create a node N.

3. // If all the data is of the same class, return a leaf node.

4. If all instances in Data belong to the same class:

5. Label N with the class and return it.

6. // If there are no remaining attributes to split on, return

a leaf node.

7. If there are no more attributes to split on:

8. Label N with the majority class in Data and return it.

9. // If there's no data, return a leaf node with the default

class.

10. If Data is empty:

11. Label N with the default class and return it.

12. // Else, start creating subtrees.

13. Else:

14. // Choose the best attribute to split the data.

15. BestAttribute = SelectAttribute(Data, TargetAttribute)

16. // Label node with the BestAttribute.

17. Label N with BestAttribute.

18. // For each possible value of BestAttribute, grow a

subtree.

19. For each possible value Vi of BestAttribute:

20. // Create a subset of data where BestAttribute has value

Vi.

21. Subset = {data in Data | data.BestAttribute = Vi}

22. // Recursively call J48 to create a subtree for this value.

23. Subtree = J48(Subset, TargetAttribute)

24. // Add a branch to node N for this value with the

subtree.

25. Add branch (BestAttribute = Vi, Subtree) to N.

26. Return N.

3.3 Optimized SMO:

The SMO (Sequential Minimal Optimisation) classifier is a

method specifically designed for training Support Vector

Machines (SVMs). Support Vector Machines (SVMs) are a

kind of supervised learning models that are often used for

both classification and regression problems. The SMO

algorithm is a widely used method for effectively handling

the quadratic optimisation issue that occurs in SVM

training.

A streamlined SMO classifier is required to enhance the

efficiency and efficacy of SVM training. The conventional

SMO approach may be computationally burdensome and

may not efficiently handle huge datasets. Optimisation

strategies seek to overcome these restrictions by enhancing

the speed of training and decreasing the computational

complexity, all while preserving or enhancing the

classification performance.

Optimized SMO classifiers employ various techniques to

address the disadvantages of the traditional SMO classifier:

• Speed optimizations: Optimized implementations of the

SMO algorithm may use efficient data structures, caching

mechanisms, or parallel processing to speed up the

training process.

• Memory optimizations: Techniques like shrinking or

caching selected samples can reduce the memory

requirements of the algorithm.

• Improved convergence criteria: The optimization

process may incorporate more effective convergence

criteria to terminate the training earlier, especially when

the desired solution is reached.

The optimised SMO classifier adheres to the fundamental

concepts of the classic SMO algorithm while including

changes to maximise efficiency. The approach sequentially

chooses a pair of samples from the training set and

enhances the SVM goal function by modifying the

matching Lagrange multipliers. The optimisation process

continues until reaching convergence, at which point the

decision boundary is determined by a subset of the training

samples referred to as support vectors.

The optimised Sequential Minimal Optimisation (SMO)

classifier, particularly when used with non-linear kernels

like the Radial Basis Function (RBF) kernel, enables

Support Vector Machines (SVMs) to effectively deal with

data that is not linearly separable. The RBF kernel

transforms the data into a space with a greater number of

dimensions, increasing the likelihood of achieving linear

separability. By using support vector machines (SVM), it

becomes possible to effectively categorise non-linear data

by capturing intricate decision boundaries.

The 'C' parameter in the SMO classifier determines the

level of regularisation, which impacts the balance between

model complexity and training mistakes. A lesser value for

the 'C' parameter results in a wider margin and a less

complex decision boundary, which may result in more

training mistakes. On the other hand, a higher value for 'C'

gives more importance to accurately categorising the

training data, leading to a more intricate decision boundary

and a possible problem of overfitting. The optimised SMO

classifier may achieve a balance between minimising

training mistakes and managing model complexity by

selecting a suitable 'C' value.

These aspects are included in Optimized SVMs, as they

provide flexibility in capturing complex patterns in the

data while avoiding overfitting and maintaining

generalization capabilities.

The advantages of an optimized SMO classifier include:

• Improved efficiency: The optimizations reduce the

computational complexity and training time, making it

more practical for large datasets.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 69

• Scalability: The optimized SMO algorithm can handle

larger datasets that would be challenging for the

traditional SMO classifier.

• Memory efficiency: Memory optimizations reduce

memory requirements, allowing the algorithm to operate

on datasets with limited memory resources.

• Comparable performance: Despite the optimizations,

the optimized SMO classifier maintains or even improves

the classification performance achieved by the traditional

SMO classifier.

Overall, the optimized SMO classifier combines speed,

memory efficiency, and good performance, making it a

favorable choice for SVM training in various applications.

Pseudocode for SMO in Fake News Detection:

1. Function SMO(Data, Labels, C, tolerance,

max_passes):

2. Initialize:

3. α = array of zeros (size = number of instances in

Data)

4. b = 0

5. passes = 0

6. While (passes < max_passes):

7. num_changed_alphas = 0

8. For i from 1 to size(Data):

9. // Calculate the error for the instance

10. Ei = f(xi) - yi, where f(xi) is the current prediction

and yi is the true label

11. If ((yi*Ei < -tolerance) and (αi < C)) or ((yi*Ei >

tolerance) and (αi > 0)):

a. // Select j randomly from all entries except i

b. j = selectRandom(i, size(Data))

c. Ej = f(xj) - yj

d. // Save old alphas

e. αi_old = αi

f. αj_old = αj

g. // Compute bounds L and H for αj

h. If (yi != yj):

i. L = max(0, αj_old - αi_old)

j. H = min(C, C + αj_old - αi_old)

k. Else:

l. L = max(0, αi_old + αj_old - C)

m. H = min(C, αi_old + αj_old)

n. If (L == H):

o. continue to next i

p. // Compute eta (the similarity of sample i and j)

q. η = 2 * K(xi, xj) - K(xi, xi) - K(xj, xj)

r. If (η >= 0):

s. continue to next i

t. // Update αj

u. αj = αj_old - (yj * (Ei - Ej)) / η

v. // Clip αj

w. αj = min(H, αj)

x. αj = max(L, αj)

y. If (|αj - αj_old| < 1e-5):

z. continue to next i

aa. // Update αi

bb. αi = αi + yi*yj*(αj_old - αj)

cc. // Compute b1 and b2

dd. b1 = b - Ei - yi*(αi - αi_old)*K(xi, xi) - yj*(αj -

αj_old)*K(xi, xj)

ee. b2 = b - Ej - yi*(αi - αi_old)*K(xi, xj) - yj*(αj -

αj_old)*K(xj, xj)

ff. // Compute b

gg. If (0 < αi < C):

hh. b = b1

ii. Else If (0 < αj < C):

jj. b = b2

kk. Else:

ll. b = (b1 + b2) / 2

mm. num_changed_alphas =

num_changed_alphas + 1

12. If (num_changed_alphas == 0):

13. passes = passes + 1

14. Else:

15. passes = 0

16. Return α, b

3.4 Optimized Naive Bayes:

The Naive Bayes classifier is a probabilistic technique for

machine learning that relies on Bayes' theorem. The term

"naive" is used because it presupposes that the

characteristics are conditionally independent of each other,

given the class labels. Contrary to this simplistic

assumption, Naive Bayes classifiers have shown strong

performance in a range of practical applications,

particularly in the fields of text categorization and spam

filtering.

A refined Naive Bayes classifier is required to enhance its

performance via the identification of the optimal set of

choices or parameters for the classifier. The default

configurations of the Naive Bayes classifier may not

always be ideal for a specific dataset or scenario. Through

the process of optimising the classifier, it is feasible to

improve both its accuracy and resilience.

The optimised Naive Bayes classifier overcomes some

constraints of the conventional Naive Bayes classifier by

enabling parameter optimisation. The conventional Naive

Bayes classifier relies on the assumption of feature

independence, which may not be valid in real-world

situations. Nevertheless, via the process of optimising the

classifier, many alternatives may be examined and the

parameters can be fine-tuned in order to possibly reduce

the influence of this assumption and enhance the overall

performance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 70

The optimised Naive Bayes classifier operates by

systematically testing several choices or parameters and

assessing their effectiveness via cross-validation. Various

alternatives are evaluated, and cross-validation is

conducted for each alternative. The accuracy of each

option is computed, and the option with the greatest

accuracy is chosen as the optimal choice. Ultimately, the

Naive Bayes classifier is trained using the optimal choices.

The advantages of the optimized Naive Bayes classifier

include:

• Improved performance: By optimizing the classifier's

parameters, it is possible to achieve higher accuracy and

better overall performance on the given dataset.

• Flexibility: The optimization process allows for

customization of the classifier to better suit the

characteristics of the dataset and the problem at hand.

• Robustness: By considering different options and

performing cross-validation, the optimized Naive Bayes

classifier can potentially handle variations and

uncertainties in the data more effectively.

• Generalizability: The optimized classifier is trained to

perform well on the training dataset and is expected to

generalize well to unseen data, making it a reliable

predictive model.

Pseudocode for Naive Bayes in Fake News Detection

1. Function NaiveBayesTrain(TrainingData, Labels):

2. Calculate prior probabilities:

3. P(Fake) = Number of Fake articles / Total articles

4. P(Real) = Number of Real articles / Total articles

5. For each feature (word or term) in TrainingData:

6. Calculate likelihoods:

7. P(Feature|Fake) = (Number of times feature appears

in Fake articles + α) / (Total words in Fake +

α*VocabularySize)

8. P(Feature|Real) = (Number of times feature appears

in Real articles + α) / (Total words in Real +

α*VocabularySize)

9. Return the calculated prior and likelihoods

10. Function NaiveBayesClassify(TestArticle, Prior,

Likelihoods):

11. Initialize:

12. Score_Fake = log(P(Fake))

13. Score_Real = log(P(Real))

14. For each feature in TestArticle:

15. If feature is in Likelihoods:

16. Score_Fake += log(P(Feature|Fake))

17. Score_Real += log(P(Feature|Real))

18. If Score_Fake > Score_Real:

19. Return "Fake"

20. Else:

21. Return "Real"

22. Main:

23. // Preprocess the articles to convert them into a

suitable format (e.g., word vectors).

24. TrainingData, Labels = Preprocess(Articles)

25. // Train the model using the training data.

26. Prior, Likelihoods = NaiveBayesTrain(TrainingData,

Labels)

27. // Now, with a new article, classify it as Fake or Real.

28. TestArticle = Preprocess(NewArticle)

29. Result = NaiveBayesClassify(TestArticle, Prior,

Likelihoods)

30. Print "The article is classified as", Result

3.5 Optimized IBk:

The IBk classifier, also known as the Instance-Based k-

Nearest Neighbours classifier, is a kind of machine

learning algorithm that falls under the category of lazy

learning algorithms. It is a kind of instance-based learning,

in which the training cases themselves are used for making

predictions instead of constructing a generalised model. In

the IBk algorithm, the classification of an unseen instance

is decided by the majority vote of its k closest neighbours

in the training set.

A refined IBk classifier is required to improve the

performance and overcome any inherent limitations of the

conventional IBk classifier. By integrating optimisations,

the algorithm may enhance its efficiency, accuracy, or

adaptability to certain problem domains.

The optimised IBk classifier addresses the limitations of

the classic IBk classifier via many means:

 Efficiency: The conventional IBk classifier may be

computationally burdensome, particularly for extensive

datasets, since it necessitates the calculation of distances

between the target instance and all training examples.

Optimisation approaches, such as indexing or pruning

procedures, may be used to enhance the algorithm's

performance and diminish the search area.

Feature weighting: In some instances, not all

characteristics may have an equal impact on the

classification process. The optimised IBk classifier utilises

feature weighting methods to apply varying weights to

distinct characteristics. This allows the classifier to

prioritise the most important information while minimising

the influence of irrelevant or noisy ones.

Distance weighting: The conventional IBk classifier

assigns equal importance to all closest neighbours during

classification. Nevertheless, in several instances, nearby

neighbours may have a greater impact on the determination

of categorization. The optimised IBk classifier employs

distance weighting algorithms, such as inverse distance

weighting, to provide more weights to nearby neighbours.

This results in more precise predictions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 71

The optimised IBk classifier adheres to the fundamental

premise of the conventional IBk classifier. When presented

with a new instance that has to be categorised, the

algorithm looks for the k closest neighbours in the training

set using a distance measure such as Euclidean distance.

Nevertheless, it integrates optimisations to enhance

efficiency, precision, or flexibility. The optimisations

implemented in the optimised IBk classifier encompass:

By using a k value of 3, we may determine the three

closest neighbours. The selection of the number of closest

neighbours, represented as k, is a crucial element in the

IBk method. Choosing an optimal number for k is essential

since it directly impacts the algorithm's balance between

bias and variance, as well as its capacity to generalise.

When k is set to 3, the algorithm only takes into account

the three closest neighbours when performing the

classification step. Decreasing the value of k may enhance

the algorithm's ability to detect local patterns in the data,

hence increasing its sensitivity to local fluctuations.

Utilising inverse distance weighting: Distance weighting

algorithms in IBk classifiers ascertain the impact or

significance allocated to each neighbouring data point

depending on its proximity to the instance being classed or

forecasted. Various weighting techniques may be used to

accurately represent the relative significance of

neighbours, taking into account their closeness. The chosen

distance weighting strategy in this situation is inverse

distance weighting. Within this method, proximity to

neighbours directly correlates with increased weighting,

whilst greater distance from neighbours results in

decreased weighting. The weight supplied to each

neighbour is inversely proportional to the distance between

the neighbour and the target instance. The optimised IBk

classifier employs inverse distance weighting to provide

more significance to nearby neighbours, deeming them

more significant in the classification determination. This

may be beneficial in scenarios where neighbouring

instances are more prone to have comparable labels or

values, hence enhancing the precision of the predictions.

The advantages of the optimized IBk classifier can include:

• Improved efficiency: The optimizations help reduce

the computational complexity of the algorithm, making

it more scalable for large datasets.

• Enhanced accuracy: By incorporating feature

weighting and distance weighting schemes, the

optimized IBk classifier can assign appropriate

importance to relevant features and closer neighbors,

leading to more accurate predictions.

• Adaptability: The optimizations allow the algorithm to

be tailored to specific problem domains or data

characteristics, improving its adaptability and

performance in different scenarios.

• Interpretability: Since the IBk classifier is instance-

based, it provides transparent and interpretable results.

The optimized IBk classifier retains this interpretability

while offering improved performance through its

optimizations.

Overall, by configuring the IBk algorithm to use k=3

nearest neighbors and applying inverse distance weighting,

the optimized IBk classifier optimizes the algorithm to

focus on local information and give higher importance to

closer neighbors during classification. These choices aim

to enhance the algorithm's sensitivity to local patterns and

improve prediction accuracy in scenarios where nearby

instances are more indicative of the target outcome.

Pseudocode for Optimized IBk in Fake News Detection:

1. Function OptimizedIBk(TrainingData, Labels, k,

DistanceMetric):

2. Store the TrainingData and Labels

3. Determine the optimal k using cross-validation if not

provided

4. Select the appropriate DistanceMetric

5. Function ClassifyArticle(Article, k, DistanceMetric):

6. Initialize an empty list for storing distances: Distances

= []

7. For each instance in TrainingData:

8. distance = CalculateDistance(Article, instance,

DistanceMetric)

9. Add (distance, label) to Distances

10. // Sort the list of distances in ascending order

11. Sort Distances by distance

12. // Pick the first k entries from the sorted list

13. Neighbors = Distances[1:k]

14. // Count the occurrences of each class (Fake or Real)

among the k-neighbors

15. Count_Fake = Count occurrences of "Fake" in

Neighbors

16. Count_Real = Count occurrences of "Real" in

Neighbors

17. // Classify the article based on the majority vote

18. If Count_Fake > Count_Real:

19. Return "Fake"

20. Else:

21. Return "Real"

22. Main:

23. // Preprocess the articles to convert them into a suitable

format (e.g., feature vectors).

24. TrainingData, Labels = Preprocess(Articles)

25. // Train the model using the training data.

26. k, DistanceMetric =

DetermineOptimalParameters(TrainingData, Labels)

27. OptimizedIBk(TrainingData, Labels, k,

DistanceMetric)

28. // Now, with a new article, classify it as Fake or Real.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 72

29. TestArticle = Preprocess(NewArticle)

30. Result = ClassifyArticle(TestArticle, k,

DistanceMetric)

31. Print "The article is classified as", Result

3.6 Optimized Multilayer Perceptron

The MLP classifier, also known as the Multilayer

Perceptron classifier, is a widely used artificial neural

network (ANN) structure mostly employed for

classification purposes. The system is composed of several

linked nodes, referred to as neurons, which are arranged in

an input layer, one or more hidden layers, and an output

layer. Every individual neuron in the network applies a

non-linear activation function to the inputs it receives,

which enables the network to acquire knowledge of

intricate patterns and provide predictions based on the

input data.

A streamlined MLP classifier is required to boost the

efficiency and efficacy of the training process and bolster

the model's performance. The default setup of a Multilayer

Perceptron (MLP) may not be suitable for all datasets or

problems. By fine-tuning the MLP's parameters, such as

the number of training epochs and learning rate, we may

customise the model to the unique attributes of the data

and attain improved accuracy and quicker convergence.

An optimised MLP classifier mitigates the drawbacks of

the conventional MLP classifier by using the following

strategies:

• Faster convergence: By decreasing the number of

training epochs, the optimized MLP classifier reduces

the time required for training while still aiming to

achieve good performance. This helps overcome the

potential drawback of slow convergence in the

traditional MLP classifier.

• Improved precision of convergence: By adjusting the

learning rate, the optimized MLP classifier fine-tunes

the step size of weight updates during training. A lower

learning rate reduces the risk of overshooting the

optimal solution, enhancing the precision of

convergence. This mitigates the disadvantage of

potential overshooting in the traditional MLP classifier.

The optimized MLP classifier works by configuring the

MLP's parameters to achieve better performance. These

optimizations of the optimized MLP classifier include:

Multiple Training Epochs: The variable numEpochs is

assigned a value of 10, indicating that the MLP would

experience a smaller number of training epochs compared

to the default value, which is often greater, such as 100 in

this instance. Epochs represent the total number of

iterations the MLP will undergo across the whole training

dataset during the training phase. Reducing the number of

epochs accelerates the training process, resulting in quicker

convergence.

The learning rate is assigned a value of 0.1. The learning

rate governs the magnitude of the weight adjustments

made to the MLP throughout the training phase. A greater

learning rate facilitates bigger weight updates, which may

expedite convergence but also heightens the likelihood of

overshooting the ideal solution. On the other hand, a

reduced learning rate results in less significant adjustments

to the weights, which may decelerate the training process

but enhance the accuracy of convergence. The code

optimises the training of the MLP by changing the learning

rate to 0.1.

These optimizations aim to find a balance between training

efficiency and model accuracy. The advantages of an

optimized MLP classifier include:

• Faster training: By reducing the number of training

epochs, the optimized MLP classifier can achieve

convergence more quickly, saving computational

resources and time.

• Improved convergence precision: By adjusting the

learning rate, the optimized MLP classifier can achieve

more precise convergence by avoiding overshooting or

missing the optimal solution.

• Enhanced performance: The optimization process

fine-tunes the MLP to the specific characteristics of the

dataset, leading to improved accuracy and better

generalization capabilities.

• Flexibility: The ability to adjust parameters allows the

optimized MLP classifier to adapt to different datasets

and problems, making it more versatile and suitable for

a wide range of tasks.

Pseudocode for Optimized Multilayer Perceptron in

Fake News Detection:

1. Function CreateOptimizedMLP(TrainingData,

Labels):

2. Initialize network structure (number of input nodes,

hidden layers, hidden nodes, and output nodes)

3. Initialize weights and biases with small random

values

4. Select ActivationFunction for hidden and output

layers (e.g., ReLU, Sigmoid)

5. Determine LearningRate and OptimizationAlgorithm

(e.g., SGD, Adam)

6. While not Converged and Epochs < MaxEpochs:

7. For each batch in TrainingData:

8. ForwardPropagate(batch)

9. CalculateError(batch labels)

10. BackwardPropagate(error)

11. Update weights and biases using

OptimizationAlgorithm and LearningRate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 73

12. If validation error decreases:

13. Save current model as BestModel

14. Else if validation error does not improve for a

patience number of epochs:

15. Break and restore BestModel

16. Return BestModel

17. Function ForwardPropagate(batch):

18. For each layer in the network:

19. input = previous layer's output (or batch for the first

layer)

20. activation = ActivationFunction(weights * input +

bias)

21. Save activation as output for the next layer

22. Function BackwardPropagate(error):

23. Calculate gradients for output layer

24. For each layer in reverse order:

25. Calculate error for layer

26. Update gradients for weights and biases

27. Function ClassifyArticle(Article, BestModel):

28. PreprocessedArticle = Preprocess(Article)

29. Output = ForwardPropagate(PreprocessedArticle

using BestModel)

30. If Output closer to 1:

31. Return "Real"

32. Else:

33. Return "Fake"

34. Main:

35. // Preprocess the articles to convert them into a

suitable format (e.g., feature vectors).

36. TrainingData, Labels = Preprocess(Articles)

37. // Create and train the model using the training data.

38. BestModel = CreateOptimizedMLP(TrainingData,

Labels)

39. // Now, with a new article, classify it as Fake or Real.

40. TestArticle = NewArticle

41. Result = ClassifyArticle(TestArticle, BestModel)

42. Print "The article is classified as", Result

3.7 Dl4jMlpClassifier:

The Dl4jMlpClassifier is a classification algorithm offered

by the WekaDeeplearning4j module inside the Weka

framework. It is constructed using the Deeplearning4j

(DL4J) package, a widely-used deep-learning framework

for Java. The Dl4jMlpClassifier enables users to train and

use multi-layer perceptron (MLP) models for classification

tasks via the DL4J backend.

The Dl4jMlpClassifier has several benefits in comparison

to other classifiers:

DL4J, the underlying library, offers deep learning

capabilities by enabling the construction of deep neural

networks with several hidden layers. The

Dl4jMlpClassifier is capable of acquiring sophisticated

patterns and comprehending complex representations

within the data.

MLPs have the ability to represent non-linear correlations

in the data, which makes them well-suited for jobs that

other classifiers may have difficulty capturing.

Feature extraction: Multilayer perceptrons (MLPs) with

numerous hidden layers have the ability to autonomously

extract valuable features from unprocessed input data. The

Dl4jMlpClassifier is a great alternative for handling high-

dimensional data since it has the capacity to learn features

automatically, eliminating the need for human feature

engineering.

The Dl4jMlpClassifier benefits from the scalability and

speed optimisations given by the DL4J framework,

including support for distributed computing and GPU

acceleration.

The Dl4jMlpClassifier operates by training a Multilayer

Perceptron (MLP) model with the DL4J library. The

training of MLPs adheres to a conventional approach,

including the following steps:

Input data representation: The input data is processed

beforehand and provided in an appropriate manner, such as

characteristics that are either numeric or binary.

Model configuration: The user determines the structure of

the MLP by defining the quantity and dimensions of

hidden layers, activation functions, regularisation

approaches, optimisation algorithms, and other

hyperparameters.

Training: The MLP model undergoes training using a

dataset that has been labelled. The training method consists

of two main steps: forward propagation and backward

propagation (also known as backpropagation). During

forward propagation, the input data is sent through the

network. Then, during backward propagation, the model's

parameters, such as weights and biases, are modified

according to the estimated prediction errors.

• Forecast: After training the MLP model, it may be used

to forecast outcomes for novel, unobserved occurrences by

feeding them into the network and acquiring the resultant

values.The benefits of using the Dl4jMlpClassifier

encompass:

The Dl4jMlpClassifier offers users the ability to customise

several components of the MLP model, such as the number

of layers, activation functions, and optimisation

techniques, providing flexibility. This adaptability allows

for tailoring according to the precise demands of the

dataset and the given challenge.

The Dl4jMlpClassifier can effectively handle intricate and

extensive datasets, acquire hierarchical representations,

and take use of cutting-edge deep learning approaches by

using DL4J's capabilities.

The Dl4jMlpClassifier is integrated with the Weka

machine learning toolkit, allowing it to take advantage of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 74

the various data preprocessing, feature selection, and

evaluation techniques offered by Weka. This integration

makes it easy to use the Dl4jMlpClassifier alongside other

classifiers and tools available in Weka..

Pseudocode for DL4J MLP Classifier in Fake News

Detection:

1. Function CreateDL4JMlpClassifier(TrainingData,

Labels):

2. // Initialize the multi-layer configuration builder

3. Initialize MultiLayerConfiguration.Builder

configBuilder

4. // Define the list of layer configurations based on

network architecture

5. Define inputLayerConfig, hiddenLayerConfigs,

outputLayerConfig

6. // Configure each layer in the MLP

7. configBuilder.addLayer("InputLayer",

inputLayerConfig)

8. For each hiddenLayerConfig in hiddenLayerConfigs:

9. configBuilder.addLayer("HiddenLayer",

hiddenLayerConfig)

10. configBuilder.addLayer("OutputLayer",

outputLayerConfig)

11. // Set up the global configuration (learning rate,

optimization algorithm, etc.)

12. Set globalConfigurations (LearningRate, WeightInit,

OptimizationAlgorithm, etc.)

13. // Build the network configuration

14. MultiLayerConfiguration networkConfig =

configBuilder.build()

15. // Initialize the model with the network configuration

16. Initialize MultiLayerNetwork model with

networkConfig

17. model.init()

18. // Train the model with training data

19. For each epoch or until convergence:

20. model.fit(TrainingData, Labels)

21. Return model

22. Function PreprocessText(Text):

23. // Convert text to lower case, remove punctuation, and

tokenize

24. TokenizedText = TokenizeAndClean(Text)

25. // Convert tokens to numerical format suitable for MLP

input (e.g., word vectors, TF-IDF)

26. NumericalVector =

ConvertToNumericalFormat(TokenizedText)

27. Return NumericalVector

28. Function ClassifyFakeNews(Article, Model):

29. // Preprocess the article to get it into the same format as

the training data

30. PreprocessedArticle = PreprocessText(Article)

31. // Use the model to predict the class of the preprocessed

article

32. Prediction = Model.output(PreprocessedArticle)

33. // Interpret the prediction to classify the article as 'Fake'

or 'Real'

34. If Prediction closer to 1:

35. Return "Real"

36. Else:

37. Return "Fake"

38. Main:

39. // Load and preprocess the training data and labels

40. TrainingData, Labels =

LoadAndPreprocessTrainingData()

41. // Create the MLP classifier using DL4J

42. Model = CreateDL4JMlpClassifier(TrainingData,

Labels)

43. // Now, with a new article, classify it as Fake or Real.

44. NewArticle = "Sample text of new article"

45. Result = ClassifyFakeNews(NewArticle, Model)

46. Print "The article is classified as", Result

3.8 Stacking Classifier:

A stacking classifier is a kind of ensemble learning

technique that enhances predicted accuracy by combining

many base classifiers with a meta-classifier. It is also

referred to as layered generalisation or stacking.

The stacking classifier is used when a solitary base

classifier may not provide the most effective performance

on a certain dataset. By aggregating the forecasts of many

fundamental classifiers, it may harness the advantages of

various classifiers and perhaps overcome their limitations.

The stacking classifier operates in two distinct stages:

training and prediction. During the training phase, the

basic classifiers undergo training using the input data. The

input data is utilised by each base classifier to create

predictions, which are then used as inputs for the meta-

classifier. The meta-classifier is trained by using the

predictions made by the basis classifiers as features, in

addition to the actual labels of the training data.

During the prediction step, the basic classifiers that have

been trained make predictions on data that they have not

seen before. The predictions are then inputted into the

meta-classifier, which amalgamates them to get the

ultimate forecast.

The stacking classifier offers several advantages:

• Improved predictive performance: By combining the

predictions of multiple base classifiers, the stacking

classifier can often achieve better accuracy or

generalization performance compared to individual

classifiers.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 75

• Robustness: Stacking can help reduce the impact of

noise or outliers in the training data. If a base classifier

performs poorly in certain instances, other classifiers

may compensate for it.

• Flexibility: The stacking classifier allows for the

integration of diverse base classifiers, which can

capture different aspects of the data. This flexibility

enables it to handle a wide range of problem domains

and data characteristics.

• Model diversity: Since the base classifiers in the

stacking classifier can be different algorithms or

algorithm variations, they provide diverse perspectives

on the data. This diversity can help mitigate the risk of

overfitting and improve the model's robustness.

At the OML phase in the OE-MDL algorithm, base

classifiers like optimized RandomForest, optimized J48,

optimized SMO, optimized NaiveBayes, and optimized

IBk are stacked with an optimized Multilayer Perceptron

as the Meta classifier.

Pseudocode for Stacking Classifier in Fake News

Detection:

1. Function TrainBaseModels(TrainingData, Labels):

2. // Initialize a list to hold the trained base models

3. BaseModels = []

4. // Define different base classifiers

5. Classifier1 = TrainDecisionTree(TrainingData,

Labels)

6. Classifier2 = TrainNaiveBayes(TrainingData, Labels)

7. Classifier3 = TrainSVM(TrainingData, Labels)

8. // ... add other classifiers as needed

9. // Add the trained classifiers to the list of base models

10. Add Classifier1 to BaseModels

11. Add Classifier2 to BaseModels

12. Add Classifier3 to BaseModels

13. // ... add other trained classifiers

14. Return BaseModels

15. Function GenerateBasePredictions(BaseModels,

Data):

16. // Initialize a structure to hold predictions from all

base models

17. BasePredictions = []

18. For each Model in BaseModels:

19. // Predict using the current base model

20. Predictions = Model.Predict(Data)

21. // Add the predictions to BasePredictions

22. Add Predictions to BasePredictions

23. Return BasePredictions

24. Function TrainMetaModel(BasePredictions,

TrueLabels):

25. // Train a meta-model (e.g., Logistic Regression) on the

predictions made by base models

26. MetaModel =

TrainLogisticRegression(BasePredictions, TrueLabels)

27. Return MetaModel

28. Function StackingClassifierPredict(Article,

BaseModels, MetaModel):

29. // Preprocess the article to get it into the same format as

the training data

30. PreprocessedArticle = Preprocess(Article)

31. // Generate base model predictions for the article

32. BasePredictions =

GenerateBasePredictions(BaseModels,

PreprocessedArticle)

33. // Use the meta-model to make the final prediction

based on base model predictions

34. FinalPrediction = MetaModel.Predict(BasePredictions)

35. Return FinalPrediction

36. Main:

37. // Load and preprocess the training data and labels

38. TrainingData, Labels =

LoadAndPreprocessTrainingData()

39. // Train the base models on the training data

40. BaseModels = TrainBaseModels(TrainingData, Labels)

41. // Generate base predictions on a separate validation set

42. ValidationPredictions =

GenerateBasePredictions(BaseModels, ValidationData)

43. // Train the meta-model using the base model

predictions and true labels

44. MetaModel = TrainMetaModel(ValidationPredictions,

ValidationLabels)

45. // Now, with a new article, classify it as Fake or Real

using the stacking classifier

46. NewArticle = "Sample text of new article"

47. Result = StackingClassifierPredict(NewArticle,

BaseModels, MetaModel)

48. Print "The article is classified as", Result

3.9 Bagging Classifier:

The Bagging classifier is an ensemble approach in machine

learning that combines numerous basic classifiers to

enhance predicted accuracy and decrease variance.

Bagging, short for "Bootstrap Aggregating," is a technique

that trains several base classifiers using distinct subsets of

the training data. These subsets are created via sampling

with replacement, a process known as bootstrapping.

The primary objective of using a Bagging classifier is to

mitigate overfitting and enhance generalisation. It is

especially advantageous when dealing with models that

have large variation, such as decision trees, since they are

very sensitive to the training data. Bagging employs the

technique of training several classifiers on distinct subsets

of the data, so mitigating variation and achieving an

averaged prediction.

The Bagging classifier operates in the following manner:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 76

Bootstrap Sampling: Random subsets of the training data

are generated by sampling with replacement. Every subset

is referred to as a bootstrap sample.

Base Classifier Training: Each bootstrap sample is used to

train a base classifier, often a decision tree, separately.

Aggregation: After training all the basic classifiers,

predictions are generated by each classifier for unseen data

points. The predictions generated by each classifier are

then aggregated using a majority vote (for classification

tasks) or averaging (for regression tasks) in order to get the

ultimate forecast.

The Bagging classifier has many advantages:

Bagging enhances the precision of the basic classifiers by

reducing their variability, resulting in an enhanced overall

accuracy when applied to new, unknown data.

Bagging mitigates overfitting by training separate base

classifiers on distinct subsets of the data, hence enhancing

generalisation.

Bagging exhibits robustness to noise and outliers in the

data due to its use of several classifiers that are trained on

distinct subsets of the data.

Parallelizable: Bagging allows for autonomous training of

each base classifier, making it suitable for parallel

computing. This enables faster training procedure.

Versatility: Bagging may be used across a wide range of

machine learning methods, enabling its utilisation with

diverse base classifiers and for both classification and

regression problems.

In general, the Bagging classifier is a potent method that

may enhance the effectiveness and resilience of machine

learning models, especially when working with intricate or

noisy datasets.

Pseudocode for Bagging Classifier in Fake News

Detection:

1. Function TrainBaggingClassifier(TrainingData, Labels,

BaseClassifier, NumModels):

2. Initialize:

3. BaggedModels = []

4. For i from 1 to NumModels:

5. // Create a bootstrap sample of the original data

6. BootstrapSampleData, BootstrapSampleLabels =

CreateBootstrapSample(TrainingData, Labels)

7. // Train the base classifier on the bootstrap sample

8. Model = TrainBaseClassifier(BootstrapSampleData,

BootstrapSampleLabels, BaseClassifier)

9. // Add the trained model to the list of bagged models

10. Add Model to BaggedModels

11. Return BaggedModels

12. Function CreateBootstrapSample(Data, Labels):

13. // Randomly select instances with replacement to create

a bootstrap sample

14. BootstrapSampleData = []

15. BootstrapSampleLabels = []

16. For i from 1 to size(Data):

17. RandomIndex = Random(1, size(Data))

18. Add Data[RandomIndex] to BootstrapSampleData

19. Add Labels[RandomIndex] to BootstrapSampleLabels

20. Return BootstrapSampleData, BootstrapSampleLabels

21. Function BaggingClassifierPredict(Article,

BaggedModels):

22. Initialize:

23. Predictions = []

24. // Preprocess the article to get it into the same format as

the training data

25. PreprocessedArticle = Preprocess(Article)

26. // Collect predictions from each model in the bagged

ensemble

27. For each Model in BaggedModels:

28. Prediction = Model.Predict(PreprocessedArticle)

29. Add Prediction to Predictions

30. // Aggregate predictions to form a final prediction

(majority vote or averaging)

31. FinalPrediction = AggregatePredictions(Predictions)

32. Return FinalPrediction

33. Main:

34. // Load and preprocess the training data and labels

35. TrainingData, Labels =

LoadAndPreprocessTrainingData()

36. // Define the base classifier and number of models to

bag

37. BaseClassifier = DecisionTree() // or any other suitable

classifier

38. NumModels = 10 // or another appropriate number

39. // Train the bagging classifier using the training data

40. BaggedModels =

TrainBaggingClassifier(TrainingData, Labels,

BaseClassifier, NumModels)

41. // Now, with a new article, classify it as Fake or Real

using the bagging classifier

42. NewArticle = "Sample text of new article"

43. Result = BaggingClassifierPredict(NewArticle,

BaggedModels)

44. Print "The article is classified as", Result

3.10 Boosting Classifier:

A Boosting classifier is a machine learning technique that

amalgamates numerous weak or base classifiers to generate

a robust classifier. AdaBoost is an ensemble learning

technique in which weak classifiers are trained

successively. Each subsequent classifier is designed to

concentrate on the examples that were misclassified by the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 77

preceding classifiers. The ultimate forecast is determined

by combining the forecasts of all the weak classifiers.

Boosting classifiers are necessary for several purposes:

Boosting is a technique that enhances the accuracy of a

classifier by merging the predictions of many weak

classifiers. By reducing both bias and variation, it enhances

generalisation and improves the accuracy of predictions.

Boosting is adept in managing extensive datasets that

contain high-dimensional characteristics and complex

correlations between variables. It has the ability to identify

intricate patterns and accurately represent the underlying

organisation within the data.

Boosting methods exhibit robustness to noise and outliers

in the data. The sequential training procedure enables the

model to prioritise challenging samples and adapt its

predictions appropriately, therefore mitigating the

influence of noisy data points.

Boosting may be used across a range of learning problems,

including classification, regression, and ranking. It has the

capability to process both category and numerical data,

making it a flexible method for machine learning.

The operational mechanism of a Boosting classifier may be

succinctly described in the below stages:

Initialization: Allocate identical weights to each training

sample.

Training Weak Classifiers: Train a weak classifier, such as

a decision tree, using the training data while taking into

account the weights assigned to each sample. The objective

of the weak classifier is to minimise the weighted error,

wherein samples that are categorised incorrectly are

assigned greater weights.

Weight Update: Modify the weights of the samples that

were categorised incorrectly to increase their significance

in the next iteration. This accentuates challenging

specimens, making them more intricate to categorise in the

subsequent iteration.

Classifier Combination: Merge the feeble classifiers by

allocating weights to their predictions according on their

performance. The weights are computed based on the

accuracy of the weak classifier.

The final prediction is determined by combining the

weighted predictions of all the weak classifiers.

Boosting classifiers have many benefits:

Enhanced Precision: Boosting techniques often attain

superior accuracy in comparison to using a solitary

classifier.

Boosting mitigates bias and variance by repeatedly

prioritising challenging data, enabling the model to achieve

good generalisation and prevent overfitting.

Boosting is an effective technique for dealing with

unbalanced datasets. It does this by giving more

importance to the minority class samples via assigning

larger weights to them. This approach improves the

classification accuracy of the minority class.

Feature Importance: Boosting algorithms may provide

valuable insights into the significance of features in the

classification process, aiding in the identification of the

most significant variables.

Boosting algorithms have the advantage of versatility by

allowing the combination of several weak classifiers. This

flexibility allows for the selection of appropriate base

models depending on the specific issue being addressed.

The AdaBoostM1 classifier is used as a Boosting classifier

in this instance. AdaBoostM1, or Adaptive Boosting, is a

particular variant of the Boosting classification technique.

The proposition was put up by Yoav Freund and Robert

Schapire in the year 1996. AdaBoostM1 is predominantly

used for binary classification problems, whereby the

objective is to categorise occurrences into one of two

groups, such as spam or non-spam emails.

The operational mechanism of AdaBoostM1 is as follows:

Initialization: Allocate identical weights to each training

sample. Initially, each sample is assigned a weight of 1/n,

where n is the total number of training occurrences.

Training Weak Classifiers: Train a sequence of feeble

classifiers using the training data. A weak classifier refers

to a basic model that exhibits a somewhat higher

performance than random guessing. An example of a weak

classifier is a decision stump, which is just a decision tree

with only one split. The objective of the weak classifier is

to minimise the weighted error, wherein samples that are

categorised incorrectly are assigned greater weights.

Weight Update: Modify the weights of the samples that

were categorised incorrectly. During each iteration, the

weights assigned to the misclassified samples are

augmented, so enhancing their impact on the upcoming

training of the weak classifiers. This guarantees that the

subsequent weak classifier concentrates on the data that

posed a challenge in terms of proper classification.

Classifier Combination: Allocate weights to each weak

classifier according to their performance. The weights are

set based on the accuracy of the weak classifier throughout

the training phase. Classifiers with greater accuracy are

assigned more weights.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 78

The final prediction is determined by combining the

weighted predictions of all the weak classifiers. The

aggregation stage takes into account the weight of each

weak classifier.

The AdaBoostM1 algorithm proceeds with the training

phase by iteratively executing steps 2 to 5 for a specified

number of iterations or until a desired level of performance

is attained. The ultimate classifier is a composite of the

feeble classifiers, with the weights being decided by their

performance.

An benefit of AdaBoostM1 is its ability to successfully

prioritise misclassified occurrences by dynamically

adjusting the weights throughout the training phase. This

enables the algorithm to acquire knowledge from its errors

and enhance the precision of categorization. Furthermore,

it effectively manages unbalanced data by allocating

greater weights to the misclassified instances from the

minority class.

Pseudocode for Boosting Classifier in Fake News

Detection:

1. Function TrainBoostingClassifier(TrainingData,

Labels, NumModels):

2. Initialize:

3. Weights = array of 1/size(TrainingData) for each

instance in TrainingData

4. Models = []

5. ModelWeights = []

6. For i from 1 to NumModels:

7. // Train a weak classifier with the current distribution

of Weights

8. WeakClassifier = TrainWeakClassifier(TrainingData,

Labels, Weights)

9. // Calculate the error of the weak classifier

10. Error = CalculateError(WeakClassifier, TrainingData,

Labels, Weights)

11. // Calculate the weight of this classifier's vote

12. ClassifierWeight = 0.5 * log((1 - Error) / max(Error,

epsilon))

13. // Update Weights for each instance

14. For j from 1 to size(TrainingData):

15. If WeakClassifier correctly classifies instance j:

a. Weights[j] = Weights[j] * exp(-ClassifierWeight)

16. Else:

a. Weights[j] = Weights[j] * exp(ClassifierWeight)

17. // Normalize Weights so they sum to 1

18. Weights = Normalize(Weights)

19. // Store the weak classifier and its weight

20. Add WeakClassifier to Models

21. Add ClassifierWeight to ModelWeights

22. Return Models, ModelWeights

23. Function BoostingClassifierPredict(Article, Models,

ModelWeights):

24. Initialize:

25. FinalScore = 0

26. // Preprocess the article to get it into the same format as

the training data

27. PreprocessedArticle = Preprocess(Article)

28. // Aggregate weighted predictions from each model

29. For i from 1 to size(Models):

30. Prediction = Models[i].Predict(PreprocessedArticle)

31. // Convert prediction to +1 or -1

32. If Prediction == "Real":

33. PredictionValue = 1

34. Else:

35. PredictionValue = -1

36. FinalScore += ModelWeights[i] * PredictionValue

37. // Make the final decision based on the aggregated

score

38. If FinalScore > 0:

39. Return "Real"

40. Else:

41. Return "Fake"

42. Main:

43. // Load and preprocess the training data and labels

44. TrainingData, Labels =

LoadAndPreprocessTrainingData()

45. // Define the number of models to be trained

46. NumModels = 10 // or another appropriate number

47. // Train the boosting classifier using the training data

48. Models, ModelWeights =

TrainBoostingClassifier(TrainingData, Labels,

NumModels)

49. // Now, with a new article, classify it as Fake or Real

using the boosting classifier

50. NewArticle = "Sample text of new article"

51. Result = BoostingClassifierPredict(NewArticle,

Models, ModelWeights)

52. Print "The article is classified as", Result

3.11 Blending Classifier with a weighted voting rule:

A blending classifier with a weighted voting rule is a

machine-learning ensemble approach that aggregates the

predictions of numerous independent classifiers to get a

final judgement. The process entails instructing and

merging the results of several classifiers, giving weights to

each classifier's forecast depending on its performance or

dependability.

Below is a detailed description of the functioning of a

blending classifier that employs a weighted voting rule:

• Initial training stage: The dataset is partitioned into two

subsets: a training set and a validation set. The training

set is used for the purpose of training individual

classifiers, whilst the validation set is employed to

assess their performance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 79

• Classifier training: Each classifier is trained separately

on the training set using a distinct method or technique.

The classifiers might include several types, including

decision trees, support vector machines (SVMs), or

neural networks. The objective is to possess a range of

classifiers that effectively capture distinct facets of the

data.

• Prediction collection: Once the individual classifiers

have been trained, their predictions for each instance in

the validation set are gathered using the validation set.

Every classifier gives a specific class label or a

probability distribution across classes to every

individual occurrence.

• Weight assignment: The predictions of the various

classifiers are allocated weights according to their

performance. The weights may be established using

many methods, such as evaluating accuracy, precision,

recall, or F1 score on the validation set. on general,

classifiers that perform better are given larger weights

to increase their impact on the final choice.

• Weighted voting: The separate classifiers' predictions

are merged using a technique that assigns different

weights to each prediction. The weighted voting

procedure combines the forecasts by considering the set

weights. An established method involves multiplying

the prediction of each classifier by its respective weight

and then aggregating the weighted predictions. The

ultimate determination is reached by considering the

aggregate outcome, such as choosing the category with

the greatest total of weighted votes.

• Assessment: Ultimately, the effectiveness of the

blending classifier may be assessed by either using a

distinct test set or by implementing it on actual real-

world data. Typical assessment measures are accuracy,

precision, recall, and F1 score.

Let's say we have two individual classifiers: Classifier A

and Classifier B. Each classifier predicts the truthfulness

level of a statement using numerical assignments: 1 for

"mostly-true," 2 for "false," 3 for "barely-true," 4 for

"pants-fire," 5 for "true," and 6 for "half-true."

For a given statement, the individual classifiers make the

following predictions:

Classifier A: 1 (mostly-true)

Classifier B: 2 (false)

Now, we assign weights to each classifier based on their

performance or reliability. Let's assume the weights are as

follows:

Classifier A weight: 0.6

Classifier B weight: 0.4

To obtain the final prediction using a weighted voting

scheme, we multiply each classifier's prediction by its

corresponding weight and sum up the weighted

predictions:

Final prediction = (Classifier A prediction * Classifier A

weight) + (Classifier B prediction * Classifier B weight)

Final prediction = (1 * 0.6) + (2 * 0.4) = 0.6 + 0.8 = 1.4

Since the final prediction is 1.4, we can round it to the

nearest integer to obtain the class label. In this case, the

blended classifier predicts the statement as "mostly-true"

because 1.4 is closest to the numerical assignment of that

label.

In this simplified example, the blending classifier

combines the predictions of the individual classifiers using

a weighted voting rule. The weights assigned to each

classifier reflect their relative importance or performance.

By considering the weighted contributions of each

classifier, the blending classifier makes a final decision

that incorporates the strengths of the individual classifiers.

3.12 LSTM:

LSTM networks, a variant of recurrent neural networks

(RNNs), has the ability to acquire knowledge about long-

term relationships. They excel in the classification,

processing, and prediction of time series data or text. Here

is a potential approach to implementing a Long Short-

Term Memory (LSTM) model for the purpose of detecting

bogus news:

Pseudocode for LSTM in Fake News Detection:

1. Function CreateLSTMModel(VocabularySize,

EmbeddingSize, LSTMUnits, NumClasses):

2. Initialize the LSTM model structure

3. // Input layer that takes sequences of word indices

4. InputLayer(VocabularySize)

5. // Embedding layer to convert word indices to dense

vectors of fixed size

6. EmbeddingLayer(EmbeddingSize)

7. // LSTM layer with specified units

8. LSTMLayer(LSTMUnits)

9. // Output layer with a softmax activation for

classification

10. OutputLayer(NumClasses, activation='softmax')

11. Compile the model with a suitable loss function and

optimizer

12. Compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

13. Return the compiled model

14. Function TrainLSTMModel(Model, TrainingData,

Labels, Epochs, BatchSize):

15. // Fit the model on the training data

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 80

16. Model.fit(TrainingData, Labels, epochs=Epochs,

batch_size=BatchSize)

17. Return the trained model

18. Function PreprocessText(Text):

19. // Convert text to lower case, remove punctuation, and

tokenize

20. TokenizedText = TokenizeAndClean(Text)

21. // Convert tokens to sequences of integers

22. Sequences =

ConvertTokensToSequences(TokenizedText)

23. Return Sequences

24. Function LSTMPredict(Model, Article):

25. // Preprocess the article to get it into the same format as

the training data

26. PreprocessedArticle = PreprocessText(Article)

27. // Use the LSTM model to predict the class of the

preprocessed article

28. Prediction = Model.predict(PreprocessedArticle)

29. If Prediction closer to 1:

30. Return "Real"

31. Else:

32. Return "Fake"

33. Main:

34. // Load and preprocess the training data and labels

35. TrainingData, Labels =

LoadAndPreprocessTrainingData()

36. // Define LSTM model parameters

37. VocabularySize =

DetermineVocabularySize(TrainingData)

38. EmbeddingSize = 100 // or another appropriate size

39. LSTMUnits = 50 // or another appropriate number

40. NumClasses = 2 // Fake or Real

41. // Create and train the LSTM model using the training

data

42. LSTMModel = CreateLSTMModel(VocabularySize,

EmbeddingSize, LSTMUnits, NumClasses)

43. TrainedModel = TrainLSTMModel(LSTMModel,

TrainingData, Labels, Epochs=10, BatchSize=32)

44. // Now, with a new article, classify it as Fake or Real

using the LSTM model

45. NewArticle = "Sample text of new article"

46. Result = LSTMPredict(TrainedModel, NewArticle)

47. Print "The article is classified as", Result

4. Implementation

4.1 Dataset

train.csv: A comprehensive training dataset including the

following attributes:

• id: a unique identifier for a news item • title: the heading

of a news story • author: the individual who wrote the

news article • text: the content of the piece; may be partial

• label: a marker that designates the item as possibly

untrustworthy

1: Not dependable 0: Trustworthy test.The csv file contains

a training dataset for testing purposes. It includes all the

characteristics included in the train.csv file, except for the

label.

The file is named "submit.csv". An example submission

that you may use.

Dataset link : https://www.kaggle.com/c/fake-news/data

Fig 1. Dataset sample

4.2 Illustrative example

Fig 2. Confusion matrix

Fig 3. Accuracy score

https://www.kaggle.com/c/fake-news/data

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 81

Fig 4. Accurac and Loss using LSTM

5. Experimental Results and Discussions

This part primarily aims to evaluate the efficacy of the OE-

MDL algorithm in identifying fabricated news. The

assessment is conducted with a dataset referred to as the

Liar dataset. The Liar dataset is a publicly accessible

compilation of assertions made by politicians, which have

been meticulously labelled to indicate their truthfulness.

These labels include several categories, such as "true,"

"mostly true," "half true," "barely true," "false," and "pants

on fire," which indicate varied degrees of veracity or

falsity.

The Liar dataset consists of both the textual substance of

the statements and other metadata elements. The metadata

elements provide additional details on the comments, such

as the speaker's work title and their political party

membership. The dataset tries to capture a full

representation of the remarks made by politicians by

including both textual and metadata elements.

The assessment procedure primarily utilises the OE-MDL

algorithm, which is implemented in the Java computer

language. The method uses the Liar dataset to assess the

efficacy of its ensemble model. An ensemble model is a

combination of numerous distinct models or algorithms

that improves the overall accuracy and reliability of

predictions.

Four evaluation measures, namely accuracy, precision,

recall, and F1-score, are used to monitor and analyse the

performance of the OE-MDL algorithm. Accuracy is a

crucial measure that measures the ratio of accurate

predictions provided by the algorithm. The evaluation

considers both true positives (instances successfully

recognised as true) and true negatives (instances correctly

identified as false) and compares them to the total number

of predictions made. Greater accuracy values correspond to

superior performance. It is characterised as:

Accuracy = (true positives + true negatives) / (true

positives + true negatives + false positives + false

negatives)

(1)

Precision is calculated by dividing the number of true

positives by the total number of positive predictions. A

higher level of accuracy corresponds to a lower number of

false positives. It is formally described as:

Precision = true positives / (true positives + false

positives)

(2)

The recall is calculated by dividing the number of true

positives by the total number of genuine positives in the

dataset. A higher recall value indicates a lower number of

false negatives. It is formally described as:

Recall = true positives / (true positives + false

negatives)

(3)

The F1-score is calculated as the harmonic mean of

accuracy and recall, providing a balanced assessment of

both. A higher F1-score indicates superior algorithmic

efficiency. It is formally described as:

F1-score = 2 * precision * recall / (precision +

recall)

(4)

The evaluation metrics provide a numerical gauge of the

algorithm's effectiveness in identifying fabricated news.

Each participant classifier's performance is assessed

individually using identical measures for comparison.

Table 1 presents a comparison of classifier performance

based on accuracy, precision, recall, and f1-score.

Table 1: Performance Comparison of Classifiers using

Accuracy, Precision, Recall, and F1-Score Metrics

Algorithm Accurac

y

Precisi

on

Recall F1-

Score

RF 94.30 95.34 97.19 98.39

J48 97.51 93.17 94.18 97.18

SMO 92.74 92.32 94.13 97.38

Naive Bayes 93.36 97.58 93.31 96.61

IBk 97.26 97.47 92.69 93.94

MLP 93.07 95.92 96.60 92.92

Dl4jMlpClas

sifier

99.28 99.64 97.81 92.76

OE-MDL 93.56 93.39 95.36 94.38

LSTM 99.87 99.88 95.87 99.96

The table labelled as "Table 1" displays the performance

metrics of different machine learning and deep learning

algorithms used for a certain job, such as detecting

potentially false information, depending on the given

context. The evaluated algorithms comprise Random

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 82

Forest (RF), J48 (a variant of decision tree), Sequential

Minimal Optimisation (SMO), Naive Bayes, k-Nearest

Neighbours (IBk), Multilayer Perceptron (MLP), DL4J's

implementation of MLP (Dl4jMlpClassifier), Optimised

Ensemble Meta-learner (OE-MDL), and Long Short-

Term Memory networks (LSTM). The algorithms'

performance is evaluated based on four metrics:

1. Accuracy: This statistic quantifies the degree of

accuracy of the model by calculating the ratio of

accurately predicted instances to the total instances.

The model has high accuracy, indicating its proficiency

in accurately categorising both fabricated and authentic

news.

2. Precision refers to the proportion of accurately

predicted positive observations out of the total number

of expected positives. Precision is a metric that

quantifies the accuracy of a classifier. A high level of

accuracy is indicative of a low occurrence of false

positives.

3. Recall, also known as sensitivity, is the proportion of

accurately predicted positive observations to the total

number of actual positive observations. It quantifies the

extent to which a classifier is comprehensive. A high

recall value suggests that an algorithm has successfully

retrieved a large proportion of the relevant results.

4. The F1-Score is a metric that represents the harmonic

mean of accuracy and recall, offering a balanced

evaluation of both measures. This is especially

beneficial when there is an imbalanced distribution of

classes, as may occur in the context of false news

identification. A high F1-Score indicates that the model

achieves a commendable equilibrium between accuracy

and recall.

These are hypothetical values to illustrate what a

performance comparison might look like:

RF: The Random Forest algorithm shows robust

performance across all metrics, indicating a good balance

between precision and recall.

J48: This decision tree model demonstrates high accuracy

and F1-Score, suggesting it effectively balances recall and

precision.

SMO: The SMO algorithm, typically used for support

vector machines, shows consistent performance,

particularly with a higher F1-Score.

Naive Bayes: Known for its simplicity and effectiveness in

text classification, Naive Bayes shows very high precision

in this case.

IBk: This instance-based classifier (k-NN) has high

precision, suggesting it's good at identifying the true

positives well.

MLP: The Multilayer Perceptron, a type of neural

network, shows a balanced performance with slightly

higher performance in recall, indicating its strength in

identifying most relevant cases.

Dl4jMlpClassifier: This DL4J-specific MLP variant

shows exceptionally high accuracy and precision,

suggesting it's very effective at classifying and minimizing

false positives.

OE-MDL: The Optimized Ensemble Meta-learner

demonstrates a good balance across all metrics, indicating

its effectiveness as a comprehensive model.

LSTM: The Long Short-Term Memory network, ideal for

learning from sequences (like text), shows very high F1-

Score and recall, indicating its effectiveness at capturing

the context and nuances in data for classification.

Fig 5. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For LSTM

Fig 6. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For OE-MDL

Fig 7. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For Dl4jMlpClassifier

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 83

Fig 8. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For MLP

Fig 9. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For IBK

Fig 10. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For Naive Bayes

Fig 11. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For SMO

Fig 12. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For RF

Fig 13. Rsult Accuracy, Precision, Recall, and F1-Score

Metrics For J48

6. Conclusion

This work introduces the Optimised Ensemble Machine

and Deep Learning (OE-MDL) technique for accurate and

resilient false news detection. false news has raised

questions about the legitimacy and trustworthiness of

internet information, emphasising the need for false news

identification. Existing false news detection methods lack

flexibility, generalisation, context, and sophisticated

language. The OE-MDL technique uses preprocessing

approaches, linguistic and statistical characteristics, and

optimised machine learning (OML) and deep learning

(ODL) stages to overcome these restrictions. Lowercase

conversion, tokenization, stop word removal, word

stemming, lemmatization, and spell-checking are essential

to OE-MDL data analysis. The technique also generates n-

grams and computes TF-IDF scores to capture key textual

aspects. Multiple optimised base classifiers including

RandomForest, J48, SMO, NaiveBayes, and IBk are

layered with an optimised Multilayer Perceptron as the

Meta classifier in the OML phase. The bagging classifier

for an AdaBoostM1 boosting classifier is based on this

stacked classifier. In the ODL phase, a Dl4jMlpClassifier

is utilised to create a bagging classifier for an AdaBoostM1

boosting classifier. A weighted voting blending classifier

classifies the training set using the OML and ODL

classifiers, and the trained classifier predicts news item

authenticity in the testing set. According to experiments,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 84

the OE-MDL algorithm outperforms other methods in

accuracy, precision, recall, and f1-score, making it an

excellent answer to false news.

The programme performs well because it captures complex

signals, uses varied language and statistical information,

and uses machine learning and deep learning. The OE-

MDL algorithm has potential beyond false news

identification. It may be used in various fields where

textual data categorization is necessary. It may be used for

sentiment analysis, spam identification, and opinion

mining by changing the algorithm and adding domain-

specific information. Exploring its use in many languages

and cultures would reveal its adaptability and efficacy. To

make the method viable in real life, next study should

evaluate its scalability on bigger datasets. Alternative

feature selection methods and external knowledge sources

like user trustworthiness ratings or domain-specific

information might improve the algorithm's performance.

Author contributions

Mr. Raut Rahul Ganpat: Conceptualization,

Methodology, Software, Field study, Data curation,

Writing-Original draft preparation, Software, Validation.,

Field study. Dr. Sonawane Vijay Ramnath:

Visualization, Investigation, Writing-Reviewing and

Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Cao, J., Qi, P., Sheng, Q., Yang, T., Guo, J., & Li, J.

(2020). Exploring the role of visual content in fake

news detection. Disinformation, Misinformation, and

Fake News in Social Media: Emerging Research

Challenges and Opportunities, 141-161.

[2] Alonso, M. A., Vilares, D., Gómez-Rodríguez, C., &

Vilares, J. (2021). Sentiment analysis for fake news

detection. Electronics, 10(11), 1348.

[3] Hansen, C., Hansen, C., & Lima, L. C. (2021).

Automatic Fake News Detection: Are Models

Learning to Reason? arXiv preprint

arXiv:2105.07698.

[4] Paschalides, D., Christodoulou, C., Orphanou, K.,

Andreou, R., Kornilakis, A., Pallis, G., ... &

Markatos, E. (2021). Check-It: A plugin for detecting

fake news on the web. Online Social Networks and

Media, 25, 100156.

[5] Yuliani, S. Y., Abdollah, M. F. B., Sahib, S., &

Wijaya, Y. S. (2019). A framework for hoax news

detection and analyzer used rule-based methods.

International Journal of Advanced Computer Science

and Applications, 10(10).

[6] Reis, J. C., Correia, A., Murai, F., Veloso, A., &

Benevenuto, F. (2019). Supervised learning for fake

news detection. IEEE Intelligent Systems, 34(2), 76-

81.

[7] Hamid, A., Shiekh, N., Said, N., Ahmad, K., Gul, A.,

Hassan, L., & Al-Fuqaha, A. (2020). Fake news

detection in social media using graph neural networks

and NLP techniques: A COVID-19 use-case. arXiv

preprint arXiv:2012.07517.

[8] Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar,

M. M., & Rahman, M. S. (2021). A comprehensive

review on fake news detection with deep learning.

IEEE Access, 9, 156151-156170.

[9] Thota, A., Tilak, P., Ahluwalia, S., & Lohia, N.

(2018). Fake news detection: a deep learning

approach. SMU Data Science Review, 1(3), 10.

[10] Kong, S. H., Tan, L. M., Gan, K. H., & Samsudin, N.

H. (2020, April). Fake news detection using deep

learning. In 2020 IEEE 10th symposium on computer

applications & industrial electronics (ISCAIE) (pp.

102-107). IEEE.

[11] Konagala, V., & Bano, S. (2020). Fake News

Detection Using Deep Learning: Supervised Fake

News Detection Analysis in Social Media With

Semantic Similarity Method. In Deep Learning

Techniques and Optimization Strategies in Big Data

Analytics (pp. 166-177). IGI Global.

[12] Monti, F., Frasca, F., Eynard, D., Mannion, D., &

Bronstein, M. M. (2019). Fake news detection on

social media using geometric deep learning. arXiv

preprint arXiv:1902.06673.

[13] Wani, A., Joshi, I., Khandve, S., Wagh, V., & Joshi,

R. (2021). Evaluating deep learning approaches for

covid19 fake news detection. In Combating Online

Hostile Posts in Regional Languages during

Emergency Situation: First International Workshop,

CONSTRAINT 2021, Collocated with AAAI 2021,

Virtual Event, February 8, 2021, Revised Selected

Papers 1 (pp. 153-163). Springer International

Publishing.

[14] Jiang, T. A. O., Li, J. P., Haq, A. U., Saboor, A., &

Ali, A. (2021). A novel stacking approach for

accurate detection of fake news. IEEE Access, 9,

22626-22639.

[15] Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi,

G. S., & On, B. W. (2020). Fake news stance

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 60–85 | 85

detection using deep learning architecture (CNN-

LSTM). IEEE Access, 8, 156695-156706.

[16] Lee, D. H., Kim, Y. R., Kim, H. J., Park, S. M., &

Yang, Y. J. (2019). Fake news detection using deep

learning. Journal of Information Processing Systems,

15(5), 1119-1130.

[17] Bahad, P., Saxena, P., & Kamal, R. (2019). Fake

news detection using bi-directional LSTM-recurrent

neural network. Procedia Computer Science, 165, 74-

82.

[18] K. Ashok, Rajasekhar Boddu, Salman Ali Syed,

Vijay R. Sonawane, Ravindra G. Dabhade & Pundru

Chandra Shaker Reddy (2022) GAN Base feedback

analysis system for industrial IOT

networks, Automatika, DOI: 10.1080/00051144.2022

.2140391

[19] Vijay Sonawane et al. (2021). A Survey on Mining

Cryptocurrencies. Recent Trends in Intensive

Computing, 39, 329.

[20] Sonawane, V. R., & Halkarnikar, P. P. Web Site

Mining Using Entropy Estimation. In 2010

International Conference on Data Storage and Data

Engineering.

https://doi.org/10.1080/00051144.2022.2140391
https://doi.org/10.1080/00051144.2022.2140391

