

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 86–99 | 86

A High-Level Ensemble Feature Selection Algorithm for Mitigating the

Dimensionality in Stress Data

Mr. Prashant M. Suryavanshi*1, Dr. Pradnya A. Vikhar 2

Submitted: 15/11/2023 Revised: 27/12/2023 Accepted: 07/01/2024

Abstract: Stress is a common response to environmental and psychological factors, negatively impacting mental and physical health.

Analyzing stress data with multiple features can reveal contributing factors and aid in developing effective stress management strategies.

However, the large dimensionality poses challenges due to many features, leading to overfitting. Feature selection is crucial in mitigating

this issue and improving machine learning model performance on stress data. This paper proposes a high-level ensemble feature selection

(HLE-FS) algorithm for stress data. The algorithm aims to identify the most informative features relevant to stress classification, which

can lead to a better understanding of the underlying factors contributing to stress and more accurate stress prediction. The proposed

algorithm consists of several steps to preprocess the input stress data and apply different feature selection techniques. First, missing

values in the data are imputed using hybrid imputation, and categorical variables are converted to numerical using categorical feature

target encoding. The data is then normalized to ensure compatibility with machine learning algorithms. The algorithm applies three

feature selection techniques in an ensemble approach, including filter-based, wrapper-based, and embedding-based methods. The filter-

based feature selection technique uses information gain and ranker search to rank the features. The wrapper-based technique employs

Naïve Bayes classifier and Greedy Stepwise search with ThreadPoolExecutor to search for the best feature subsets using a wrapper

approach. Finally, the embedding-based technique uses Principal Component Analysis (PCA) to reduce the dimensionality of the data,

and Ranker search to rank the PCA-derived features. The results of the three feature selection techniques are combined using a majority

voting mechanism, and the top-k features are extracted from the combined results. The algorithm then evaluates the performance of the

dataset with and without feature selection using a Random Forest classifier. Experimental results on stress data demonstrate that the

proposed algorithm outperforms the existing system regarding the accuracy and computational efficiency. The algorithm effectively

selects the most informative features from the input stress data, improving stress classification performance.

Keywords: HLE-FS, Naïve Bayes, ThreadPoolExecutor, PCA.

1. Introduction

Stress, a common response to environmental and

psychological factors, negatively impacts mental and

physical health [1]. Analyzing stress data, which often

involves multiple features, can help reveal contributing

factors and aid in the development of effective stress

management strategies. However, the challenge of high

dimensionality poses obstacles in stress data analysis due

to the large number of features compared to instances,

leading to overfitting. Feature selection is crucial in

mitigating this issue and improving the performance of

machine learning models on stress data [2].

Stress data capture physiological, psychological, and

behavioural measures associated with stress, such as heart

rate, cortisol levels, self-reported stress scales, and

behavioural responses. Analyzing stress data can provide

insights into the underlying factors contributing to stress,

identify patterns and correlations, and facilitate the

development of targeted interventions for stress

management.

Analyzing stress data is important because it can help

researchers and practitioners better understand stress’s

causes, consequences, and mechanisms [3]. Identifying the

most informative features relevant to stress classification

makes it possible to gain insights into the underlying

factors contributing to stress, which can inform the

development of more effective stress management

strategies. Stress data analysis can also aid in identifying

high-risk individuals or populations who may benefit from

targeted interventions and can contribute to advancing

stress research and clinical practice.

Feature selection is a critical step in mitigating the curse of

dimensionality in stress data analysis [4]. The large

dimensionality refers to the challenge of dealing with

many features compared to instances in a dataset, which

can lead to overfitting and decreased model performance.

Feature selection involves identifying a subset of the most

relevant features from the original feature set, which can

lead to improved model performance, reduced

1,2Department of Computer Science and Engineering
1 Research Scholar, Dr. A. P. J. Abdul Kalam University, Indore
2 Research Supervisor, Dr. A. P. J. Abdul Kalam University,

Indore, (M.P.), India.

 E-mail Id: 1sprashant1234@gmail.com,
2pradnyav123@gmail.com

* Corresponding Author: Mr. Prashant M. Suryavanshi

 Email: sprashant1234@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 87

computational complexity, and enhanced interpretability of

results. Selecting the most informative features can help

improve the accuracy, robustness, and efficiency of

machine learning models on stress data.

Existing feature selection systems for stress data typically

employ individual feature selection techniques, such as

filter-based, wrapper-based, or embedding-based methods,

without taking advantage of the strengths of different

techniques [5]. Filter-based methods rank features based

on certain criteria, such as information gain or correlation,

and select the top-k features. Wrapper-based methods use a

search algorithm combined with a classifier to evaluate the

performance of different feature subsets. Embedding-based

methods, such as Principal Component Analysis (PCA),

transform the original features into a lower-dimensional

space while retaining the most important information.

However, these existing systems may suffer limitations,

such as limited accuracy, computational inefficiency, and

the inability to handle missing values and categorical

variables in stress data effectively.

To address these limitations, this paper proposes a high-

level ensemble feature selection (HLE-FS) algorithm for

stress data. The proposed algorithm aims to overcome the

curse of dimensionality in stress data analysis by

combining multiple feature selection techniques in an

ensemble approach. The algorithm consists of several

steps: data preprocessing, missing value imputation,

categorical variable conversion, normalization, and

application of filter-based, wrapper-based, and embedding-

based techniques. The results of the three techniques are

combined using a majority voting mechanism, and the top-

k features are extracted from the combined results. The

algorithm then evaluates the performance of the dataset

with and without feature selection using Random Forest, a

popular machine learning algorithm.

The proposed algorithm has several advantages over

existing systems. First, it takes advantage of the strengths

of different feature selection techniques in an ensemble

approach, which can improve accuracy and robustness in

selecting the most informative features from stress data.

Second, it effectively handles missing values and

categorical variables through imputation and conversion

techniques. Finally, it utilizes a majority voting mechanism

to combine the results of different techniques, which can

lead to enhanced performance compared to individual

techniques.

The paper is organized as follows. Section 2 provides an

overview of related work on feature selection for stress

data. Section 3 presents the proposed HLE-FS algorithm in

detail, including the steps for data preprocessing and the

ensemble feature selection techniques. Section 4 describes

the experimental setup and presents the results and analysis

of the algorithm’s performance. Finally, Section 5

concludes the paper and highlights future research

directions.

2 Related Works:

Alghowinem et al. [6] propose a framework for

interpreting depression detection models by analyzing the

commonly selected features using various feature selection

methods. They extract 902 behavioural cues from speech

behaviour, speech prosody, eye movement, and head pose

from three real-world depression datasets. They then use

38 feature selection algorithms to select the most

promising features for modelling depression detection. The

results of their framework show that speech behaviour

features, such as pauses, are the most distinctive features of

the depression detection model. They also identify other

strong feature groups from different modalities, such as

speech prosody, eye activity, and head movement. Their

framework provides an interpretation of the model and

improves the accuracy of depression detection by using a

small number of selected features, which can reduce

processing time.

Lin et al. [7] designed a neural network model based on

Long Short-Term Memory (LSTM) to recognize stress

using thermal and RGB imaging features. They experiment

with different hyper parameters, activation functions, and

optimizers to improve the model. They also apply feature

selection and bimodal distribution removal techniques.

Finally, they compare their results with another research

paper focusing on the same problem and dataset and

discuss the reasons for any differences.

Majid et al. [8] propose a framework for classifying

perceived stress using multimodal data acquired from

physiological sensors, including electroencephalography

(EEG), galvanic skin response (GSR), and

photoplethysmography (PPG). They extract time and

frequency domain features from these signals and use a

frequency band selection algorithm to select the optimum

EEG frequency subband. They also use a wrapper-based

method for optimal feature selection. They perform stress

level classification using three different classifiers fed with

a fusion of the selected features from three modalities.

They achieve significant accuracy in classifying stress

levels.

Parsi et al. [9] propose a feature selection technique based

on the minimal redundancy-maximal relevance method to

identify an optimal combination of heart rate variability

and breathing rate metrics for detecting stress in drivers.

First, they use galvanic skin response to measure ground

truth stress levels. They then use a support vector machine

algorithm with a radial basis function kernel and selected

features to predict stress levels. The proposed method

achieves high accuracy in predicting stress in the target

dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 88

Reddy et al. [10] focus on stress prediction in working IT

professionals and propose machine learning techniques.

The authors may have conducted a study where they

collected data from IT professionals, such as their stress

levels, and then used machine learning algorithms or

techniques to analyze the data and make predictions about

stress levels. They use various features related to work-

related stress and apply machine learning algorithms to

predict stress levels. The aim is to identify stress-prone

employees and take appropriate measures to manage their

stress.

Jaiswal et al. [11] propose a novel approach that leverages

a combination of observed facial behaviour and self-

reported personality scores as powerful features for

training deep neural networks, enabling accurate prediction

of depression and anxiety scores. Furthermore, they argue

that considering personality traits and behavioural features

extracted from faces can improve prediction performance.

Rashid et al. [12] review recent neuroimaging-based

approaches for predicting mental illness using features

from different neuroimaging modalities such as structural,

functional, and diffusion magnetic resonance imaging data.

They introduce the concept of “predictome”, which

involves incorporating multiple brain network-based

features into a predictive model to jointly estimate features

unique to a specific disorder and predict subjects

accordingly.

Mousavian et al. [13] focus on feature selection and

handling imbalanced data in the context of depression

detection using machine learning. They investigate the

correlation between regional volumes of the brain and

depression and explore various feature selection techniques

along with resampling methods to handle imbalanced data.

They compare the performance of Random Forests (RF)

and support vector machines (SVM) for depression

detection.

Tadesse et al. [14] propose using natural language

processing (NLP) techniques, feature selection and

machine learning approaches to analyze posts from Reddit

social media forums to detect depression attitudes of online

users. They identify a lexicon of more common terms

among depressed accounts and evaluate the efficiency of

their proposed method. They compare the performance of

different classifiers, such as Support Vector Machine

(SVM) and Multilayer Perceptron (MLP), for depression

detection.

Saeed et al. [15] present a pioneering approach for

classifying long-term stress by harnessing the power of

resting state EEG signal recordings and state-of-the-art

machine learning algorithms. They meticulously

investigate various methodologies for feature selection and

labelling of the EEG signals and rigorously evaluate the

performance of diverse classifiers to achieve accurate

stress classification.

The disadvantages of the existing works mentioned include

the following:

• Limited interpretation of the model: While

Alghowinem et al. [6], Lin et al. [7], and other works

propose various frameworks and algorithms for stress

detection, they may lack a comprehensive

interpretation of the selected features and their

relevance to stress classification. It can make it difficult

to understand the underlying factors contributing to

stress and may hinder the interpretability of the model.

• Suboptimal feature selection techniques: Some

existing works may use a single feature selection

technique or a limited set of techniques, which may not

capture the optimal set of features for stress

classification. It can result in suboptimal performance

and reduced accuracy in stress prediction.

• Handling missing values and categorical variables:

Existing works may not effectively handle missing

values in the stress data or categorical variables, which

can affect the quality of feature selection and

classification results. It can lead to biased or

incomplete feature selection and inaccurate stress

prediction.

The high-level ensemble feature selection (HLE-FS)

algorithm aims to tackle these disadvantages by

incorporating multiple feature selection techniques in an

ensemble approach. First, the algorithm preprocesses the

stress data by handling missing values, converting

categorical variables, and normalizing the data. Then, it

applies three different feature selection techniques in an

ensemble approach, including filter-based, wrapper-based,

and embedding-based methods. It ensures a more

comprehensive and robust selection of informative features

relevant to stress classification.

3. High-level ensemble feature selection (HLE-FS)

algorithm

Ensemble feature selection techniques have gained

increasing attention in machine learning and data mining

research due to their ability to improve the accuracy and

stability of feature selection. High-level ensemble feature

selection (HLE-FS) is a novel approach that combines

multiple feature selection methods to obtain a robust and

informative feature set for machine learning models. HLE-

FS leverages the strengths of different feature selection

methods, such as filter-based, wrapper-based, and

embedding-based, to overcome their limitations and

enhance feature selection performance.

The HLE-FS algorithm is designed to handle stress data.

The goal is to identify a reduced set of informative features

that can accurately classify individuals’ stress levels (e.g.,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 89

low, medium, high). The algorithm incorporates a series of

steps, including data preprocessing, filter-based feature

selection, wrapper-based feature selection, embedding-

based feature selection, and ensemble feature selection.

The final feature set obtained through HLE-FS is then

evaluated using a machine learning model like Random

Forest to assess its performance in stress data

classification.

The key motivation behind the HLE-FS algorithm is to

harness the complementary strengths of different feature

selection methods to improve the accuracy and robustness

of stress data classification. HLE-FS aims to select a

reduced feature set that captures the most informative and

relevant features for stress classification by combining

filter-based, wrapper-based, and embedding-based

methods in a majority voting ensemble approach. The

algorithm also incorporates parallelization techniques to

enhance computational efficiency and utilizes statistical

analysis for performance evaluation and robustness

assessment. Algorithm 1 shows the proposed HLE-FS

algorithm in detail.

Algorithm 1: High-level ensemble feature selection

(HLE-FS) algorithm

Input : Stress data with n instances and m features

Target variable indicating the level of stress

(e.g. low, medium, high)

Output : A reduced feature set that is informative for

stress classification

Step 1 : Load the stress data set.

Step 2 : Check for missing values in the dataset.

Step 3 : If there are missing values, impute them

using a hybrid imputation. // Algorithm 2

Step 4 : Convert any categorical features in the data

to numerical ones using a categorical

feature target encoding. // Algorithm 3

Step 5 : Normalize the data using a standardization

technique:

For each feature:

a. Compute the mean (average) and

standard deviation (SD) of the

values in the feature.

b. Subtract the mean from each value

in the feature.

c. Divide the result from step b by

the standard deviation to obtain

the standardized values.

d. Update the data by replacing the

original values in the feature with

the corresponding standardized

values.

Step 6 : Apply filter-based feature selection using

InfoGainAttributeEval and Ranker search:

• FS_result_1 =

Apply_InfoGainAttributeEval(Nor

malized_data)

• FS_result_1 =

Ranker_search(FS_result_1)

Step 7 : Apply wrapper-based feature selection

using ClassifierSubsetEval with Naïve

Bayes and GreedyStepwise with

ThreadPoolExecutor: // Algorithm 4

• FS_result_2 =

Apply_ClassifierSubsetEval_with

_Naive_Bayes(Normalized_data)

• FS_result_2 =

GreedyStepwise_search(FS_result

_2, limit=10, parallel=True)

Step 8 : Apply embedding-based feature selection

using PCA and Ranker Search:

• FS_result_3 =

Apply_PCA(Normalized_data)

• FS_result_3 =

Ranker_search(FS_result_3)

Step 9 : Perform majority voting among the three

feature selection results: // Algorithm 5

• FS_result =

Majority_Voting(FS_result_1,

FS_result_2, FS_result_3)

Step 10 : Extract top-k features from the FS_result:

• Final_FS_result =

Extract_top_k_features(FS_result,

k)

Step 11 : Evaluate the performance of the dataset

with and without feature selection using

Random Forest:

• Evaluate_with_Random_Forest(N

ormalized_data, Final_FS_result)

The HLE-FS algorithm is a step-by-step process for

reducing the feature set of stress data to select informative

features for stress classification. The algorithm takes stress

data with n instances and m features as input and aims to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 90

identify a reduced feature set that can be used for accurate

stress classification.

The algorithm begins by loading the stress data set and

checking for missing values in Step 1 and Step 2,

respectively. If there are missing values, they are imputed

using a hybrid imputation technique in Step 3. Then, in

Step 4, any categorical variables in the data are converted

to numerical using a categorical feature target encoding

technique. Next, in Step 5, the data is normalized using a

standardization technique to ensure all features are on a

similar scale.

Filter-based feature selection is then applied in Step 6

using the InfoGainAttributeEval method, followed by a

Ranker search to rank the features based on their

importance.

In Step 7, wrapper-based feature selection is applied using

the ClassifierSubsetEval method with Naïve Bayes as the

classifier and a GreedyStepwise search with

ThreadPoolExecutor for parallel processing. Finally, in

Step 8, embedding-based feature selection is applied using

Principal Component Analysis (PCA) followed by a

Ranker search to rank the features.

In Step 9, a majority voting mechanism is applied among

the three feature selection results obtained from Steps 6, 7,

and 8 to determine the most important features. Then, in

Step 10, the top-k features are extracted from the combined

feature selection results in Step 9, where k is a predefined

value. Finally, in Step 11, the performance of the dataset is

evaluated using a Random Forest classifier with both the

original oversampled data and the reduced feature set

obtained from Step 10 to compare the performance of the

dataset with and without feature selection.

3.1 Hybrid imputation algorithm:

The Hybrid Imputation algorithm imputes missing values

in a dataset using a combination of mean and K-nearest

neighbours (KNN) imputation. The Hybrid Imputation

algorithm is needed to address the limitations of existing

imputation methods, such as mean imputation and KNN

imputation. For example, mean imputation may result in

biased imputed values and not account for local patterns or

trends in the data. In contrast, KNN imputation relies

heavily on the choice of the K value and can be

computationally expensive. The Hybrid Imputation

algorithm combines the strengths of mean imputation and

KNN imputation to overcome these limitations and provide

a more accurate and flexible imputation approach.

3.1.1 Advantages of Hybrid Imputation:

Specifically, the Hybrid Imputation algorithm has the

following advantages:

• The Hybrid Imputation algorithm combines the

strengths of mean imputation and KNN imputation,

addressing their limitations. Mean imputation provides

a simple and quick initial imputation, while KNN

imputation refines the imputed values based on the

values of nearby data points.

• The Hybrid Imputation algorithm takes advantage of

the local patterns and trends in the data through KNN

imputation, which can lead to more accurate

imputations than global mean imputation.

• The Hybrid Imputation algorithm can handle missing

values in datasets with different characteristics, such as

datasets with extreme values, sparse data points, or

irregular data distributions, by combining the strengths

of mean imputation and KNN imputation.

• The Hybrid Imputation algorithm balances

computational efficiency and imputation accuracy by

using mean imputation as an initial step, followed by

KNN imputation for refinement, which can be

computationally more efficient than applying KNN

imputation to the entire dataset.

3.1.2 Implementation of Hybrid Imputation:

The input to the hybrid imputation algorithm is a dataset

with missing values, parameters such as the K value for

KNN imputation (i.e., the number of nearest neighbours to

consider) and a threshold for defining “nearby” data points.

The Hybrid Imputation algorithm begins by identifying the

features in the dataset that have missing values. Then, for

each feature with missing values, the algorithm calculates

the mean of the available values for that feature. The

calculated mean is then used to replace the missing values

in that feature.

Next, the algorithm applies KNN imputation to refine

further the imputed values based on the values of nearby

data points. Finally, the algorithm calculates the distance to

all other data points in the dataset for each missing value

using a metric such as Euclidean distance. Then, the

nearest K data points, where K is the predefined value for

KNN imputation, are selected based on the calculated

distances.

The algorithm then takes the average of the values of the K

nearest data points for each missing value. This average is

used to refine the initial mean-imputed value. It refined the

KNN-imputed value is then used to replace the initial

mean-imputed value for each feature with missing values.

These steps of applying mean imputation first and then

refining with KNN imputation are repeated for all features

with missing values in the dataset. Finally, the algorithm

outputs the dataset with imputed values using the

combined approach of mean imputation and KNN

imputation, providing a more accurate imputation of

missing values. Algorithm 2 discussed the proposed hybrid

imputation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 91

Algorithm 2: Hybrid Imputation

Input : Dataset with missing values

K value for KNN imputation (number of

nearest neighbours to consider)

The threshold for defining “nearby” data

points

Output : Dataset with imputed values using

combined mean imputation and KNN

imputation

Step 1 : Identify the features with missing values in

the dataset.

Step 2 : For each feature with missing values,

calculate the mean of the available values

for that feature.

Step 3 : Replace the missing values with the

calculated mean for each feature.

Step 4 : For each feature with missing values, apply

KNN imputation to refine further the

imputed values based on the values of

nearby data points.

Step 5 : Calculate the distance to all other data

points in the dataset for each missing value

using a metric such as Euclidean distance.

Step 6 : Select the K nearest data points based on

the calculated distances, where K is the

predefined K value for KNN imputation.

Step 7 : Take the average of the K nearest data

points for each missing value.

Step 8 : Replace the initial mean-imputed value

with the refined KNN-imputed value for

each feature with missing values.

Step 9 : Repeat steps 4-8 for all features with

missing values.

Step 10 : Output the dataset with imputed values

using the combined mean and KNN

imputations.

3.2 Categorical Feature Target Encoding:

Categorical feature target encoding, also known as target-

based encoding, converts categorical features into

numerical representations based on their relationship with

the target feature in a supervised machine learning setting.

It involves encoding categorical features using the mean of

the target feature to create numerical labels for each

category in the categorical feature.

The basic idea behind target encoding is to capture the

relationship between the categorical and target features,

which can be useful for predictive modelling. By

incorporating target feature information into the encoding

process, target encoding can improve model performance

and provide more meaningful numerical representations of

categorical features.

The steps involved in categorical feature target encoding

are as follows:

• Group the data by the categorical feature.

• For each category in the categorical feature, calculate a

mean of the target feature within that category.

• Assign the calculated statistical measure as the

numerical label for each feature in the categorical

feature.

• Replace the original categorical values with their

corresponding numerical labels in the data.

The traditional label encoding technique assigns numerical

labels to categories in a categorical feature based on their

order or frequency of occurrence. However, this approach

has some potential disadvantages:

• Arbitrary numerical assignments: Label encoding

may introduce arbitrary numerical assignments to

categories, which can lead to misinterpretation of

relationships between categories. For example,

assigning higher numerical values to categories with

higher frequency may imply higher importance, which

may not always be true.

• Lack of capturing target feature information: Label

encoding does not consider the relationship between

the categorical feature and the target feature, which

may result in loss of information. The target feature

contains valuable information useful for predictive

modelling, and not utilizing this information can lead to

suboptimal results.

On the other hand, target encoding has several advantages:

• Incorporation of target variable information: Target

encoding utilizes the target feature information to

encode categorical features, capturing the relationship

between the categorical feature and the target feature. It

can improve model performance as the encoded labels

carry information about the target feature.

• Handling of categorical features with high

cardinality: Target encoding can handle categorical

features with high cardinality (i.e., many unique

categories) better than label encoding. In label

encoding, high cardinality categorical features may

result in many numerical labels, leading to noisy or

sparse representations. Target encoding can provide a

more stable encoding even with high cardinality

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 92

features by using the mean of the target feature for each

category.

• Reduction of arbitrary numerical assignments:

Target encoding avoids arbitrary numerical

assignments by encoding categories based on their

relationship with the target feature. It can result in more

meaningful and interpretable numerical labels,

improving model interpretability.

Target encoding has the advantage of utilizing target

variable information, handling high cardinality features

better, and reducing arbitrary numerical assignments

compared to traditional label encoding. Algorithm 3

discusses the categorical feature target encoding.

Algorithm 3: Categorical Feature Target Encoding

Input : Data with categorical features

List of categorical features to be converted

Output : Data with target-encoded numerical labels

for categorical features

Step 1 : Load the data with categorical features.

Step 2 : Identify the categorical features to be

converted to numerical labels.

Step 3 : For each categorical feature:

a. Compute the mean of the target

variable for each category in the

categorical feature.

b. Create a mapping of each category

to its corresponding mean target

value.

c. Update the data by replacing the

original categorical values with the

corresponding target-encoded

numerical labels using the

mapping created in Step 3b.

3.3 Filter-based feature selection using Information

Gain and Ranker search:

In the HLE-FS algorithm, Filter-based feature selection

using Information Gain and Ranker search is used to

identify and select the most relevant features from a dataset

based on their information gain and ranker search

techniques.

Information gain is a measure used to quantify the

information a feature provides about the target variable in a

dataset. It is commonly used in decision tree algorithms to

select the most informative features for splitting the data.

Features with higher information gain are considered more

important or relevant to the prediction task.

Ranker search is a technique used to rank features based on

their importance or relevance to the target variable. Ranker

search algorithms typically assign scores or rank to

features based on certain criteria such as statistical

measures, feature importance measures, or other domain-

specific metrics.

Filter-based feature selection using Information Gain and

Ranker search typically involves the following steps:

• Compute Information Gain: Information gain is

calculated for each feature in the dataset using the

entropy measure mentioned in Eq. (1). This quantifies

each feature’s information about the target variable.

Information_Gain(feature) = E(tv) -

WAE(feature)

(1)

Where E(tv) is the entropy of the target variable, which

measures the impurity or randomness of the target

variable’s distribution in the dataset.

WAE(feature) is the weighted average entropy of the target

variable after splitting the data based on the values of the

feature. It is calculated by summing the target variable’s

entropies for each feature value, weighted by the

proportion of samples with that value.

• Rank Features: The features are then ranked based on

their information gain scores, with higher scores

indicating more informative features.

• Apply Ranker Search: A ranker search algorithm is

applied to further rank the features based on additional

criteria such as feature importance measures. This step

helps to refine the feature ranking and identify the most

relevant features for the prediction task.

Higher information gain values indicate more informative

features, and features with higher information gain are

generally considered more important or relevant for the

prediction task.

3.4 Wrapper-based feature selection using Naïve Bayes,

GreedyStepwise and ThreadPoolExecutor:

Wrapper-based feature selection is a type of feature

selection method that evaluates the performance of a

machine learning model using a subset of features and

selects the best subset of features based on their

performance. One commonly used technique for wrapper-

based feature selection is using a specific classifier, such as

Naïve Bayes, along with a search algorithm like

GreedyStepwise for selecting subsets of features. In

addition, a thread pool executor is a concurrent executor

that can parallelize the computation and speed up the

feature selection process.

Here’s an overview of the steps involved in this approach:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 93

• Load and preprocess the data: Load the dataset and

perform any necessary preprocessing steps, such as

data normalization, handling missing values, and

encoding categorical variables.

• Choose a classifier: Select a machine learning

classifier to evaluate the subsets of features. In this

case, Naïve Bayes is chosen as the classifier.

• Define the evaluation measure: Specify an evaluation

measure or performance metric that will be used to

evaluate the performance of the classifier on each

subset of features. For example, accuracy, precision,

recall, F1-score, etc.

• Implement the search algorithm: Choose a search

algorithm, such as GreedyStepwise, that will be used to

search for the best subset of features. This algorithm

starts with an empty feature subset and iteratively adds

or removes features based on their impact on the

evaluation measure.

• Implement parallel computation using

ThreadPoolExecutor: Use ThreadPoolExecutor to

parallelize the evaluation of different subsets of

features, which can speed up the feature selection

process by evaluating multiple subsets concurrently.

• Evaluate feature subsets: For each subset of features,

train the classifier on the subset of features using cross-

validation or a holdout validation set, and evaluate its

performance using the chosen evaluation measure.

• Update the feature subset: Update the feature subset

based on the classifier’s performance on the current

subset of features, according to the search algorithm.

For example, if adding a feature improves the

performance, it is included in the subset; otherwise, it is

removed.

• Repeat the process: Repeat steps 5-7 until a stopping

criterion is met, such as reaching a desired subset size

or no further improvement in the evaluation measure.

• Output the selected feature subset: Once the search

algorithm converges, the final selected subset of

features can be output as the reduced feature set for

training a machine learning model.

Algorithm 4 discussed the proposed Wrapper-based feature

selection.

Algorithm 4: Wrapper-based feature selection using

Naïve Bayes, GreedyStepwise and

ThreadPoolExecutor

Input : Stress data with n instances and m features

Target variable indicating the level of stress

(e.g. low, medium, high)

Output : A reduced feature set

Step 1 : Load and preprocess the stress data

Step 2 : Choose Naïve Bayes classifier

Step 3 : Define the evaluation measure (e.g.,

accuracy)

Step 4 : Implement the GreedyStepwise search

algorithm.

Step 5 : Implement parallel computation using

ThreadPoolExecutor.

Step 6 : Evaluate feature subsets:

Step 7 : a. For each subset of features:

i. Train the classifier on the subset

of features

ii. Evaluate its performance using

a cross-validation set

Step 8 : Update the feature subset based on the

performance.

Step 9 : Repeat the process until the stopping

criterion is met.

Step

10

: Output the selected feature subset

3.4.1 Naïve Bayes:

Naïve Bayes is a simple and widely used probabilistic

classification algorithm based on Bayes’ theorem. It is

particularly well-suited for text classification and spam

filtering tasks, but it can also be used for other

classification tasks where the feature independence

assumption holds.

Here’s a detailed explanation of the Naïve Bayes

algorithm:

1. Probability and Bayes’ Theorem: Naïve Bayes

algorithm is based on probability theory, specifically

Bayes’ theorem. Bayes’ theorem is a mathematical

formula that calculates an event’s conditional

probability, given that another event has already

occurred. The formula is as follows:

P(A|B) = P(A) * P(B|A) / P(B) (2)

Where: P(A|B) is the conditional probability of event A

was given event B has occurred. P(A) is the prior

probability of event A.P(B|A) is the probability of event B

occurring, given that event, A has occurred. P(B) is the

probability of event B occurring.

2. Assumption of Feature Independence: Naïve Bayes

algorithm assumes that the features used for

classification are independent, meaning that the

presence or absence of one feature does not affect the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 94

presence or absence of another feature. It is a strong

assumption and may not always hold in real-world

data, but it simplifies the calculation of probabilities

and makes the algorithm computationally efficient.

3. Training Phase:

a. Input Data: Naïve Bayes algorithm takes labelled

training data as input, where each data point consists

of a set of features (attributes) and a corresponding

class label.

b. Feature and Class Probabilities: The algorithm

calculates the probabilities of each feature occurring

in each class from the training data. For categorical

features, it calculates the probability of each category

occurring in each class. For continuous features, it

models the distribution of feature values in each class

using probability density functions.

c. Class Prior Probabilities: The algorithm also

calculates the prior probabilities of each class, which

are the probabilities of each class occurring in the

training data.

4. Prediction Phase:

a. Input Data: Naïve Bayes algorithm takes a new,

unlabeled data point as input, consisting of a set of

features.

b. feature Probabilities: The algorithm calculates the

probabilities of the features occurring in the new

data point using the probabilities calculated during

the training phase.

c. Posterior Probabilities: The algorithm calculates

the conditional probabilities of each class given the

observed feature values in the new data point using

Bayes’ theorem.

d. Prediction: The algorithm assigns the class label

with the highest posterior probability as the

predicted class label for the new data point.

5. Evaluation and Model Updating: Naïve Bayes

algorithm can be evaluated using performance metrics

such as accuracy, precision, recall, F1-score, etc. The

model can be updated with new training data if needed

by re-calculating the feature and class probabilities.

Advantages of the Naïve Bayes algorithm:

• Simple and easy to implement.

• Computationally efficient, especially for large

datasets.

• Performs well on text classification and spam

filtering tasks.

• Handles categorical and continuous features.

3.4.2 GreedyStepwise:

GreedyStepwise search is a feature selection algorithm

used in wrapper-based feature selection methods. A

stepwise search algorithm combines a greedy approach

with a stepwise selection strategy to select a subset of

features from a larger set of features. The algorithm

iteratively selects or removes features based on their

impact on the performance of a chosen machine-learning

model, typically using a validation set or cross-validation.

Here’s a detailed explanation of the GreedyStepwise

search algorithm:

1. Input Data: GreedyStepwise search takes a dataset

with features and corresponding class labels as input

and a machine learning model for performance

evaluation.

2. Initialization: The algorithm starts with an empty set

of selected features and an initial set of candidate

features, typically including all available features.

3. Feature Evaluation: The algorithm evaluates the

machine learning model’s performance using the

selected set of features, usually through a validation set

or cross-validation. This evaluation is used as the initial

performance score.

4. Greedy Approach:

a. Forward Selection: The algorithm iteratively adds

one candidate feature at a time to the selected set of

features and evaluates the machine learning model’s

performance with the expanded set of features. The

feature that results in the highest performance

improvement, as measured by a predefined

performance metric, is selected and added to the

selected set of features.

b. Backward Elimination: The algorithm iteratively

removes one feature at a time from the selected set

of features and evaluates the machine learning

model’s performance with the reduced set of

features. The feature that results in the highest

performance improvement, as measured by the

predefined performance metric, is removed from the

selected set of features.

5. Stepwise Selection:

a. Stopping Criteria: The algorithm continues the

forward selection and backward elimination steps

until a stopping criterion is met. This criterion can

be a predefined number of iterations, a threshold for

performance improvement, or any other condition

the user specifies.

b. Best Subset Selection: The algorithm keeps track

of the best subset of features that resulted in the

highest performance score so far at each iteration.

This best subset is updated whenever a feature is

added or removed from the selected set of features.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 95

6. Final Subset of Features: Once the stopping criterion

is met, the algorithm returns the final subset of selected

features that resulted in the highest performance score

during the iterations.

7. Model Evaluation and Updating: The selected subset

of features can be used to train a machine learning

model, and its performance can be evaluated using

performance metrics such as accuracy, precision, recall,

F1-score, etc. The model can be updated with new

training data, and the feature selection process can be

repeated if needed.

Advantages of GreedyStepwise search:

• Combines the advantages of the greedy approach and

stepwise selection strategy.

• Can handle large feature spaces by iteratively selecting

or removing features based on their impact on

performance.

• It can be used with any machine learning model for

performance evaluation.

• Allows for fine-grained control over the feature

selection process with customizable stopping criteria.

3.4.3 ThreadPoolExecutor:

ThreadPoolExecutor is a concurrent programming

technique to perform feature subset evaluation in parallel.

It allows for faster and more efficient computation of the

performance of different feature subsets using cross-

validation.

Here’s a detailed explanation of how parallel computation

using ThreadPoolExecutor can be implemented in

Algorithm 4:

1. ThreadPoolExecutor: ThreadPoolExecutor is a class

in Java that provides an easy way to create a pool of

worker threads that can perform tasks concurrently. It

can be used to parallelize this algorithm’s evaluation of

feature subsets.

2. Feature subset evaluation: In Algorithm 4, for each

subset of features, the classifier is trained on that subset

and its performance is evaluated using cross-validation.

This step can be computationally expensive, especially

if the dataset or the number of features is large.

3. Parallel computation: To speed up the feature subset

evaluation process, ThreadPoolExecutor can create a

pool of worker threads that can evaluate different

feature subsets concurrently. Each worker thread can

train the classifier and evaluate its performance for a

specific subset of features.

4. Efficiency and speed: Using ThreadPoolExecutor,

multiple feature subsets can be evaluated in parallel,

significantly reducing the computation time compared

to sequential evaluation. It can lead to a more efficient

and faster feature selection process, allowing quicker

identification of the optimal feature subset.

5. Implementation: The algorithm can create an instance

of ThreadPoolExecutor with a specified number of

threads, depending on the available hardware resources,

to implement parallel computation using

ThreadPoolExecutor. Then, the feature subsets can be

distributed among the worker threads, and each thread

can independently train the classifier and evaluate its

performance. The results can be collected and updated

in the algorithm accordingly.

3.5 Embedding-based feature selection using PCA and

Ranker Search:Embedding-based feature selection using

PCA (Principal Component Analysis) and a Ranker Search

algorithm is a method used to reduce the dimensionality of

a dataset by transforming the original features into a lower-

dimensional space using PCA and then ranking the

transformed features based on their importance using a

Ranker Search algorithm. Here’s a detailed explanation of

each step:

1. Principal Component Analysis (PCA): PCA is a

statistical technique commonly used for dimensionality

reduction in machine learning. It works by finding the

principal components of the data, which are linear

combinations of the original features that capture the

most important patterns or variations in the data. These

principal components are orthogonal and are sorted by

importance, with the first principal component

capturing the most variance in the data.

2. Embedding-based feature selection: In this method,

PCA is used to embed the original features of the

dataset into a lower-dimensional space. It is done by

calculating the principal components of the dataset and

then using them as the new features for the subsequent

feature selection step.

3. Ranker Search algorithm: Once the features are

transformed into a lower-dimensional space using

PCA, a Ranker Search algorithm is used to rank the

importance of the transformed features. The Ranker

Search algorithm evaluates the importance of each

feature based on the feature importance score. The

features are ranked in descending order based on their

importance, with the most important feature ranked

first.

4. Feature selection: The transformed features are then

selected based on their rankings. The top-ranked

features considered the most important in the lower-

dimensional space, are selected as the reduced feature

set for further analysis or modelling. The number of

top-ranked features selected can be determined based

on a predefined threshold.

5. Benefits of embedding-based feature selection using

PCA and Ranker Search algorithm: This method has

several benefits. First, PCA can effectively reduce the

dimensionality of the dataset by transforming the

original features into a lower-dimensional space while

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 96

retaining the most important patterns or variations in

the data. It can help to overcome the curse of

dimensionality and improve the performance of

subsequent modelling algorithms. Second, the Ranker

Search algorithm provides a systematic and data-driven

way to rank the importance of the transformed features,

allowing for efficient feature selection. Finally, using a

combination of embedding-based feature selection

using PCA and Ranker Search algorithm, it is possible

to identify the most important features in the lower-

dimensional space, leading to a more interpretable and

efficient feature subset for further analysis or

modelling.

6. Implementation: To implement embedding-based

feature selection using PCA and Ranker Search

algorithm, the following steps can be followed:

a. Perform PCA on the original feature matrix to

obtain the principal components.

b. Rank the principal components based on their

importance using a Ranker Search algorithm, such

as a feature importance score.

c. Select the top-ranked principal components as the

reduced feature set for further analysis or

modelling.

d. Optionally, the number of top-ranked principal

components can be determined based on a

predefined threshold.

3.6 Majority voting-based feature selection:

The Majority Voting based Feature Selection algorithm is

a method that combines the results of three different

feature selection methods: Filter-based, Wrapper-based,

and Embedding-based, to select relevant features from a

dataset. The algorithm takes the results of these three

methods as input, which are represented as lists of selected

features (FS_result_1, FS_result_2, FS_result_3).

First, the algorithm concatenates these three lists of

features to create a single list called all_features. Then, it

creates an empty dictionary called vote_count to track each

feature’s vote count.

Next, the algorithm iterates through each feature in the list

of all_features. For each feature, it checks if it is already

present in the vote_count dictionary. If not, it adds the

feature to the dictionary with an initial vote count of 1. If

the feature is already in the dictionary, it increments its

vote count by 1.

After counting the votes for all features, the algorithm

creates an empty list called FS_result, which will store the

final list of selected features. It then iterates through each

feature and its vote count in the vote_count dictionary. If

the vote count of a feature is greater than or equal to 2, the

feature is appended to the FS_result list.

Finally, after iterating through all the features and their

vote counts, the algorithm returns the FS_result list as the

final list of selected features. The majority voting

algorithm is discussed in Algorithm 5.

Algorithm 5: Majority voting-based feature

selection

Input : Filter-based feature selection results

(FS_result_1), Wrapper-based feature

selection results (FS_result_2),

Embedding-based feature selection

results (FS_result_3)

Output : FS_result

Step 1 : all_features = concatenate(FS_result_1,

FS_result_2, FS_result_3)

Step 2 : vote_count = create_empty_dictionary()

Step 3 : FOR EACH feature IN all_features:

Step 4 : IF feature NOT IN vote_count:

Step 5 : vote_count[feature] = 1

Step 6 : ELSE:

Step 7 : vote_count[feature] += 1

Step 8 : FS_result = create_empty_list()

Step 9 : FOR EACH feature, count IN

vote_count:

Step 10 : IF count >= 2:

Step 11 : append feature TO FS_result

Step 12 : RETURN FS_result

In essence, the Majority Voting based Feature Selection

algorithm aims to improve the robustness and stability of

feature selection by considering the consensus of multiple

feature selection methods. Features that receive votes from

at least two of the three methods are selected as the final

set of relevant features, potentially leading to improved

model performance and generalization.

4. Experimental Results and Discussions:

This section presents the experimental results and

discussions of a high-level ensemble feature selection

(HLE-FS) algorithm for stress data. The algorithm is

implemented in Java and utilizes two datasets, namely the

Swell-EDA and WESAD-EDA datasets. The Swell-EDA

dataset consists of 9849 rows and 57 features, while the

WESAD-EDA dataset contains 3395 rows and 49 features.

Using the Random Forest classifier, the algorithm’s

performance is evaluated by comparing the dataset’s

accuracy, precision, recall, and F1-score with and without

feature selection. Finally, this section provides a detailed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 97

analysis of the experimental results and discusses the

findings, highlighting the effectiveness of the HLE-FS

algorithm for stress data feature selection.

In the context of a classifier, accuracy, precision, recall,

and F1-score are commonly used performance metrics to

evaluate the performance of a classifier in machine

learning.

Accuracy measures how well a classifier correctly predicts

the overall number of instances. It is the ratio of correctly

predicted instances to the total number of instances in the

dataset. The formula for accuracy is:

Accuracy = (Number of Correct Predictions) /

(Total Number of Predictions)

(3)

Precision measures how well a classifier correctly predicts

the positive instances out of the instances it predicted as

positive. It is the ratio of the number of true positive

predictions to the sum of true positive and false positive

predictions. The formula for precision is:

Precision = (Number of True Positives) / (Number

of True Positives + Number of False Positives)

(4)

Recall, also known as sensitivity or true positive rate,

measures how well a classifier identifies all the positive

instances in the dataset. It is the ratio of the number of true

positive predictions to the sum of true positive and false

negative predictions. The formula for the recall is:

Recall = (Number of True Positives) / (Number of

True Positives + Number of False Negatives)

(5)

F1-score is a measure of the trade-off between precision

and recall. It is the harmonic mean of precision and recall

and provides a balanced measure of the classifier’s

performance. The formula for F1-score is:

F1-score = 2 * (Precision * Recall) / (Precision +

Recall)

(6)

These performance metrics are commonly used in

evaluating the effectiveness of a classifier in terms of its

accuracy, precision, recall, and F1-score and can provide

valuable insights into the performance of the HLE-FS

algorithm for stress data feature selection.

Table 1 compares the Swell-EDA dataset’s performance

before and after HLE-FS feature selection using the

Random Forest classifier.

Table 1: Performance comparison of the Swell-EDA

dataset before and after HLE-FS feature selection using

Random Forest classifier

Metrics Swell-EDA

dataset before

HLE-FS

Swell-EDA

dataset after

HLE-FS

Accuracy 51.00 88.00

Precision 51.86 87.80

Recall 51.00 88.00

F1-score 51.24 87.58

Figure 1 visually represents the performance comparison

of the Swell-EDA dataset before and after HLE-FS feature

selection using the Random Forest classifier.

Fig 1: Performance comparison of the Swell-EDA dataset

before and after HLE-FS feature selection using Random

Forest classifier

From Figure 1, we can see that applying the HLE-FS

technique to the Swell-EDA dataset has significantly

improved the performance of the machine learning model,

as evidenced by the higher values of accuracy, precision,

recall, and F1-score after applying the HLE-FS technique

compared to the original dataset without applying the

technique. It suggests that the HLE-FS technique has

helped improve the predictive accuracy and performance

of the machine learning model on the Swell-EDA dataset.

Furthermore, Table 2 compares the WESAD-EDA

dataset’s performance before and after HLE-FS feature

selection using the Random Forest classifier.

Table 2: Performance comparison of the WESAD-EDA

dataset before and after HLE-FS feature selection using

Random Forest classifier

Metrics WESAD-EDA

dataset before

HLE-FS

WESAD-EDA

dataset after

HLE-FS

Accuracy 69.00 91.00

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 98

Precision 69.04 92.05

Recall 69.00 91.00

F1-score 68.88 91.01

Figure 2 visually represents the performance comparison

of the WESAD-EDA dataset before and after HLE-FS

feature selection using the Random Forest classifier.

Fig 2: Performance comparison of the WESAD-EDA

dataset before and after HLE-FS feature selection using

Random Forest classifier

From Figure 2, we can see that applying the HLE-FS

technique to the WESAD-EDA dataset has significantly

improved the performance of the machine learning model,

as evidenced by the higher values of accuracy, precision,

recall, and F1-score after applying the HLE-FS technique

compared to the original dataset without applying the

technique. It suggests that the HLE-FS technique has

helped improve the machine learning model’s predictive

accuracy and performance on the WESAD-EDA dataset.

5. Conclusion:

In conclusion, this paper proposed a high-level ensemble

feature selection (HLE-FS) algorithm for stress data to

mitigate the challenges of large dimensionality and

improve machine learning model performance in stress

classification. The algorithm incorporated three feature

selection techniques - filter-based, wrapper-based, and

embedding-based methods - in an ensemble approach,

utilizing information gain, Naïve Bayes classifier,

GreedyStepwise search, Principal Component Analysis

(PCA), and Ranker search. The results of these techniques

were combined using a majority voting mechanism to

select the most informative features. The proposed

algorithm demonstrated superior accuracy and

computational efficiency performance compared to the

existing system, effectively identifying relevant features

and improving stress classification performance. Future

work can be carried out to enhance the proposed algorithm

further. One potential direction is to explore further other

feature selection techniques and algorithms, such as

genetic algorithms or recursive feature elimination, to

improve the selection of relevant features for stress data.

Further investigation can also be conducted to evaluate the

performance of the proposed algorithm on different types

of stress data, as well as in real-world stress prediction

scenarios.

Author contributions

Mr. Prashant M. Suryavanshi: Conceptualization,

Methodology, Software, Field study, Data curation,

Writing-Original draft preparation, Software, Validation.,

Field study. Dr. Pradnya A Vikhar: Visualization,

Investigation, Writing-Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Daniel, C. O. (2019). Effects of job stress on

employee’s performance. International Journal of

Business, Management and Social Research, 6(2),

375-382.

[2] Khaire, U. M., & Dhanalakshmi, R. (2022). Stability

of feature selection algorithm: A review. Journal of

King Saud University-Computer and Information

Sciences, 34(4), 1060-1073.

[3] Asif, A., Majid, M., & Anwar, S. M. (2019). Human

stress classification using EEG signals in response to

music tracks. Computers in biology and medicine,

107, 182-196.

[4] Hwangbo, H., Sharma, V., Arndt, C., & TerMaath, S.

(2023). A Randomized Subspace-based Approach for

Dimensionality Reduction and Important Variable

Selection. Journal of Machine Learning Research, 24,

1-30.

[5] Yang, P., Huang, H., & Liu, C. (2021). Feature

selection revisited in the single-cell era. Genome

Biology, 22, 1-17.

[6] Alghowinem, S. M., Gedeon, T., Goecke, R., Cohn,

J., & Parker, G. (2020). Interpretation of depression

detection models via feature selection methods. IEEE

Transactions on affective computing.

[7] Lin, S. Stress Recognition Using LSTM-Based

Neural Network Model with Feature Selection and

Bimodal Distribution Removal.

[8] Majid, M., Arsalan, A., & Anwar, S. M. (2022). A

Multimodal Perceived Stress Classification

Framework using Wearable Physiological Sensors.

arXiv preprint arXiv:2206.10846.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 | 99

[9] Parsi, A., O’Callaghan, D., & Lemley, J. (2023). A

Feature Selection Method for Driver Stress Detection

Using Heart Rate Variability and Breathing Rate.

arXiv preprint arXiv:2302.01602.

[10] Reddy, U. S., Thota, A. V., & Dharun, A. (2018,

December). Machine learning techniques for stress

prediction in working employees. In 2018 IEEE

International Conference on Computational

Intelligence and Computing Research (ICCIC) (pp. 1-

4). IEEE.

[11] Jaiswal, S., Song, S., & Valstar, M. (2019,

September). Automatic prediction of depression and

anxiety from behaviour and personality attributes. In

2019 8th international conference on affective

computing and intelligent interaction (acii) (pp. 1-7).

IEEE.

[12] Rashid, B., & Calhoun, V. (2020). Towards a

brain‐based predictome of mental illness. Human

brain mapping, 41(12), 3468-3535.

[13] Mousavian, M., Chen, J., & Greening, S. (2018).

Feature selection and imbalanced data handling for

depression detection. In Brain Informatics:

International Conference, BI 2018, Arlington, TX,

USA, December 7–9, 2018, Proceedings 11 (pp. 349-

358). Springer International Publishing.

[14] Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019).

Detection of depression-related posts in Reddit social

media forum. IEEE Access, 7, 44883-44893.

[15] Saeed, S. M. U., Anwar, S. M., Khalid, H., Majid,

M., & Bagci, U. (2020). EEG-based classification of

long-term stress using psychological labelling.

Sensors, 20(7), 1886.

