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Abstract: Stress is a common response to environmental and psychological factors, negatively impacting mental and physical health. 

Analyzing stress data with multiple features can reveal contributing factors and aid in developing effective stress management strategies. 

However, the large dimensionality poses challenges due to many features, leading to overfitting. Feature selection is crucial in mitigating 

this issue and improving machine learning model performance on stress data. This paper proposes a high-level ensemble feature selection 

(HLE-FS) algorithm for stress data. The algorithm aims to identify the most informative features relevant to stress classification, which 

can lead to a better understanding of the underlying factors contributing to stress and more accurate stress prediction. The proposed 

algorithm consists of several steps to preprocess the input stress data and apply different feature selection techniques. First, missing 

values in the data are imputed using hybrid imputation, and categorical variables are converted to numerical using categorical feature 

target encoding. The data is then normalized to ensure compatibility with machine learning algorithms. The algorithm applies three 

feature selection techniques in an ensemble approach, including filter-based, wrapper-based, and embedding-based methods. The filter-

based feature selection technique uses information gain and ranker search to rank the features. The wrapper-based technique employs 

Naïve Bayes classifier and Greedy Stepwise search with ThreadPoolExecutor to search for the best feature subsets using a wrapper 

approach. Finally, the embedding-based technique uses Principal Component Analysis (PCA) to reduce the dimensionality of the data, 

and Ranker search to rank the PCA-derived features. The results of the three feature selection techniques are combined using a majority 

voting mechanism, and the top-k features are extracted from the combined results. The algorithm then evaluates the performance of the 

dataset with and without feature selection using a Random Forest classifier. Experimental results on stress data demonstrate that the 

proposed algorithm outperforms the existing system regarding the accuracy and computational efficiency. The algorithm effectively 

selects the most informative features from the input stress data, improving stress classification performance. 
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1. Introduction 

Stress, a common response to environmental and 

psychological factors, negatively impacts mental and 

physical health [1]. Analyzing stress data, which often 

involves multiple features, can help reveal contributing 

factors and aid in the development of effective stress 

management strategies. However, the challenge of high 

dimensionality poses obstacles in stress data analysis due 

to the large number of features compared to instances, 

leading to overfitting. Feature selection is crucial in 

mitigating this issue and improving the performance of 

machine learning models on stress data [2]. 

Stress data capture physiological, psychological, and 

behavioural measures associated with stress, such as heart 

rate, cortisol levels, self-reported stress scales, and 

behavioural responses. Analyzing stress data can provide 

insights into the underlying factors contributing to stress, 

identify patterns and correlations, and facilitate the 

development of targeted interventions for stress 

management. 

Analyzing stress data is important because it can help 

researchers and practitioners better understand stress’s 

causes, consequences, and mechanisms [3]. Identifying the 

most informative features relevant to stress classification 

makes it possible to gain insights into the underlying 

factors contributing to stress, which can inform the 

development of more effective stress management 

strategies. Stress data analysis can also aid in identifying 

high-risk individuals or populations who may benefit from 

targeted interventions and can contribute to advancing 

stress research and clinical practice. 

Feature selection is a critical step in mitigating the curse of 

dimensionality in stress data analysis [4]. The large 

dimensionality refers to the challenge of dealing with 

many features compared to instances in a dataset, which 

can lead to overfitting and decreased model performance. 

Feature selection involves identifying a subset of the most 

relevant features from the original feature set, which can 

lead to improved model performance, reduced 
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computational complexity, and enhanced interpretability of 

results. Selecting the most informative features can help 

improve the accuracy, robustness, and efficiency of 

machine learning models on stress data. 

Existing feature selection systems for stress data typically 

employ individual feature selection techniques, such as 

filter-based, wrapper-based, or embedding-based methods, 

without taking advantage of the strengths of different 

techniques [5]. Filter-based methods rank features based 

on certain criteria, such as information gain or correlation, 

and select the top-k features. Wrapper-based methods use a 

search algorithm combined with a classifier to evaluate the 

performance of different feature subsets. Embedding-based 

methods, such as Principal Component Analysis (PCA), 

transform the original features into a lower-dimensional 

space while retaining the most important information. 

However, these existing systems may suffer limitations, 

such as limited accuracy, computational inefficiency, and 

the inability to handle missing values and categorical 

variables in stress data effectively. 

To address these limitations, this paper proposes a high-

level ensemble feature selection (HLE-FS) algorithm for 

stress data. The proposed algorithm aims to overcome the 

curse of dimensionality in stress data analysis by 

combining multiple feature selection techniques in an 

ensemble approach. The algorithm consists of several 

steps: data preprocessing, missing value imputation, 

categorical variable conversion, normalization, and 

application of filter-based, wrapper-based, and embedding-

based techniques. The results of the three techniques are 

combined using a majority voting mechanism, and the top-

k features are extracted from the combined results. The 

algorithm then evaluates the performance of the dataset 

with and without feature selection using Random Forest, a 

popular machine learning algorithm. 

The proposed algorithm has several advantages over 

existing systems. First, it takes advantage of the strengths 

of different feature selection techniques in an ensemble 

approach, which can improve accuracy and robustness in 

selecting the most informative features from stress data. 

Second, it effectively handles missing values and 

categorical variables through imputation and conversion 

techniques. Finally, it utilizes a majority voting mechanism 

to combine the results of different techniques, which can 

lead to enhanced performance compared to individual 

techniques. 

The paper is organized as follows. Section 2 provides an 

overview of related work on feature selection for stress 

data. Section 3 presents the proposed HLE-FS algorithm in 

detail, including the steps for data preprocessing and the 

ensemble feature selection techniques. Section 4 describes 

the experimental setup and presents the results and analysis 

of the algorithm’s performance. Finally, Section 5 

concludes the paper and highlights future research 

directions. 

2 Related Works: 

Alghowinem et al. [6] propose a framework for 

interpreting depression detection models by analyzing the 

commonly selected features using various feature selection 

methods. They extract 902 behavioural cues from speech 

behaviour, speech prosody, eye movement, and head pose 

from three real-world depression datasets. They then use 

38 feature selection algorithms to select the most 

promising features for modelling depression detection. The 

results of their framework show that speech behaviour 

features, such as pauses, are the most distinctive features of 

the depression detection model. They also identify other 

strong feature groups from different modalities, such as 

speech prosody, eye activity, and head movement. Their 

framework provides an interpretation of the model and 

improves the accuracy of depression detection by using a 

small number of selected features, which can reduce 

processing time. 

Lin et al. [7] designed a neural network model based on 

Long Short-Term Memory (LSTM) to recognize stress 

using thermal and RGB imaging features. They experiment 

with different hyper parameters, activation functions, and 

optimizers to improve the model. They also apply feature 

selection and bimodal distribution removal techniques. 

Finally, they compare their results with another research 

paper focusing on the same problem and dataset and 

discuss the reasons for any differences. 

Majid et al. [8] propose a framework for classifying 

perceived stress using multimodal data acquired from 

physiological sensors, including electroencephalography 

(EEG), galvanic skin response (GSR), and 

photoplethysmography (PPG). They extract time and 

frequency domain features from these signals and use a 

frequency band selection algorithm to select the optimum 

EEG frequency subband. They also use a wrapper-based 

method for optimal feature selection. They perform stress 

level classification using three different classifiers fed with 

a fusion of the selected features from three modalities. 

They achieve significant accuracy in classifying stress 

levels. 

Parsi et al. [9] propose a feature selection technique based 

on the minimal redundancy-maximal relevance method to 

identify an optimal combination of heart rate variability 

and breathing rate metrics for detecting stress in drivers. 

First, they use galvanic skin response to measure ground 

truth stress levels. They then use a support vector machine 

algorithm with a radial basis function kernel and selected 

features to predict stress levels. The proposed method 

achieves high accuracy in predicting stress in the target 

dataset. 
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Reddy et al. [10] focus on stress prediction in working IT 

professionals and propose machine learning techniques. 

The authors may have conducted a study where they 

collected data from IT professionals, such as their stress 

levels, and then used machine learning algorithms or 

techniques to analyze the data and make predictions about 

stress levels. They use various features related to work-

related stress and apply machine learning algorithms to 

predict stress levels. The aim is to identify stress-prone 

employees and take appropriate measures to manage their 

stress. 

Jaiswal et al. [11] propose a novel approach that leverages 

a combination of observed facial behaviour and self-

reported personality scores as powerful features for 

training deep neural networks, enabling accurate prediction 

of depression and anxiety scores. Furthermore, they argue 

that considering personality traits and behavioural features 

extracted from faces can improve prediction performance. 

Rashid et al. [12] review recent neuroimaging-based 

approaches for predicting mental illness using features 

from different neuroimaging modalities such as structural, 

functional, and diffusion magnetic resonance imaging data. 

They introduce the concept of “predictome”, which 

involves incorporating multiple brain network-based 

features into a predictive model to jointly estimate features 

unique to a specific disorder and predict subjects 

accordingly. 

Mousavian et al. [13] focus on feature selection and 

handling imbalanced data in the context of depression 

detection using machine learning. They investigate the 

correlation between regional volumes of the brain and 

depression and explore various feature selection techniques 

along with resampling methods to handle imbalanced data. 

They compare the performance of Random Forests (RF) 

and support vector machines (SVM) for depression 

detection. 

Tadesse et al. [14] propose using natural language 

processing (NLP) techniques, feature selection and 

machine learning approaches to analyze posts from Reddit 

social media forums to detect depression attitudes of online 

users. They identify a lexicon of more common terms 

among depressed accounts and evaluate the efficiency of 

their proposed method. They compare the performance of 

different classifiers, such as Support Vector Machine 

(SVM) and Multilayer Perceptron (MLP), for depression 

detection. 

Saeed et al. [15] present a pioneering approach for 

classifying long-term stress by harnessing the power of 

resting state EEG signal recordings and state-of-the-art 

machine learning algorithms. They meticulously 

investigate various methodologies for feature selection and 

labelling of the EEG signals and rigorously evaluate the 

performance of diverse classifiers to achieve accurate 

stress classification. 

The disadvantages of the existing works mentioned include 

the following: 

• Limited interpretation of the model: While 

Alghowinem et al. [6], Lin et al. [7], and other works 

propose various frameworks and algorithms for stress 

detection, they may lack a comprehensive 

interpretation of the selected features and their 

relevance to stress classification. It can make it difficult 

to understand the underlying factors contributing to 

stress and may hinder the interpretability of the model. 

• Suboptimal feature selection techniques: Some 

existing works may use a single feature selection 

technique or a limited set of techniques, which may not 

capture the optimal set of features for stress 

classification. It can result in suboptimal performance 

and reduced accuracy in stress prediction. 

• Handling missing values and categorical variables: 

Existing works may not effectively handle missing 

values in the stress data or categorical variables, which 

can affect the quality of feature selection and 

classification results. It can lead to biased or 

incomplete feature selection and inaccurate stress 

prediction. 

The high-level ensemble feature selection (HLE-FS) 

algorithm aims to tackle these disadvantages by 

incorporating multiple feature selection techniques in an 

ensemble approach. First, the algorithm preprocesses the 

stress data by handling missing values, converting 

categorical variables, and normalizing the data. Then, it 

applies three different feature selection techniques in an 

ensemble approach, including filter-based, wrapper-based, 

and embedding-based methods. It ensures a more 

comprehensive and robust selection of informative features 

relevant to stress classification. 

3. High-level ensemble feature selection (HLE-FS) 

algorithm 

Ensemble feature selection techniques have gained 

increasing attention in machine learning and data mining 

research due to their ability to improve the accuracy and 

stability of feature selection. High-level ensemble feature 

selection (HLE-FS) is a novel approach that combines 

multiple feature selection methods to obtain a robust and 

informative feature set for machine learning models. HLE-

FS leverages the strengths of different feature selection 

methods, such as filter-based, wrapper-based, and 

embedding-based, to overcome their limitations and 

enhance feature selection performance. 

The HLE-FS algorithm is designed to handle stress data. 

The goal is to identify a reduced set of informative features 

that can accurately classify individuals’ stress levels (e.g., 
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low, medium, high). The algorithm incorporates a series of 

steps, including data preprocessing, filter-based feature 

selection, wrapper-based feature selection, embedding-

based feature selection, and ensemble feature selection. 

The final feature set obtained through HLE-FS is then 

evaluated using a machine learning model like Random 

Forest to assess its performance in stress data 

classification. 

The key motivation behind the HLE-FS algorithm is to 

harness the complementary strengths of different feature 

selection methods to improve the accuracy and robustness 

of stress data classification. HLE-FS aims to select a 

reduced feature set that captures the most informative and 

relevant features for stress classification by combining 

filter-based, wrapper-based, and embedding-based 

methods in a majority voting ensemble approach. The 

algorithm also incorporates parallelization techniques to 

enhance computational efficiency and utilizes statistical 

analysis for performance evaluation and robustness 

assessment. Algorithm 1 shows the proposed HLE-FS 

algorithm in detail. 

Algorithm 1: High-level ensemble feature selection 

(HLE-FS) algorithm 

 

Input : Stress data with n instances and m features 

Target variable indicating the level of stress 

(e.g. low, medium, high) 

Output : A reduced feature set that is informative for 

stress classification 

Step 1 : Load the stress data set. 

Step 2 : Check for missing values in the dataset. 

Step 3 : If there are missing values, impute them 

using a hybrid imputation.  // Algorithm 2 

Step 4 : Convert any categorical features in the data 

to numerical ones using a categorical 

feature target encoding.  // Algorithm 3 

Step 5 : Normalize the data using a standardization 

technique: 

For each feature: 

a. Compute the mean (average) and 

standard deviation (SD) of the 

values in the feature. 

b. Subtract the mean from each value 

in the feature. 

c. Divide the result from step b by 

the standard deviation to obtain 

the standardized values. 

d. Update the data by replacing the 

original values in the feature with 

the corresponding standardized 

values. 

Step 6 : Apply filter-based feature selection using 

InfoGainAttributeEval and Ranker search: 

• FS_result_1 = 

Apply_InfoGainAttributeEval(Nor

malized_data) 

• FS_result_1 = 

Ranker_search(FS_result_1) 

Step 7 : Apply wrapper-based feature selection 

using ClassifierSubsetEval with Naïve 

Bayes and GreedyStepwise with 

ThreadPoolExecutor:    // Algorithm 4 

• FS_result_2 = 

Apply_ClassifierSubsetEval_with

_Naive_Bayes(Normalized_data) 

• FS_result_2 = 

GreedyStepwise_search(FS_result

_2, limit=10, parallel=True) 

Step 8 : Apply embedding-based feature selection 

using PCA and Ranker Search: 

• FS_result_3 = 

Apply_PCA(Normalized_data) 

• FS_result_3 = 

Ranker_search(FS_result_3) 

Step 9 : Perform majority voting among the three 

feature selection results:   // Algorithm 5 

• FS_result = 

Majority_Voting(FS_result_1, 

FS_result_2, FS_result_3) 

Step 10 : Extract top-k features from the FS_result: 

• Final_FS_result = 

Extract_top_k_features(FS_result, 

k) 

Step 11 : Evaluate the performance of the dataset 

with and without feature selection using 

Random Forest: 

• Evaluate_with_Random_Forest(N

ormalized_data, Final_FS_result) 

  

The HLE-FS algorithm is a step-by-step process for 

reducing the feature set of stress data to select informative 

features for stress classification. The algorithm takes stress 

data with n instances and m features as input and aims to 
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identify a reduced feature set that can be used for accurate 

stress classification. 

The algorithm begins by loading the stress data set and 

checking for missing values in Step 1 and Step 2, 

respectively. If there are missing values, they are imputed 

using a hybrid imputation technique in Step 3. Then, in 

Step 4, any categorical variables in the data are converted 

to numerical using a categorical feature target encoding 

technique. Next, in Step 5, the data is normalized using a 

standardization technique to ensure all features are on a 

similar scale. 

Filter-based feature selection is then applied in Step 6 

using the InfoGainAttributeEval method, followed by a 

Ranker search to rank the features based on their 

importance. 

In Step 7, wrapper-based feature selection is applied using 

the ClassifierSubsetEval method with Naïve Bayes as the 

classifier and a GreedyStepwise search with 

ThreadPoolExecutor for parallel processing. Finally, in 

Step 8, embedding-based feature selection is applied using 

Principal Component Analysis (PCA) followed by a 

Ranker search to rank the features. 

In Step 9, a majority voting mechanism is applied among 

the three feature selection results obtained from Steps 6, 7, 

and 8 to determine the most important features. Then, in 

Step 10, the top-k features are extracted from the combined 

feature selection results in Step 9, where k is a predefined 

value. Finally, in Step 11, the performance of the dataset is 

evaluated using a Random Forest classifier with both the 

original oversampled data and the reduced feature set 

obtained from Step 10 to compare the performance of the 

dataset with and without feature selection. 

3.1 Hybrid imputation algorithm: 

The Hybrid Imputation algorithm imputes missing values 

in a dataset using a combination of mean and K-nearest 

neighbours (KNN) imputation. The Hybrid Imputation 

algorithm is needed to address the limitations of existing 

imputation methods, such as mean imputation and KNN 

imputation. For example, mean imputation may result in 

biased imputed values and not account for local patterns or 

trends in the data. In contrast, KNN imputation relies 

heavily on the choice of the K value and can be 

computationally expensive. The Hybrid Imputation 

algorithm combines the strengths of mean imputation and 

KNN imputation to overcome these limitations and provide 

a more accurate and flexible imputation approach. 

3.1.1 Advantages of Hybrid Imputation: 

Specifically, the Hybrid Imputation algorithm has the 

following advantages: 

• The Hybrid Imputation algorithm combines the 

strengths of mean imputation and KNN imputation, 

addressing their limitations. Mean imputation provides 

a simple and quick initial imputation, while KNN 

imputation refines the imputed values based on the 

values of nearby data points. 

• The Hybrid Imputation algorithm takes advantage of 

the local patterns and trends in the data through KNN 

imputation, which can lead to more accurate 

imputations than global mean imputation. 

• The Hybrid Imputation algorithm can handle missing 

values in datasets with different characteristics, such as 

datasets with extreme values, sparse data points, or 

irregular data distributions, by combining the strengths 

of mean imputation and KNN imputation. 

• The Hybrid Imputation algorithm balances 

computational efficiency and imputation accuracy by 

using mean imputation as an initial step, followed by 

KNN imputation for refinement, which can be 

computationally more efficient than applying KNN 

imputation to the entire dataset. 

3.1.2 Implementation of Hybrid Imputation:  

The input to the hybrid imputation algorithm is a dataset 

with missing values, parameters such as the K value for 

KNN imputation (i.e., the number of nearest neighbours to 

consider) and a threshold for defining “nearby” data points.  

The Hybrid Imputation algorithm begins by identifying the 

features in the dataset that have missing values. Then, for 

each feature with missing values, the algorithm calculates 

the mean of the available values for that feature. The 

calculated mean is then used to replace the missing values 

in that feature. 

Next, the algorithm applies KNN imputation to refine 

further the imputed values based on the values of nearby 

data points. Finally, the algorithm calculates the distance to 

all other data points in the dataset for each missing value 

using a metric such as Euclidean distance. Then, the 

nearest K data points, where K is the predefined value for 

KNN imputation, are selected based on the calculated 

distances. 

The algorithm then takes the average of the values of the K 

nearest data points for each missing value. This average is 

used to refine the initial mean-imputed value. It refined the 

KNN-imputed value is then used to replace the initial 

mean-imputed value for each feature with missing values. 

These steps of applying mean imputation first and then 

refining with KNN imputation are repeated for all features 

with missing values in the dataset. Finally, the algorithm 

outputs the dataset with imputed values using the 

combined approach of mean imputation and KNN 

imputation, providing a more accurate imputation of 

missing values. Algorithm 2 discussed the proposed hybrid 

imputation. 
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Algorithm 2: Hybrid Imputation 

 

Input : Dataset with missing values 

K value for KNN imputation (number of 

nearest neighbours to consider) 

The threshold for defining “nearby” data 

points 

Output : Dataset with imputed values using 

combined mean imputation and KNN 

imputation 

Step 1 : Identify the features with missing values in 

the dataset. 

Step 2 : For each feature with missing values, 

calculate the mean of the available values 

for that feature. 

Step 3 : Replace the missing values with the 

calculated mean for each feature. 

Step 4 : For each feature with missing values, apply 

KNN imputation to refine further the 

imputed values based on the values of 

nearby data points. 

Step 5 : Calculate the distance to all other data 

points in the dataset for each missing value 

using a metric such as Euclidean distance. 

Step 6 : Select the K nearest data points based on 

the calculated distances, where K is the 

predefined K value for KNN imputation. 

Step 7 : Take the average of the K nearest data 

points for each missing value. 

Step 8 : Replace the initial mean-imputed value 

with the refined KNN-imputed value for 

each feature with missing values. 

Step 9 : Repeat steps 4-8 for all features with 

missing values. 

Step 10 : Output the dataset with imputed values 

using the combined mean and KNN 

imputations. 

3.2 Categorical Feature Target Encoding: 

Categorical feature target encoding, also known as target-

based encoding, converts categorical features into 

numerical representations based on their relationship with 

the target feature in a supervised machine learning setting. 

It involves encoding categorical features using the mean of 

the target feature to create numerical labels for each 

category in the categorical feature. 

The basic idea behind target encoding is to capture the 

relationship between the categorical and target features, 

which can be useful for predictive modelling. By 

incorporating target feature information into the encoding 

process, target encoding can improve model performance 

and provide more meaningful numerical representations of 

categorical features. 

The steps involved in categorical feature target encoding 

are as follows: 

• Group the data by the categorical feature. 

• For each category in the categorical feature, calculate a 

mean of the target feature within that category. 

• Assign the calculated statistical measure as the 

numerical label for each feature in the categorical 

feature. 

• Replace the original categorical values with their 

corresponding numerical labels in the data. 

The traditional label encoding technique assigns numerical 

labels to categories in a categorical feature based on their 

order or frequency of occurrence. However, this approach 

has some potential disadvantages: 

• Arbitrary numerical assignments: Label encoding 

may introduce arbitrary numerical assignments to 

categories, which can lead to misinterpretation of 

relationships between categories. For example, 

assigning higher numerical values to categories with 

higher frequency may imply higher importance, which 

may not always be true. 

• Lack of capturing target feature information: Label 

encoding does not consider the relationship between 

the categorical feature and the target feature, which 

may result in loss of information. The target feature 

contains valuable information useful for predictive 

modelling, and not utilizing this information can lead to 

suboptimal results. 

On the other hand, target encoding has several advantages: 

• Incorporation of target variable information: Target 

encoding utilizes the target feature information to 

encode categorical features, capturing the relationship 

between the categorical feature and the target feature. It 

can improve model performance as the encoded labels 

carry information about the target feature. 

• Handling of categorical features with high 

cardinality: Target encoding can handle categorical 

features with high cardinality (i.e., many unique 

categories) better than label encoding. In label 

encoding, high cardinality categorical features may 

result in many numerical labels, leading to noisy or 

sparse representations. Target encoding can provide a 

more stable encoding even with high cardinality 
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features by using the mean of the target feature for each 

category. 

• Reduction of arbitrary numerical assignments: 

Target encoding avoids arbitrary numerical 

assignments by encoding categories based on their 

relationship with the target feature. It can result in more 

meaningful and interpretable numerical labels, 

improving model interpretability. 

Target encoding has the advantage of utilizing target 

variable information, handling high cardinality features 

better, and reducing arbitrary numerical assignments 

compared to traditional label encoding. Algorithm 3 

discusses the categorical feature target encoding. 

Algorithm 3: Categorical Feature Target Encoding 

Input : Data with categorical features 

List of categorical features to be converted 

Output : Data with target-encoded numerical labels 

for categorical features 

Step 1 : Load the data with categorical features. 

Step 2 : Identify the categorical features to be 

converted to numerical labels. 

Step 3 : For each categorical feature: 

a. Compute the mean of the target 

variable for each category in the 

categorical feature. 

b. Create a mapping of each category 

to its corresponding mean target 

value. 

c. Update the data by replacing the 

original categorical values with the 

corresponding target-encoded 

numerical labels using the 

mapping created in Step 3b. 

 

3.3 Filter-based feature selection using Information 

Gain and Ranker search: 

In the HLE-FS algorithm, Filter-based feature selection 

using Information Gain and Ranker search is used to 

identify and select the most relevant features from a dataset 

based on their information gain and ranker search 

techniques.  

Information gain is a measure used to quantify the 

information a feature provides about the target variable in a 

dataset. It is commonly used in decision tree algorithms to 

select the most informative features for splitting the data. 

Features with higher information gain are considered more 

important or relevant to the prediction task. 

Ranker search is a technique used to rank features based on 

their importance or relevance to the target variable. Ranker 

search algorithms typically assign scores or rank to 

features based on certain criteria such as statistical 

measures, feature importance measures, or other domain-

specific metrics. 

Filter-based feature selection using Information Gain and 

Ranker search typically involves the following steps: 

• Compute Information Gain: Information gain is 

calculated for each feature in the dataset using the 

entropy measure mentioned in Eq. (1). This quantifies 

each feature’s information about the target variable. 

 

Information_Gain(feature) = E(tv) - 

WAE(feature) 

(1) 

  

Where E(tv) is the entropy of the target variable, which 

measures the impurity or randomness of the target 

variable’s distribution in the dataset. 

WAE(feature) is the weighted average entropy of the target 

variable after splitting the data based on the values of the 

feature. It is calculated by summing the target variable’s 

entropies for each feature value, weighted by the 

proportion of samples with that value. 

• Rank Features: The features are then ranked based on 

their information gain scores, with higher scores 

indicating more informative features. 

• Apply Ranker Search: A ranker search algorithm is 

applied to further rank the features based on additional 

criteria such as feature importance measures. This step 

helps to refine the feature ranking and identify the most 

relevant features for the prediction task. 

Higher information gain values indicate more informative 

features, and features with higher information gain are 

generally considered more important or relevant for the 

prediction task.  

3.4 Wrapper-based feature selection using Naïve Bayes, 

GreedyStepwise and ThreadPoolExecutor: 

Wrapper-based feature selection is a type of feature 

selection method that evaluates the performance of a 

machine learning model using a subset of features and 

selects the best subset of features based on their 

performance. One commonly used technique for wrapper-

based feature selection is using a specific classifier, such as 

Naïve Bayes, along with a search algorithm like 

GreedyStepwise for selecting subsets of features. In 

addition, a thread pool executor is a concurrent executor 

that can parallelize the computation and speed up the 

feature selection process. 

Here’s an overview of the steps involved in this approach: 
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• Load and preprocess the data: Load the dataset and 

perform any necessary preprocessing steps, such as 

data normalization, handling missing values, and 

encoding categorical variables. 

• Choose a classifier: Select a machine learning 

classifier to evaluate the subsets of features. In this 

case, Naïve Bayes is chosen as the classifier. 

• Define the evaluation measure: Specify an evaluation 

measure or performance metric that will be used to 

evaluate the performance of the classifier on each 

subset of features. For example, accuracy, precision, 

recall, F1-score, etc. 

• Implement the search algorithm: Choose a search 

algorithm, such as GreedyStepwise, that will be used to 

search for the best subset of features. This algorithm 

starts with an empty feature subset and iteratively adds 

or removes features based on their impact on the 

evaluation measure. 

• Implement parallel computation using 

ThreadPoolExecutor: Use ThreadPoolExecutor to 

parallelize the evaluation of different subsets of 

features, which can speed up the feature selection 

process by evaluating multiple subsets concurrently. 

• Evaluate feature subsets: For each subset of features, 

train the classifier on the subset of features using cross-

validation or a holdout validation set, and evaluate its 

performance using the chosen evaluation measure. 

• Update the feature subset: Update the feature subset 

based on the classifier’s performance on the current 

subset of features, according to the search algorithm. 

For example, if adding a feature improves the 

performance, it is included in the subset; otherwise, it is 

removed. 

• Repeat the process: Repeat steps 5-7 until a stopping 

criterion is met, such as reaching a desired subset size 

or no further improvement in the evaluation measure. 

• Output the selected feature subset: Once the search 

algorithm converges, the final selected subset of 

features can be output as the reduced feature set for 

training a machine learning model. 

Algorithm 4 discussed the proposed Wrapper-based feature 

selection. 

Algorithm 4: Wrapper-based feature selection using 

Naïve Bayes, GreedyStepwise and 

ThreadPoolExecutor 

 

Input : Stress data with n instances and m features 

Target variable indicating the level of stress 

(e.g. low, medium, high) 

Output : A reduced feature set 

Step 1 : Load and preprocess the stress data 

Step 2 : Choose Naïve Bayes classifier 

Step 3 : Define the evaluation measure (e.g., 

accuracy) 

Step 4 : Implement the GreedyStepwise search 

algorithm. 

Step 5 : Implement parallel computation using 

ThreadPoolExecutor. 

Step 6 : Evaluate feature subsets: 

Step 7 : a. For each subset of features: 

i. Train the classifier on the subset 

of features 

ii. Evaluate its performance using 

a cross-validation set 

Step 8 : Update the feature subset based on the 

performance. 

Step 9 : Repeat the process until the stopping 

criterion is met. 

Step 

10 

: Output the selected feature subset 

 

3.4.1 Naïve Bayes: 

Naïve Bayes is a simple and widely used probabilistic 

classification algorithm based on Bayes’ theorem. It is 

particularly well-suited for text classification and spam 

filtering tasks, but it can also be used for other 

classification tasks where the feature independence 

assumption holds. 

Here’s a detailed explanation of the Naïve Bayes 

algorithm: 

1. Probability and Bayes’ Theorem: Naïve Bayes 

algorithm is based on probability theory, specifically 

Bayes’ theorem. Bayes’ theorem is a mathematical 

formula that calculates an event’s conditional 

probability, given that another event has already 

occurred. The formula is as follows: 

P(A|B) = P(A) * P(B|A) / P(B) (2) 

Where: P(A|B) is the conditional probability of event A 

was given event B has occurred. P(A) is the prior 

probability of event A.P(B|A) is the probability of event B 

occurring, given that event, A has occurred. P(B) is the 

probability of event B occurring. 

2. Assumption of Feature Independence: Naïve Bayes 

algorithm assumes that the features used for 

classification are independent, meaning that the 

presence or absence of one feature does not affect the 
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presence or absence of another feature. It is a strong 

assumption and may not always hold in real-world 

data, but it simplifies the calculation of probabilities 

and makes the algorithm computationally efficient. 

3. Training Phase: 

a. Input Data: Naïve Bayes algorithm takes labelled 

training data as input, where each data point consists 

of a set of features (attributes) and a corresponding 

class label. 

b. Feature and Class Probabilities: The algorithm 

calculates the probabilities of each feature occurring 

in each class from the training data. For categorical 

features, it calculates the probability of each category 

occurring in each class. For continuous features, it 

models the distribution of feature values in each class 

using probability density functions. 

c. Class Prior Probabilities: The algorithm also 

calculates the prior probabilities of each class, which 

are the probabilities of each class occurring in the 

training data. 

4. Prediction Phase: 

a. Input Data: Naïve Bayes algorithm takes a new, 

unlabeled data point as input, consisting of a set of 

features. 

b. feature Probabilities: The algorithm calculates the 

probabilities of the features occurring in the new 

data point using the probabilities calculated during 

the training phase. 

c. Posterior Probabilities: The algorithm calculates 

the conditional probabilities of each class given the 

observed feature values in the new data point using 

Bayes’ theorem. 

d. Prediction: The algorithm assigns the class label 

with the highest posterior probability as the 

predicted class label for the new data point. 

5. Evaluation and Model Updating: Naïve Bayes 

algorithm can be evaluated using performance metrics 

such as accuracy, precision, recall, F1-score, etc. The 

model can be updated with new training data if needed 

by re-calculating the feature and class probabilities. 

Advantages of the Naïve Bayes algorithm: 

• Simple and easy to implement. 

• Computationally efficient, especially for large 

datasets. 

• Performs well on text classification and spam 

filtering tasks. 

• Handles categorical and continuous features. 

3.4.2 GreedyStepwise: 

GreedyStepwise search is a feature selection algorithm 

used in wrapper-based feature selection methods. A 

stepwise search algorithm combines a greedy approach 

with a stepwise selection strategy to select a subset of 

features from a larger set of features. The algorithm 

iteratively selects or removes features based on their 

impact on the performance of a chosen machine-learning 

model, typically using a validation set or cross-validation. 

Here’s a detailed explanation of the GreedyStepwise 

search algorithm: 

1. Input Data: GreedyStepwise search takes a dataset 

with features and corresponding class labels as input 

and a machine learning model for performance 

evaluation. 

2. Initialization: The algorithm starts with an empty set 

of selected features and an initial set of candidate 

features, typically including all available features. 

3. Feature Evaluation: The algorithm evaluates the 

machine learning model’s performance using the 

selected set of features, usually through a validation set 

or cross-validation. This evaluation is used as the initial 

performance score. 

4. Greedy Approach: 

a. Forward Selection: The algorithm iteratively adds 

one candidate feature at a time to the selected set of 

features and evaluates the machine learning model’s 

performance with the expanded set of features. The 

feature that results in the highest performance 

improvement, as measured by a predefined 

performance metric, is selected and added to the 

selected set of features. 

b. Backward Elimination: The algorithm iteratively 

removes one feature at a time from the selected set 

of features and evaluates the machine learning 

model’s performance with the reduced set of 

features. The feature that results in the highest 

performance improvement, as measured by the 

predefined performance metric, is removed from the 

selected set of features. 

5. Stepwise Selection: 

a. Stopping Criteria: The algorithm continues the 

forward selection and backward elimination steps 

until a stopping criterion is met. This criterion can 

be a predefined number of iterations, a threshold for 

performance improvement, or any other condition 

the user specifies. 

b. Best Subset Selection: The algorithm keeps track 

of the best subset of features that resulted in the 

highest performance score so far at each iteration. 

This best subset is updated whenever a feature is 

added or removed from the selected set of features. 
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6. Final Subset of Features: Once the stopping criterion 

is met, the algorithm returns the final subset of selected 

features that resulted in the highest performance score 

during the iterations. 

7. Model Evaluation and Updating: The selected subset 

of features can be used to train a machine learning 

model, and its performance can be evaluated using 

performance metrics such as accuracy, precision, recall, 

F1-score, etc. The model can be updated with new 

training data, and the feature selection process can be 

repeated if needed. 

Advantages of GreedyStepwise search: 

• Combines the advantages of the greedy approach and 

stepwise selection strategy. 

• Can handle large feature spaces by iteratively selecting 

or removing features based on their impact on 

performance. 

• It can be used with any machine learning model for 

performance evaluation. 

• Allows for fine-grained control over the feature 

selection process with customizable stopping criteria. 

3.4.3 ThreadPoolExecutor: 

ThreadPoolExecutor is a concurrent programming 

technique to perform feature subset evaluation in parallel. 

It allows for faster and more efficient computation of the 

performance of different feature subsets using cross-

validation. 

Here’s a detailed explanation of how parallel computation 

using ThreadPoolExecutor can be implemented in 

Algorithm 4: 

1. ThreadPoolExecutor: ThreadPoolExecutor is a class 

in Java that provides an easy way to create a pool of 

worker threads that can perform tasks concurrently. It 

can be used to parallelize this algorithm’s evaluation of 

feature subsets. 

2. Feature subset evaluation: In Algorithm 4, for each 

subset of features, the classifier is trained on that subset 

and its performance is evaluated using cross-validation. 

This step can be computationally expensive, especially 

if the dataset or the number of features is large. 

3. Parallel computation: To speed up the feature subset 

evaluation process, ThreadPoolExecutor can create a 

pool of worker threads that can evaluate different 

feature subsets concurrently. Each worker thread can 

train the classifier and evaluate its performance for a 

specific subset of features. 

4. Efficiency and speed: Using ThreadPoolExecutor, 

multiple feature subsets can be evaluated in parallel, 

significantly reducing the computation time compared 

to sequential evaluation. It can lead to a more efficient 

and faster feature selection process, allowing quicker 

identification of the optimal feature subset. 

5. Implementation: The algorithm can create an instance 

of ThreadPoolExecutor with a specified number of 

threads, depending on the available hardware resources, 

to implement parallel computation using 

ThreadPoolExecutor. Then, the feature subsets can be 

distributed among the worker threads, and each thread 

can independently train the classifier and evaluate its 

performance. The results can be collected and updated 

in the algorithm accordingly. 

3.5 Embedding-based feature selection using PCA and 

Ranker Search:Embedding-based feature selection using 

PCA (Principal Component Analysis) and a Ranker Search 

algorithm is a method used to reduce the dimensionality of 

a dataset by transforming the original features into a lower-

dimensional space using PCA and then ranking the 

transformed features based on their importance using a 

Ranker Search algorithm. Here’s a detailed explanation of 

each step: 

1. Principal Component Analysis (PCA): PCA is a 

statistical technique commonly used for dimensionality 

reduction in machine learning. It works by finding the 

principal components of the data, which are linear 

combinations of the original features that capture the 

most important patterns or variations in the data. These 

principal components are orthogonal and are sorted by 

importance, with the first principal component 

capturing the most variance in the data. 

2. Embedding-based feature selection: In this method, 

PCA is used to embed the original features of the 

dataset into a lower-dimensional space. It is done by 

calculating the principal components of the dataset and 

then using them as the new features for the subsequent 

feature selection step. 

3. Ranker Search algorithm: Once the features are 

transformed into a lower-dimensional space using 

PCA, a Ranker Search algorithm is used to rank the 

importance of the transformed features. The Ranker 

Search algorithm evaluates the importance of each 

feature based on the feature importance score. The 

features are ranked in descending order based on their 

importance, with the most important feature ranked 

first. 

4. Feature selection: The transformed features are then 

selected based on their rankings. The top-ranked 

features considered the most important in the lower-

dimensional space, are selected as the reduced feature 

set for further analysis or modelling. The number of 

top-ranked features selected can be determined based 

on a predefined threshold. 

5. Benefits of embedding-based feature selection using 

PCA and Ranker Search algorithm: This method has 

several benefits. First, PCA can effectively reduce the 

dimensionality of the dataset by transforming the 

original features into a lower-dimensional space while 
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retaining the most important patterns or variations in 

the data. It can help to overcome the curse of 

dimensionality and improve the performance of 

subsequent modelling algorithms. Second, the Ranker 

Search algorithm provides a systematic and data-driven 

way to rank the importance of the transformed features, 

allowing for efficient feature selection. Finally, using a 

combination of embedding-based feature selection 

using PCA and Ranker Search algorithm, it is possible 

to identify the most important features in the lower-

dimensional space, leading to a more interpretable and 

efficient feature subset for further analysis or 

modelling. 

6. Implementation: To implement embedding-based 

feature selection using PCA and Ranker Search 

algorithm, the following steps can be followed: 

a. Perform PCA on the original feature matrix to 

obtain the principal components. 

b. Rank the principal components based on their 

importance using a Ranker Search algorithm, such 

as a feature importance score. 

c. Select the top-ranked principal components as the 

reduced feature set for further analysis or 

modelling. 

d. Optionally, the number of top-ranked principal 

components can be determined based on a 

predefined threshold. 

3.6 Majority voting-based feature selection: 

The Majority Voting based Feature Selection algorithm is 

a method that combines the results of three different 

feature selection methods: Filter-based, Wrapper-based, 

and Embedding-based, to select relevant features from a 

dataset. The algorithm takes the results of these three 

methods as input, which are represented as lists of selected 

features (FS_result_1, FS_result_2, FS_result_3). 

First, the algorithm concatenates these three lists of 

features to create a single list called all_features. Then, it 

creates an empty dictionary called vote_count to track each 

feature’s vote count. 

Next, the algorithm iterates through each feature in the list 

of all_features. For each feature, it checks if it is already 

present in the vote_count dictionary. If not, it adds the 

feature to the dictionary with an initial vote count of 1. If 

the feature is already in the dictionary, it increments its 

vote count by 1. 

After counting the votes for all features, the algorithm 

creates an empty list called FS_result, which will store the 

final list of selected features. It then iterates through each 

feature and its vote count in the vote_count dictionary. If 

the vote count of a feature is greater than or equal to 2, the 

feature is appended to the FS_result list. 

Finally, after iterating through all the features and their 

vote counts, the algorithm returns the FS_result list as the 

final list of selected features. The majority voting 

algorithm is discussed in Algorithm 5. 

Algorithm 5: Majority voting-based feature 

selection 

Input : Filter-based feature selection results 

(FS_result_1), Wrapper-based feature 

selection results (FS_result_2), 

Embedding-based feature selection 

results (FS_result_3) 

Output : FS_result 

Step 1 : all_features = concatenate(FS_result_1, 

FS_result_2, FS_result_3) 

Step 2 : vote_count = create_empty_dictionary() 

Step 3 : FOR EACH feature IN all_features: 

Step 4 :       IF feature NOT IN vote_count: 

Step 5 :             vote_count[feature] = 1 

Step 6 :       ELSE: 

Step 7 :             vote_count[feature] += 1 

Step 8 : FS_result = create_empty_list() 

Step 9 : FOR EACH feature, count IN 

vote_count: 

Step 10 :       IF count >= 2: 

Step 11 :             append feature TO FS_result 

Step 12 : RETURN FS_result 

 

In essence, the Majority Voting based Feature Selection 

algorithm aims to improve the robustness and stability of 

feature selection by considering the consensus of multiple 

feature selection methods. Features that receive votes from 

at least two of the three methods are selected as the final 

set of relevant features, potentially leading to improved 

model performance and generalization. 

4. Experimental Results and Discussions: 

This section presents the experimental results and 

discussions of a high-level ensemble feature selection 

(HLE-FS) algorithm for stress data. The algorithm is 

implemented in Java and utilizes two datasets, namely the 

Swell-EDA and WESAD-EDA datasets. The Swell-EDA 

dataset consists of 9849 rows and 57 features, while the 

WESAD-EDA dataset contains 3395 rows and 49 features. 

Using the Random Forest classifier, the algorithm’s 

performance is evaluated by comparing the dataset’s 

accuracy, precision, recall, and F1-score with and without 

feature selection. Finally, this section provides a detailed 
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analysis of the experimental results and discusses the 

findings, highlighting the effectiveness of the HLE-FS 

algorithm for stress data feature selection. 

In the context of a classifier, accuracy, precision, recall, 

and F1-score are commonly used performance metrics to 

evaluate the performance of a classifier in machine 

learning. 

Accuracy measures how well a classifier correctly predicts 

the overall number of instances. It is the ratio of correctly 

predicted instances to the total number of instances in the 

dataset. The formula for accuracy is: 

Accuracy = (Number of Correct Predictions) / 

(Total Number of Predictions) 

(3) 

Precision measures how well a classifier correctly predicts 

the positive instances out of the instances it predicted as 

positive. It is the ratio of the number of true positive 

predictions to the sum of true positive and false positive 

predictions. The formula for precision is: 

 

Precision = (Number of True Positives) / (Number 

of True Positives + Number of False Positives) 

(4) 

Recall, also known as sensitivity or true positive rate, 

measures how well a classifier identifies all the positive 

instances in the dataset. It is the ratio of the number of true 

positive predictions to the sum of true positive and false 

negative predictions. The formula for the recall is: 

 

Recall = (Number of True Positives) / (Number of 

True Positives + Number of False Negatives) 

(5) 

F1-score is a measure of the trade-off between precision 

and recall. It is the harmonic mean of precision and recall 

and provides a balanced measure of the classifier’s 

performance. The formula for F1-score is: 

F1-score = 2 * (Precision * Recall) / (Precision + 

Recall) 

(6) 

These performance metrics are commonly used in 

evaluating the effectiveness of a classifier in terms of its 

accuracy, precision, recall, and F1-score and can provide 

valuable insights into the performance of the HLE-FS 

algorithm for stress data feature selection. 

Table 1 compares the Swell-EDA dataset’s performance 

before and after HLE-FS feature selection using the 

Random Forest classifier. 

 

 

 

Table 1: Performance comparison of the Swell-EDA 

dataset before and after HLE-FS feature selection using 

Random Forest classifier 

Metrics Swell-EDA 

dataset before 

HLE-FS 

Swell-EDA 

dataset after 

HLE-FS 

Accuracy 51.00 88.00 

Precision 51.86 87.80 

Recall 51.00 88.00 

F1-score 51.24 87.58 

 

Figure 1 visually represents the performance comparison 

of the Swell-EDA dataset before and after HLE-FS feature 

selection using the Random Forest classifier. 

 

Fig 1: Performance comparison of the Swell-EDA dataset 

before and after HLE-FS feature selection using Random 

Forest classifier 

From Figure 1, we can see that applying the HLE-FS 

technique to the Swell-EDA dataset has significantly 

improved the performance of the machine learning model, 

as evidenced by the higher values of accuracy, precision, 

recall, and F1-score after applying the HLE-FS technique 

compared to the original dataset without applying the 

technique. It suggests that the HLE-FS technique has 

helped improve the predictive accuracy and performance 

of the machine learning model on the Swell-EDA dataset. 

Furthermore, Table 2 compares the WESAD-EDA 

dataset’s performance before and after HLE-FS feature 

selection using the Random Forest classifier. 

Table 2: Performance comparison of the WESAD-EDA 

dataset before and after HLE-FS feature selection using 

Random Forest classifier 

Metrics WESAD-EDA 

dataset before 

HLE-FS 

WESAD-EDA 

dataset after 

HLE-FS 

Accuracy 69.00 91.00 
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Precision 69.04 92.05 

Recall 69.00 91.00 

F1-score 68.88 91.01 

 

Figure 2 visually represents the performance comparison 

of the WESAD-EDA dataset before and after HLE-FS 

feature selection using the Random Forest classifier. 

 

Fig 2: Performance comparison of the WESAD-EDA 

dataset before and after HLE-FS feature selection using 

Random Forest classifier 

From Figure 2, we can see that applying the HLE-FS 

technique to the WESAD-EDA dataset has significantly 

improved the performance of the machine learning model, 

as evidenced by the higher values of accuracy, precision, 

recall, and F1-score after applying the HLE-FS technique 

compared to the original dataset without applying the 

technique. It suggests that the HLE-FS technique has 

helped improve the machine learning model’s predictive 

accuracy and performance on the WESAD-EDA dataset. 

5. Conclusion: 

In conclusion, this paper proposed a high-level ensemble 

feature selection (HLE-FS) algorithm for stress data to 

mitigate the challenges of large dimensionality and 

improve machine learning model performance in stress 

classification. The algorithm incorporated three feature 

selection techniques - filter-based, wrapper-based, and 

embedding-based methods - in an ensemble approach, 

utilizing information gain, Naïve Bayes classifier, 

GreedyStepwise search, Principal Component Analysis 

(PCA), and Ranker search. The results of these techniques 

were combined using a majority voting mechanism to 

select the most informative features. The proposed 

algorithm demonstrated superior accuracy and 

computational efficiency performance compared to the 

existing system, effectively identifying relevant features 

and improving stress classification performance. Future 

work can be carried out to enhance the proposed algorithm 

further. One potential direction is to explore further other 

feature selection techniques and algorithms, such as 

genetic algorithms or recursive feature elimination, to 

improve the selection of relevant features for stress data. 

Further investigation can also be conducted to evaluate the 

performance of the proposed algorithm on different types 

of stress data, as well as in real-world stress prediction 

scenarios. 

Author contributions 

Mr. Prashant M. Suryavanshi: Conceptualization, 

Methodology, Software, Field study, Data curation, 

Writing-Original draft preparation, Software, Validation., 

Field study. Dr. Pradnya A Vikhar: Visualization, 

Investigation, Writing-Reviewing and Editing. 

Conflicts of interest 

The authors declare no conflicts of interest. 

References 

[1] Daniel, C. O. (2019). Effects of job stress on 

employee’s performance. International Journal of 

Business, Management and Social Research, 6(2), 

375-382. 

[2] Khaire, U. M., & Dhanalakshmi, R. (2022). Stability 

of feature selection algorithm: A review. Journal of 

King Saud University-Computer and Information 

Sciences, 34(4), 1060-1073. 

[3] Asif, A., Majid, M., & Anwar, S. M. (2019). Human 

stress classification using EEG signals in response to 

music tracks. Computers in biology and medicine, 

107, 182-196. 

[4] Hwangbo, H., Sharma, V., Arndt, C., & TerMaath, S. 

(2023). A Randomized Subspace-based Approach for 

Dimensionality Reduction and Important Variable 

Selection. Journal of Machine Learning Research, 24, 

1-30. 

[5] Yang, P., Huang, H., & Liu, C. (2021). Feature 

selection revisited in the single-cell era. Genome 

Biology, 22, 1-17. 

[6] Alghowinem, S. M., Gedeon, T., Goecke, R., Cohn, 

J., & Parker, G. (2020). Interpretation of depression 

detection models via feature selection methods. IEEE 

Transactions on affective computing. 

[7] Lin, S. Stress Recognition Using LSTM-Based 

Neural Network Model with Feature Selection and 

Bimodal Distribution Removal. 

[8] Majid, M., Arsalan, A., & Anwar, S. M. (2022). A 

Multimodal Perceived Stress Classification 

Framework using Wearable Physiological Sensors. 

arXiv preprint arXiv:2206.10846. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(11s), 86–99 |  99 

[9] Parsi, A., O’Callaghan, D., & Lemley, J. (2023). A 

Feature Selection Method for Driver Stress Detection 

Using Heart Rate Variability and Breathing Rate. 

arXiv preprint arXiv:2302.01602. 

[10] Reddy, U. S., Thota, A. V., & Dharun, A. (2018, 

December). Machine learning techniques for stress 

prediction in working employees. In 2018 IEEE 

International Conference on Computational 

Intelligence and Computing Research (ICCIC) (pp. 1-

4). IEEE. 

[11] Jaiswal, S., Song, S., & Valstar, M. (2019, 

September). Automatic prediction of depression and 

anxiety from behaviour and personality attributes. In 

2019 8th international conference on affective 

computing and intelligent interaction (acii) (pp. 1-7). 

IEEE. 

[12] Rashid, B., & Calhoun, V. (2020). Towards a 

brain‐based predictome of mental illness. Human 

brain mapping, 41(12), 3468-3535. 

[13] Mousavian, M., Chen, J., & Greening, S. (2018). 

Feature selection and imbalanced data handling for 

depression detection. In Brain Informatics: 

International Conference, BI 2018, Arlington, TX, 

USA, December 7–9, 2018, Proceedings 11 (pp. 349-

358). Springer International Publishing. 

[14] Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). 

Detection of depression-related posts in Reddit social 

media forum. IEEE Access, 7, 44883-44893. 

[15] Saeed, S. M. U., Anwar, S. M., Khalid, H., Majid, 

M., & Bagci, U. (2020). EEG-based classification of 

long-term stress using psychological labelling. 

Sensors, 20(7), 1886. 


