

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 160

Abstractive Long Text Summarization using Large Language Models

1Gunjan Keswani, 2Wani Bisen, 3Hirkani Padwad, 4Yash Wankhedkar, 5Sudhanshu Pandey, 6Ayushi Soni

Submitted: 19/11/2023 Revised: 30/12/2023 Accepted: 11/01/2024

Abstract: Large Language Models (LLMs) have made significant strides in processing human-written texts. However, a major challenge

persists - the retention of context over extensive texts or multiple documents. The current approach of LLMs to retain context is often inefficient,

both in terms of storage and time. To address this issue, this paper proposes a novel approach for two key tasks - Summarization and Question

Answering. The methodology ensures that the LLM is not overwhelmed with unrelated, repetitive, or redundant data, thereby saving

considerable time and resources. This approach facilitates the generation of effective summaries and answers for the user, enhancing the overall

performance and efficiency of the LLM.

Keywords: Abstractive summarization; Large Language Models; LangChain; Natural Language Processing; Retrieval-

Augmented Generation

1. Introduction

Recent research has shown that in widely used summary

datasets, human annotators prefer LLM generated

summaries over the original reference summaries. The goal

of text summarization, a Natural Language Processing

(NLP) technique, is to extract the most important details

and contextual meaning from a given input while

minimizing the volume of text. It comes as no surprise that

NLP-based automatic summarization has found

widespread application in diverse scenarios, spanning a

range of document lengths, owing to the significant time

and resources required for manual summarization. Thanks

to recent breakthroughs in LLMs, abstractive

summarization is poised to become even faster and more

efficient than it was with earlier transformer models. This

study delves into abstractive summarization of lengthy

texts using LLMs. We define the functionality of LLMs in

the context of abstractive summarization for long texts, with

a specific focus on the Llama2 model, aiming to produce

precise and con- textually relevant summaries. Section III

provides a comprehensive exposition on the technologies

utilized in the learning process. Section IV contains a detailed

methodology for the development of the final model. Section

V is dedicated to discussing the results and conducting a

comparative analysis with existing liter- ature. Finally,

Section VI presents the conclusions and proposes potential

avenues for future research.

2. Related Work

In the realm of abstractive long text summarization,

several prominent transformer-based models have played a

pivotal role in advancing the field. These models,

including BERT, GPT-2, and XLNet, each bring their

distinctive architectural strengths to the table. [1]

Notably, Google’s BERT (Bidirectional En- coder

Representation from Transformers) has proven to be a

versatile choice for various NLP tasks. BERT operates

on the foundation of the Masked Language Model (MLM)

technique, transforming text into word embeddings based

on statistically derived similarity measures.[2]

To assess the quality of summaries generated by the BERT

model, researchers often employ a set of standard evaluation

metrics known as ROGUE, comparing the output with

human-generated summaries. In contrast, BART

(Bidirectional Auto-Regressive Transformer) has gained

recognition for surpassing BERT in performance. BART

introduces a novel pre-training method and architecture

that enables it to function as a sequence-to-sequence model

1Department of Computer Science and Engineering Shri Ramdeobaba

College of Engineering and Management (RCOEM) Nagpur, India

e-mail: keswanigv@rknec.edu
2Dept. of Computer Science and Engineering Shri Ramdeobaba College of

Engineering and Management (RCOEM) Nagpur, India

e-mail: bisenwh@rknec.edu
3Dept. of Computer Science and Engineering Shri Ramdeobaba College of

Engineering and Management (RCOEM) Nagpur, India

e-mail: padwadhs@rknec.edu
4Dept. of Computer Science and Engineering Shri Ramdeobaba College of

Engineering and Management (RCOEM) Nagpur, India

e-mail: wankhedkaryn@rknec.edu
5Dept. of Computer Science and Engineering Shri Ramdeobaba College of

Engineering and Management (RCOEM) Nagpur, India

e-mail: pandeysv@rknec.edu
6Dept. of Computer Science and Engineering Shri Ramdeobaba College of

Engineering and Management (RCOEM) Nagpur, India

e-mail: sonia@rknec.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 161

(seq2seq model) for diverse NLP tasks. [3]

The Generative Pre-trained Transformer (GPT) family,

initiated by OpenAI in 2018, has made remarkable

strides in generating realistic text. Among its various

iterations, including GPT-3 and GPT-3.5, the original

GPT model was trained with 117 million parameters,

aiming to comprehend language in a manner akin to

human understanding. GPT-2, equipped with even more

training parameters, was introduced to address the

limitations of its predecessor. In 2023, the latest iteration,

GPT-4, emerged, further building upon the strengths of

GPT-3 and delivering improved performance.

3. Background

A. Vector database

Vector databases, a game-changing development in data

storage and retrieval, have transformed how we manage

complex data kinds including photos, audio, and textual

embeddings. Unlike standard relational databases, which

rely on organized data and preset schemas, vector databases

describe and index data points using the power of high-

dimensional vector spaces.[4] This enables quick

similarity searches and content-based queries, allowing

applications such as recommendation systems, picture

recognition, and natural language processing to improve

accuracy and speed.

B. Llama2

LLMs are transformer-based neural networks that have

been trained on vast amounts of data. Transformer models

are specifically designed for tasks related to text

completion and understanding.

Meta has introduced an open-source LLM called Llama 2,

which includes two main variants:

Llama 2 - This is an updated version of the earlier Llama

1 model. It has been trained on a new combination of

publicly available data. Notable enhancements include a

40% increase in the size of the pre-training corpus, a

doubling of the model’s context length. Llama 2 is

available in several parameter sizes, including 7 billion

(7B), 13 billion (13B), and an astonishing 70 billion (70B)

parameters.

Llama 2-Chat - This is a fine-tuned version of Llama 2

that has been optimized for dialogue-related use cases.

Similar to Llama 2, Llama 2-Chat is available in various

parameter sizes, including 7B, 13B, and 70B.

These models have been made available to both the research

community and commercial users for various applications.

[5]

C. LangChain

LangChain is a versatile framework designed for creating

applications empowered by language models. It empowers

applications to:

1) Embrace Context-Awareness

LangChain offers a seamless integration of language models

with diverse sources of context through the use of modules

like “chains” and “vector stores.” These sources may

include prompt instructions, few-shot examples, or relevant

content, enabling the application to produce responses

grounded in the given context

2) Facilitate Reasoning

Applications developed with LangChain harness the power

of language models for various reasoning tasks. This

encompasses utilizing the language model to make well-

informed decisions regarding how to respond within the

given context and to figure out the most suitable actions to

undertake. These reasoning processes are facilitated through

the use of modules such as “agents” within the LangChain

framework. [6]

D. Retriever Answer Generator Model

The Retriever Answer Generator (RAG) Model merges

retrieval-based and generative technologies for machine

reading comprehension. It is widely used for development

of all types of chatbots. It employs a two step process, the

first of which is retrieving relevant context from the dataset

relating to the question that is asked. Once retrieved, the

sources are passed to the LLM to generate the answer. This

two step process al- lows the LLM to generate accurate

answers, with rich detail and very little noise. [7]

4. Methodology

The project addresses two of the most complex aspects of

NLP: Summarization and Question- Answering. Initially,

the summarizer is employed to generate effective summaries

of the input text. Subsequently, the Chatbot module is

utilized for answering queries related to the input. Both

these components are designed to handle a wide range of

text sizes, from single to multiple PDFs. This design ensures

that the workload on the LLM is minimized, enabling it to

operate effectively and efficiently.

A. Pre-processing

1) Chunking

The first step entails breaking down the data into smaller,

more manageable segments, with each seg- ment limited to a

maximum size of 500 characters and an overlap of 200

characters. Chunk overlap ensures that adjacent chunks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 162

share some common character preventing potential

information loss at the boundary between the chunks.

This segmentation serves two purposes: it simplifies the

handling of lengthy texts by splitting them into smaller,

more easily processed parts, and it enables us to work

within the token limitation of Llama2, which has a

maximum token limit of 4096.

2) Knowledge base

A knowledge base comprises documents covering a wide

range of subjects, products, or services that offer crucial

context to support the functioning of a Language Model.

It’s important to highlight that LLMs may occasionally

produce responses that are inaccurate or diverge from the

intended context, often referred to as hallucinations. To

ensure accurate responses, LLMs rely on context, which,

in our scenario, is provided by the vector representation of

the input. [8]

Embeddings, at their core, are numerical representations of

text designed to capture its semantic meaning. In our

process, all the chunks are transformed into embeddings.

We employ the gpt4all embedding model, which generates

embeddings with 384 dimensions. These resulting vectors

are subsequently stored in the Qdrant vector database for

future retrieval and application.

Fig 1: A look at the clusters in 3D space

B. Module 01: Summarization

In the field of Abstractive Long Text Summarization, one

of the main hurdles is maintaining context throughout the

text. For a summary to be truly abstractive, it’s essential

for the machine to grasp the complete text in its entirety.

Yet, it is a common occurrence in literature for authors to

initially diverge from the central theme and subsequently

return to it later within the text. To effectively summarize

these later parts, the machine needs to keep the

embeddings of the earlier parts stored in memory. This

poses a challenge as it either requires a significant

amount of memory or a considerable amount of

computational time, both of which are not always feasible

in today’s fast-paced technological landscape.

To address this issue, a unique approach has been

developed. Here’s a detailed breakdown of the

methodology:

1) Clustering

The first step in summarizing the documents involves

creating clusters. The cosine similarities between the vectors

generated in the previous step is calculated and K-Means

clustering is carried out to create clusters. K-Means is used

as it is a centroid based clustering algorithm hence; it

segregates objects into clusters based on their similarities,

ensuring that objects within the same cluster are more alike

while being dissimilar to objects in separate clusters.

Selecting the appropriate number of clusters is vital to

balance efficiency and result quality. It’s essential to

consider the token limit of Llama2-chat, which is 4096

tokens. To determine the optimal number of clusters, the

elbow method is employed using the scikit-learn library.

This technique involves varying the number of clusters,

calculating the Within-Cluster Sum of Squares (WCSS), and

identifying the “elbow” point on the plot, which represents

the ideal cluster count. This approach ensures a meaningful

data structure. The cluster count should fall within the range

of 3 to 15, with 15 clusters being the maximum due to token

limitations in LLM that prevent it from providing a

summary beyond this threshold.[9] Figure 2 illustrates the

plot of Within- Cluster Sum of Squares (WCSS) and the

number of clusters. This plot was generated during the

summarization of a research paper titled “Neuralangelo:

High-Fidelity Neural Surface Reconstruction.”

Fig 2: WCSS vs Number of clusters plot

2) Cluster Summaries

Within each cluster, every individual chunk shares a

comparable semantic meaning, as evidenced by their vector

representations being in close proximity. From each cluster,

a single representative chunk is chosen, usually the one

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 163

closest to the mean of the vectors, and then it is inputted

into the LLM. This chosen representative chunk effectively

encapsulates the semantic essence of the entire cluster. For

this experiment, a Llama 2 - 13b model is used. The LLM

is tasked with summarizing each representative chunk.

After completing this step, there are multiple chunk sum-

maries, each representing a cluster. When combined, these

summaries provide an overview of the entire document.

3) Overall Summary

Finally, the chunk summaries are now fed into the LLM

for integration and further condensation, ensuring

comprehensive coverage in a concise manner. This method

allows us to create top-notch abstractive sum- maries,

making it a practical solution for summarizing texts of

varying lengths with comprehensive coverage.

Fig 3: Flowchart of Summarization Model

C. Module 02: Question-Answering

Question-Answering (QA) stands as a significant subfield

within NLP, with a primary focus on empowering

machines to comprehend human questions and generate

pertinent responses. Recent advancements in Natural

Language Processing, such as Generative Pre- trained

Transformer and Large Language Models, have greatly

simplified this task, particularly for general use cases. [10]

A notable challenge in QA is that the answer to a

question can be dispersed across various parts of the

input text. The capacity to identify, grasp, and

amalgamate these scattered fragments of information is

pivotal for producing high-quality answers.

In this approach, the Vector Database Qdrant is leveraged,

utilizing its cosine similarity search functionality to

supply relevant information to the LLM from multiple

documents, all based on the presented question. This

methodology contributes to the development of a Retrieval-

Augmented Generation (RAG) model, enhancing the

effectiveness of question- answering.

D. Generating the Answer

In this phase, when the user poses a question, we first

convert the question into a word embedding, as explained

earlier. Next, cosine similarity is employed to search the

Vector Database for chunks most closely related to the input

question embedding. Cosine similarity quantifies the

similarity between two non-zero vectors situated within an

inner product space. It is computed as the cosine of the angle

formed by these vectors, calculated through the dot product

of the vectors divided by the product of their magnitudes.

Crucially, cosine similarity is agnostic to the absolute

magnitude of the vectors, focusing exclusively on their

angular orientation [11]. This yields a similarity score

ranging from -1 to 1: unit vectors or those pointing in the

same direction achieve a similarity of 1, orthogonal vectors

yield a similarity of 0, and vectors pointing in opposite

directions result in a similarity of -1.

The four closest chunks are subsequently selected and

provided to the LLM as context, alongside the query

question. The LLM uses this context to generate a concise

and relevant answer extracted from these chunks. The choice

to retrieve only four chunks is based on the desire for

concise responses and balance between precision and speed in

the question-answering system.

Fig 4: Flow of QA module

5. Result and Discussion

E. RAG Evaluation

A Retrieval-Augmented Generation (RAG) implementation

comprises two essential components: Retrieval and

Generation. The Retrieval process establishes the context,

while the Generation process is executed by a LLM to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 164

Σ

produce the answer by utilizing the retrieved

information. [11]

When assessing a Retrieval-Augmented Generation

pipeline, it’s crucial to evaluate both of these components

separately and in conjunction to obtain an over- all score,

as well as individual scores to pinpoint areas for

improvement.

Ragas is a tool that employs Language Models to evaluate

Retrieval-Augmented Generation (RAG) pipelines,

providing actionable metrics with minimal reliance on

annotated data.

1. Retrieval: Ragas assesses two key metrics – ‘context

relevancy’ and ‘context recall’, which measure the

performance of the retrieval system.

2. Generation: Ragas evaluates ‘faithfulness’, which

assesses the consistency of information in the

generated answer with respect to the provided context,

and ‘answer relevancy’, which gauges how well the

answer aligns with the relevance to the question.

a. Faithfulness: This metric measure the degree of

information consistency in the generated answer com-

pared to the provided context. It penalizes any claims

made in the answer that cannot be inferred from the

context. It is calculated using the ‘answer’ and

‘retrieved context’.

b. Context Precision: This metric evaluates how

relevant the retrieved context is to the question.

Ideally, the context should contain only the

information necessary to answer the question, and the

presence of redundant information is penalized. It is

calculated from the ‘question’ and ‘retrieved

context’.

c. Context Recall: Ragas measures the recall of the

retrieved context using the annotated answer as a

proxy for the ground truth context. It is calculated

based on the ‘ground truth’ and ‘retrieved context’.

d. Answer Relevancy: This metric quantifies the

extent to which a response directly addresses and is

appropriate for a given question or context. It

doesn’t consider the factual accuracy of the answer

but penalizes redundant or incomplete answers in the

context of the question. It is calculated from the

‘question’ and ‘answer’.

These four aspects serve as a comprehensive measure of

the QA system’s performance, taking into account all the

critical aspects. The testing examples for evaluation

(Figure 5) were drawn from the RAGAS baseline

experiments. In this case, the context from the dataset was

passed as context for the pipeline, and the answers were

subsequently evaluated after passing the questions. Figure 6

shows two PDFs passed as input into the RAG pipeline along

with a question, yielding their respective answers. Figure 7

illustrates the retrieved chunks that served as references for

the pipeline while answering the question.

Metric Score

context relevancy 0.4201680672268907

faithfulness 0.9999999999999998

answer relevancy 0.9305603597765211

context recall 0.5555555555555556

Table 1: RAGAS Scores

F. Summarizer Evaluation

The ROUGE score is a collection of metrics often

employed to assess text summarization tasks, which

involve the automatic creation of a brief summary for a

longer text. ROUGE has been developed to gauge the

effectiveness of machine-generated summaries by

comparing them to reference summaries or documents. It

evaluates the resemblance between a machine-generated

summary and reference summaries by examining the shared

word sequences, known as n-grams, within them. These n-

grams, typically unigrams, bigrams, and trigrams, are

compared to compute the recall in the machine-generated

summary concerning the reference summaries. [12] [13]

The ROUGE score is calculated using the formula:

ROUGE = (Recall of n-grams)

ROUGE scores are branched into ROUGE- N, ROUGE-L,

and ROUGE-S.

a. ROUGE-N: ROUGE-N measures the overlap of n-

grams (contiguous sequences of n words) between the

candidate text and the reference text.

b. ROUGE-L: ROUGE-L measures the longest

common subsequence (LCS) between the candidate

text and the reference text.

c. ROUGE-S: ROUGE-S measures the skip-bigram

(bi-gram with at most one intervening word) overlap

between the candidate text and the reference text.

The ROGUE scores were computed by using both the

final summary and the chunk-wise summaries of a research

paper titled “The Concept of EV’s Intelligent Integrated

Station and Its Energy Flow” as shown in Figure 8 and

Figure 9 respectively. These scores offer a quantitative

assessment, gauging the quality and relevance of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 165

generated summaries (Final summary) concerning the

source material (The chunk-wise summaries).

Metric Score

Rouge1 0.5830508474576271

Rouge 2 0.42320819112627983

RougeL 0.4893617021276596

RougeLsum 0.4893617021276596

Table 2: ROUGE Scores by Huggingface

ROGUE Metrics

6. Conclusion

In this research, a novel approach is presented, utilizing

large language models (LLMs), vector similarity search

engines, and clustering algorithms to abstractively

summarize lengthy and complex PDF documents.

Incorporating advanced technologies such as Llama2 and

Langchain in conjunction with clustering algorithms

like K-means and K-nearest neighbors (KNN)

guarantees that the resulting summary is comprehensive

and finely attuned to the document’s con- text. This

innovative method has been demonstrated to generate

exceptional abstractive summaries for extensive texts.

Furthermore, it not only provides an engaging means for

users to interact with the PDF document by utilizing

everyday language in questions and responses but also

extends this capability to the simultaneous exploration of

multiple papers. This approach enhances accessibility and

understanding for a broader audience while simplifying the

exploration of complex content, facilitating the seamless

navigation and comprehension of multiple documents.

Looking ahead, the future of LLM-based summarization

promises several notable advancements. Foremost,

domain-specific summarization will take center stage, with

LLMs being finely tuned to serve specific industries such

as medicine, law, and science. This will result in more

precise and contextually tailored summaries, addressing

the unique requirements of these specialized fields.

Additionally, there will be a strong emphasis on advancing

the capabilities of LLMs to deliver high-quality

multilingual summarization. This will facilitate effective

cross-language communication and support global

applications that demand summarization services in

multiple languages. Furthermore, the development of

interactive summarization systems is anticipated. These

systems will empower users to actively participate in the

summarization process, allowing them to specify their

preferences, including content inclusions and exclusions.

This user-centric approach promises to enhance the quality

and relevance of summarization result.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 166

Fig 5: Evaluation Data from RAGAS Baseline Experiments

Fig 6: Taking PDFs as input and answering question

Fig 7: Referenced Chunks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 167

Fig 8: Final Summary

Fig 9: Chunk-wise Summaries

7. Statements

G. Competing Interest

None of the authors have any competing interests to

declare.

H. Funding Information

No funding was received for this research.

I. Data Availability Statement

The data used in this study are available from the

corresponding author upon reasonable request.

References

[1] Rani Horev (2018). BERT Explained: State of

the language model for NLP.

https://towardsdatascience.com/bert-explained-

state-of-the-art-language-model- for-nlp-

f8b21a9b6270

[2] “Open Sourcing BERT: State-of-the-Art Pre-

training for Natural Language Processing.” Google

Research, 2 Nov. 2018,

ai.googleblog.com/2018/11/open-sourcing- bert-

state-of-art-pre.html

[3] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan

Ghazvininejad, Abdelrahman Mohamed, Omer

Levy, Ves Stoyanov, Luke Zettlemoyer (2019).

“BART: Denoising Sequence-to-Sequence Pre-

training for Natural Language Generation,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 160–168 | 168

Translation, and Comprehension”.

arXiv:1910.13461.https://arxiv.org/abs/1910.13461

v1

[4] S. Pal, “The Why, What, Who and Where of

Vector Databases”, May 10, 2023. Available:

https://www.eckerson.com/articles/why- what-

who-and-where-of-vector-databases

[5] Touvron, H.et al. (2023) Llama 2: Open

Foundation and Fine-Tuned Chat Models,

arXiv.org. Available at:

https://arxiv.org/abs/2307.09288

[6] Keivalya Pandya, Mehfuza Holia (2023).

“Automating Customer Service using LangChain:

Building custom open-source GPT Chatbot for

organizations.” arXiv: 2310.05421 [cs.CL].

[7] K.Martineau, “What is retrieval- augmented

generation?,” IBM Research Blog,

Aug.2023,[Online]. Available:

https://research.ibm.com/blog/retrieval-

augmented-generation-RAG

[8] Atlassian, “What is a Knowledge Base?”

Available:https://www.atlassian.com/itsm/knowled

ge- management/what-is-a-knowledge-base

[9] S. Na, L. Xumin and G. Yong, “Research on k-

means Clustering Algorithm: An Improved k-

means Clustering Algorithm,” 2010 Third

International Symposium on Intelligent

Information Technology and Security

Informatics, Jian, China, 2010, pp. 63-67

[10] Nan, F., Santos, C. N. dos, Zhu, H., Ng, P.,

McKeown, K., Nallapati, R., Zhang, D., Wang, Z.,

Arnold, A. O., Xiang, B. (2021). Improving

factual consistency of abstractive summarization

via question answering. arXiv.

http://arxiv.org/abs/2105.04623

[11] P. Sitikhu, K. Pahi, P.Thapa, S. Shakya (2019). “A

Comparison of Semantic Similarity Methods for

Maximum Human Interpretability.” arXiv:

1910.09129 [cs.IR].

http://arxiv.org/abs/1910.09129

[12] C.-Y. Lin, “ROUGE: A Package for Automatic

Evaluation of Summaries,” in Text

Summarization Branches Out, Barcelona, Spain,

2004, pp. 74-81. [Online]. Available:

https://www.aclweb.org/anthology/W04- 1013

[13] Max Grusky. 2023. Rogue Scores. In Pro-

ceedings of the 61st Annual Meeting of the

Association for Computational Linguistics

(Volume 1: Long Papers), pages 1914–1934,

Toronto, Canada. Association for Computational

Linguistic.

http://www.eckerson.com/articles/why-
http://www.eckerson.com/articles/why-
http://www.atlassian.com/itsm/knowledge-
http://arxiv.org/abs/2105.04623
http://arxiv.org/abs/1910.09129
http://www.aclweb.org/anthology/W04-
http://www.aclweb.org/anthology/W04-

