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Abstract: Large Language Models (LLMs) have made significant strides in processing human-written texts. However, a major challenge 

persists - the retention of context over extensive texts or multiple documents. The current approach of LLMs to retain context is often inefficient, 

both in terms of storage and time. To address this issue, this paper proposes a novel approach for two key tasks - Summarization and Question 

Answering. The methodology ensures that the LLM is not overwhelmed with unrelated, repetitive, or redundant data, thereby saving 

considerable time and resources. This approach facilitates the generation of effective summaries and answers for the user, enhancing the overall 

performance and efficiency of the LLM. 
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1. Introduction 

Recent research has shown that in widely used summary 

datasets, human annotators prefer LLM generated 

summaries over the original reference summaries. The goal 

of text summarization, a Natural Language Processing 

(NLP) technique, is to extract the most important details 

and contextual meaning from a given input while 

minimizing the volume of text. It comes as no surprise that 

NLP-based automatic summarization has found 

widespread application in diverse scenarios, spanning a 

range of document lengths, owing to the significant time 

and resources required for manual summarization. Thanks 

to recent breakthroughs in LLMs, abstractive 

summarization is poised to become even faster and more 

efficient than it was with earlier transformer models. This 

study delves into abstractive summarization of lengthy 

texts using LLMs. We define the functionality of LLMs in 

the context of abstractive summarization for long texts, with 

a specific focus on the Llama2 model, aiming to produce 

precise and con- textually relevant summaries. Section III 

provides a comprehensive exposition on the technologies 

utilized in the learning process. Section IV contains a detailed 

methodology for the development of the final model. Section 

V is dedicated to discussing the results and conducting a 

comparative analysis with existing liter- ature. Finally, 

Section VI presents the conclusions and proposes potential 

avenues for future research. 

2. Related Work 

In the realm of abstractive long text summarization, 

several prominent transformer-based models have played a 

pivotal role in advancing the field. These models, 

including BERT, GPT-2, and XLNet, each bring their 

distinctive architectural strengths to the table. [1] 

Notably, Google’s BERT (Bidirectional En- coder 

Representation from Transformers) has proven to be a 

versatile choice for various NLP tasks. BERT operates 

on the foundation of the Masked Language Model (MLM) 

technique, transforming text into word embeddings based 

on statistically derived similarity measures.[2] 

To assess the quality of summaries generated by the BERT 

model, researchers often employ a set of standard evaluation 

metrics known as ROGUE, comparing the output with 

human-generated summaries. In contrast, BART 

(Bidirectional Auto-Regressive Transformer) has gained 

recognition for surpassing BERT in performance. BART 

introduces a novel pre-training method and architecture 

that enables it to function as a sequence-to-sequence model 
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(seq2seq model) for diverse NLP tasks. [3] 

The Generative Pre-trained Transformer (GPT) family, 

initiated by OpenAI in 2018, has made remarkable 

strides in generating realistic text. Among its various 

iterations, including GPT-3 and GPT-3.5, the original 

GPT model was trained with 117 million parameters, 

aiming to comprehend language in a manner akin to 

human understanding. GPT-2, equipped with even more 

training parameters, was introduced to address the 

limitations of its predecessor. In 2023, the latest iteration, 

GPT-4, emerged, further building upon the strengths of 

GPT-3 and delivering improved performance. 

3. Background 

A. Vector database 

Vector databases, a game-changing development in data 

storage and retrieval, have transformed how we manage 

complex data kinds including photos, audio, and textual 

embeddings. Unlike standard relational databases, which 

rely on organized data and preset schemas, vector databases 

describe and index data points using the power of high-

dimensional vector spaces.[4] This enables quick 

similarity searches and content-based queries, allowing 

applications such as recommendation systems, picture 

recognition, and natural language processing to improve 

accuracy and speed. 

B. Llama2 

LLMs are transformer-based neural networks that have 

been trained on vast amounts of data. Transformer models 

are specifically designed for tasks related to text 

completion and understanding. 

Meta has introduced an open-source LLM called Llama 2, 

which includes two main variants: 

Llama 2 - This is an updated version of the earlier Llama 

1 model. It has been trained on a new combination of 

publicly available data. Notable enhancements include a 

40% increase in the size of the pre-training corpus, a 

doubling of the model’s context length. Llama 2 is 

available in several parameter sizes, including 7 billion 

(7B), 13 billion (13B), and an astonishing 70 billion (70B) 

parameters. 

Llama 2-Chat - This is a fine-tuned version of Llama 2 

that has been optimized for dialogue-related use cases.  

Similar to Llama 2, Llama 2-Chat is available in various 

parameter sizes, including 7B, 13B, and 70B. 

These models have been made available to both the research 

community and commercial users for various applications. 

[5] 

C. LangChain 

LangChain is a versatile framework designed for creating 

applications empowered by language models. It empowers 

applications to: 

1) Embrace Context-Awareness 

LangChain offers a seamless integration of language models 

with diverse sources of context through the use of modules 

like “chains” and “vector stores.” These sources may 

include prompt instructions, few-shot examples, or relevant 

content, enabling the application to produce responses 

grounded in the given context  

2) Facilitate Reasoning 

Applications developed with LangChain harness the power 

of language models for various reasoning tasks. This 

encompasses utilizing the language model to make well-

informed decisions regarding how to respond within the 

given context and to figure out the most suitable actions to 

undertake. These reasoning processes are facilitated through 

the use of modules such as “agents” within the LangChain 

framework. [6] 

D. Retriever Answer Generator Model 

The Retriever Answer Generator (RAG) Model merges 

retrieval-based and generative technologies for machine 

reading comprehension. It is widely used for development 

of all types of chatbots. It employs a two step process, the 

first of which is retrieving relevant context from the dataset 

relating to the question that is asked. Once retrieved, the 

sources are passed to the LLM to generate the answer. This 

two step process al- lows the LLM to generate accurate 

answers, with rich detail and very little noise. [7] 

4. Methodology 

The project addresses two of the most complex aspects of 

NLP: Summarization and Question- Answering. Initially, 

the summarizer is employed to generate effective summaries 

of the input text. Subsequently, the Chatbot module is 

utilized for answering queries related to the input. Both 

these components are designed to handle a wide range of 

text sizes, from single to multiple PDFs. This design ensures 

that the workload on the LLM is minimized, enabling it to 

operate effectively and efficiently. 

A. Pre-processing 

1) Chunking 

The first step entails breaking down the data into smaller, 

more manageable segments, with each seg- ment limited to a 

maximum size of 500 characters and an overlap of 200 

characters. Chunk overlap ensures that adjacent chunks 
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share some common character preventing potential 

information loss at the boundary between the chunks. 

This segmentation serves two purposes: it simplifies the 

handling of lengthy texts by splitting them into smaller, 

more easily processed parts, and it enables us to work 

within the token limitation of Llama2, which has a 

maximum token limit of 4096.  

2) Knowledge base 

A knowledge base comprises documents covering a wide 

range of subjects, products, or services that offer crucial 

context to support the functioning of a Language Model. 

It’s important to highlight that LLMs may occasionally 

produce responses that are inaccurate or diverge from the 

intended context, often referred to as hallucinations. To 

ensure accurate responses, LLMs rely on context, which, 

in our scenario, is provided by the vector representation of 

the input. [8] 

Embeddings, at their core, are numerical representations of 

text designed to capture its semantic meaning.  In our 

process, all the chunks are transformed into embeddings. 

We employ the gpt4all embedding model, which generates 

embeddings with 384 dimensions. These resulting vectors 

are subsequently stored in the Qdrant vector database for 

future retrieval and application. 

 

Fig 1: A look at the clusters in 3D space 

B.   Module 01:  Summarization 

In the field of Abstractive Long Text Summarization, one 

of the main hurdles is maintaining context throughout the 

text. For a summary to be truly abstractive, it’s essential 

for the machine to grasp the complete text in its entirety. 

Yet, it is a common occurrence in literature for authors to 

initially diverge from the central theme and subsequently 

return to it later within the text. To effectively summarize 

these later parts, the machine needs to keep the 

embeddings of the earlier parts stored in memory. This 

poses a challenge as it either requires a significant 

amount of memory or a considerable amount of 

computational time, both of which are not always feasible 

in today’s fast-paced technological landscape. 

To address this issue, a unique approach has been 

developed. Here’s a detailed breakdown of the 

methodology: 

1) Clustering 

The first step in summarizing the documents involves 

creating clusters. The cosine similarities between the vectors 

generated in the previous step is calculated and K-Means 

clustering is carried out to create clusters. K-Means is used 

as it is a centroid based clustering algorithm hence; it 

segregates objects into clusters based on their similarities, 

ensuring that objects within the same cluster are more alike 

while being dissimilar to objects in separate clusters. 

Selecting the appropriate number of clusters is vital to 

balance efficiency and result quality. It’s essential to 

consider the token limit of Llama2-chat, which is 4096 

tokens. To determine the optimal number of clusters, the 

elbow method is employed using the scikit-learn library. 

This technique involves varying the number of clusters, 

calculating the Within-Cluster Sum of Squares (WCSS), and 

identifying the “elbow” point on the plot, which represents 

the ideal cluster count. This approach ensures a meaningful 

data structure. The cluster count should fall within the range 

of 3 to 15, with 15 clusters being the maximum due to token 

limitations in LLM that prevent it from providing a 

summary beyond this threshold.[9] Figure 2 illustrates the 

plot of Within- Cluster Sum of Squares (WCSS) and the 

number of clusters. This plot was generated during the 

summarization of a research paper titled “Neuralangelo: 

High-Fidelity Neural Surface Reconstruction.” 

 

Fig 2: WCSS vs Number of clusters plot 

2) Cluster Summaries 

Within each cluster, every individual chunk shares a 

comparable semantic meaning, as evidenced by their vector 

representations being in close proximity. From each cluster, 

a single representative chunk is chosen, usually the one 
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closest to the mean of the vectors, and then it is inputted 

into the LLM. This chosen representative chunk effectively 

encapsulates the semantic essence of the entire cluster. For 

this experiment, a Llama 2 - 13b model is used.  The LLM 

is tasked with summarizing each representative chunk. 

After completing this step, there are multiple chunk sum- 

maries, each representing a cluster. When combined, these 

summaries provide an overview of the entire document. 

3) Overall Summary 

Finally, the chunk summaries are now fed into the LLM 

for integration and further condensation, ensuring 

comprehensive coverage in a concise manner. This method 

allows us to create top-notch abstractive sum- maries, 

making it a practical solution for summarizing texts of 

varying lengths with comprehensive coverage. 

 

Fig 3: Flowchart of Summarization Model 

C. Module 02:  Question-Answering 

Question-Answering (QA) stands as a significant subfield 

within NLP, with a primary focus on empowering 

machines to comprehend human questions and generate 

pertinent responses. Recent advancements in Natural 

Language Processing, such as Generative Pre- trained 

Transformer and Large Language Models, have greatly 

simplified this task, particularly for general use cases. [10] 

A notable challenge in QA is that the answer to a 

question can be dispersed across various parts of the 

input text. The capacity to identify, grasp, and 

amalgamate these scattered fragments of information is 

pivotal for producing high-quality answers. 

In this approach, the Vector Database Qdrant is leveraged, 

utilizing its cosine similarity search functionality to 

supply relevant information to the LLM from multiple 

documents, all based on the presented question. This 

methodology contributes to the development of a Retrieval-

Augmented Generation (RAG) model, enhancing the 

effectiveness of question- answering. 

D. Generating the Answer 

In this phase, when the user poses a question, we first 

convert the question into a word embedding, as explained 

earlier.  Next, cosine similarity is employed to search the 

Vector Database for chunks most closely related to the input 

question embedding. Cosine similarity quantifies the 

similarity between two non-zero vectors situated within an 

inner product space. It is computed as the cosine of the angle 

formed by these vectors, calculated through the dot product 

of the vectors divided by the product of their magnitudes. 

Crucially, cosine similarity is agnostic to the absolute 

magnitude of the vectors, focusing exclusively on their 

angular orientation [11]. This yields a similarity score 

ranging from -1 to 1: unit vectors or those pointing in the 

same direction achieve a similarity of 1, orthogonal vectors 

yield a similarity of 0, and vectors pointing in opposite 

directions result in a similarity of -1. 

The four closest chunks are subsequently selected and 

provided to the LLM as context, alongside the query 

question. The LLM uses this context to generate a concise 

and relevant answer extracted from these chunks. The choice 

to retrieve only four chunks is based on the desire for 

concise responses and balance between precision and speed in 

the question-answering system. 

                

Fig 4: Flow of QA module 

5. Result and Discussion 

E. RAG Evaluation 

A Retrieval-Augmented Generation (RAG) implementation 

comprises two essential components: Retrieval and 

Generation. The Retrieval process establishes the context, 

while the Generation process is executed by a LLM to 
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Σ 

produce the answer by utilizing the retrieved 

information. [11] 

When assessing a Retrieval-Augmented Generation 

pipeline, it’s crucial to evaluate both of these components 

separately and in conjunction to obtain an over- all score, 

as well as individual scores to pinpoint areas for 

improvement. 

Ragas is a tool that employs Language Models to evaluate 

Retrieval-Augmented Generation (RAG) pipelines, 

providing actionable metrics with minimal reliance on 

annotated data. 

1. Retrieval: Ragas assesses two key metrics – ‘context 

relevancy’ and ‘context recall’, which measure the 

performance of the retrieval system. 

2. Generation: Ragas evaluates ‘faithfulness’, which 

assesses the consistency of information in the 

generated answer with respect to the provided context, 

and ‘answer relevancy’, which gauges how well the 

answer aligns with the relevance to the question. 

a. Faithfulness: This metric measure the degree of 

information consistency in the generated answer com- 

pared to the provided context. It penalizes any claims 

made in the answer that cannot be inferred from the 

context. It is calculated using the ‘answer’ and 

‘retrieved context’. 

b. Context Precision: This metric evaluates how 

relevant the retrieved context is to the question. 

Ideally, the context should contain only the 

information necessary to answer the question, and the 

presence of redundant information is penalized. It is 

calculated from the ‘question’ and ‘retrieved 

context’. 

c. Context Recall: Ragas measures the recall of the 

retrieved context using the annotated answer as a 

proxy for the ground truth context. It is calculated 

based on the ‘ground truth’ and ‘retrieved context’. 

d. Answer Relevancy: This metric quantifies the 

extent to which a response directly addresses and is 

appropriate for a given question or context. It 

doesn’t consider the factual accuracy of the answer 

but penalizes redundant or incomplete answers in the 

context of the question. It is calculated from the 

‘question’ and ‘answer’. 

These four aspects serve as a comprehensive measure of 

the QA system’s performance, taking into account all the 

critical aspects. The testing examples for evaluation 

(Figure 5) were drawn from the RAGAS baseline 

experiments. In this case, the context from the dataset was 

passed as context for the pipeline, and the answers were 

subsequently evaluated after passing the questions. Figure 6 

shows two PDFs passed as input into the RAG pipeline along 

with a question, yielding their respective answers. Figure 7 

illustrates the retrieved chunks that served as references for 

the pipeline while answering the question. 

Metric Score 

context relevancy 0.4201680672268907 

faithfulness 0.9999999999999998 

answer relevancy 0.9305603597765211 

context recall 0.5555555555555556 

Table 1: RAGAS Scores 

F. Summarizer Evaluation 

The ROUGE score is a collection of metrics often 

employed to assess text summarization tasks, which 

involve the automatic creation of a brief summary for a  

longer  text. ROUGE has been developed to  gauge the 

effectiveness of machine-generated summaries by 

comparing them to reference summaries or   documents. It 

evaluates the resemblance between a machine-generated 

summary and reference summaries by examining the shared 

word sequences, known as n-grams, within them. These n-

grams, typically unigrams, bigrams, and trigrams, are 

compared to compute the recall in the machine-generated 

summary concerning the reference summaries. [12] [ 13] 

The ROUGE score  is  calculated  using  the  formula: 

ROUGE  = (Recall of n-grams) 

ROUGE scores are branched into ROUGE- N, ROUGE-L, 

and ROUGE-S. 

a. ROUGE-N: ROUGE-N measures the overlap of n- 

grams (contiguous sequences of n words) between the 

candidate text and the reference text. 

b. ROUGE-L: ROUGE-L measures the longest 

common subsequence (LCS) between the candidate 

text and the reference text. 

c. ROUGE-S: ROUGE-S measures the skip-bigram 

(bi-gram with at most one intervening word) overlap 

between the candidate text and the reference text. 

The ROGUE scores were computed by using both the 

final summary and the chunk-wise summaries of a research 

paper titled “The Concept of EV’s Intelligent Integrated 

Station and Its Energy Flow” as shown in Figure 8 and 

Figure 9 respectively. These scores offer a quantitative 

assessment, gauging the quality and relevance of the 
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generated summaries (Final summary) concerning the 

source material (The chunk-wise summaries). 

 

Metric Score 

Rouge1 0.5830508474576271 

Rouge 2 0.42320819112627983 

RougeL 0.4893617021276596 

RougeLsum 0.4893617021276596 

 

Table 2: ROUGE Scores by Huggingface 

ROGUE Metrics 

6. Conclusion 

In this research, a novel approach is presented, utilizing 

large language models (LLMs), vector similarity search 

engines, and clustering algorithms to abstractively 

summarize lengthy and complex PDF documents. 

Incorporating advanced technologies such as Llama2 and 

Langchain in conjunction with clustering algorithms 

like K-means and K-nearest neighbors (KNN) 

guarantees that the resulting summary is comprehensive 

and finely attuned to the document’s con- text. This 

innovative method has been demonstrated to generate 

exceptional abstractive summaries for extensive texts. 

Furthermore, it not only provides an engaging means for 

users to interact with the PDF document by utilizing 

everyday language in questions and responses but also 

extends this capability to the simultaneous exploration of 

multiple papers. This approach enhances accessibility and 

understanding for a broader audience while simplifying the 

exploration of complex content, facilitating the seamless 

navigation and comprehension of multiple documents. 

Looking ahead, the future of LLM-based summarization 

promises several notable advancements. Foremost, 

domain-specific summarization will take center stage, with 

LLMs being finely tuned to serve specific industries such 

as medicine, law, and science. This will result in more 

precise and contextually tailored summaries, addressing 

the unique requirements of these specialized fields. 

Additionally, there will be a strong emphasis on advancing 

the capabilities of LLMs to deliver high-quality 

multilingual summarization.  This will facilitate effective 

cross-language communication and support global 

applications that demand summarization services in 

multiple languages. Furthermore, the development of 

interactive summarization systems is anticipated. These 

systems will empower users to actively participate in the 

summarization process, allowing them to specify their 

preferences, including content inclusions and exclusions. 

This user-centric approach promises to enhance the quality 

and relevance of summarization result. 
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Fig 5: Evaluation Data from RAGAS Baseline Experiments 

 

Fig 6: Taking PDFs as input and answering question 

 

Fig 7: Referenced Chunks 
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Fig 8: Final Summary 

 

Fig 9: Chunk-wise Summaries 
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