

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183– 191| 183

Enhancing Software Defect Projections Performance by Class

Rebalancing

Ranjeetsingh Suryawanshi1, Amol Kadam2

Submitted: 15/11/2023 Revised: 27/12/2023 Accepted: 07/01/2024

Abstract: Data is the most precious asset to any tech firm since it has ability to totally revolutionize an industry. However, great availability

does not imply perfection; there are numerous issues with the current quality of publicly available datasets. Class imbalance is one such

problem, it basically means that one class label appears more frequently than others, and it occurs practically everywhere, such as in

medical diagnosis, natural language processing, fraud detection, and so on. This issue is extremely serious since it undermines the potential

of existing machine learning models by lowering their ability to identify newer data that has never been seen before. Many strategies have

been proposed to address this problem, including oversampling and under sampling. These procedures, however, either overgeneralize or

over diversify the data points, making them unproductive. The ensemble technique is another solution with good outcomes but high

complexity. However, to address this challenge more effectively, we propose a model that uses mean absolute deviation to find the best

features that have the most impact on the outcome, thus lowering dimensionality, and the adaptive synthetic data creation technique to

balance the data. The model prioritizes recall over accuracy, which is a crucial parameter when dealing with data imbalances. The findings

of this model appear to be quite promising, with an accuracy of nearly 85% and a recall of 89%. The model's AUC curve is 0.93,

demonstrating the model's ability to correctly detect positive and negative instances.

Keywords: Class Imbalance, Cost sensitive learning, Median absolute deviation, Sampling methods, Software Defect Prediction

1. Introduction

Predictive systems are in high demand right now because of

the rise of machine learning. Every industry aspires to

automate time-consuming operations, ranging from

healthcare and education to geography and logistics.

Software is one such popular industry, and the need of the

hour is to create a model that can correctly identify bad

programmes before they are released for usage. Algorithms

such as Decision Trees, Random Forest, and Support Vector

Machine are currently in use to build general models.

Though these are excellent models, the most significant

impediment to their effectiveness is a lack of data, or, in

other words, 'class imbalance,' in which the occurrence of

one label is significantly more than that of the other. This

problem is not limited to the software area, but also to other

fields. As an example, consider credit card fault detection,

where the occurrence of faults is extremely low in

comparison to the majority class. One of the most difficult

problems in online fraudulent transaction detection is class

imbalance with overlap. To avoid being discovered,

scammers have tried their hardest to make a fraudulent

transaction seem as authentic as possible. Based on the

divide-and-conquer theory, this research suggests a unique

hybrid method to address the problem of class imbalance

with overlap.

The problem of class imbalance causes the model to over fit

and become less accurate when confronted with fresh data

points that it has never seen before. As a result, there is a

need to create a model that outperforms current

methodologies while also being more functional.

Datasets used for software defect prediction have a greater

number of non-faulty than defective cases. To mitigate this

issue, oversampling techniques are often used to create

additional, artificially faulty instances. Current methods

either produce almost identical cases, leading to an

excessive generalization. provide the innovative

oversampling method known as Complexity-based

OverSampling method, which can achieve low likelihood of

false alarm and high probability of detection[1].

Due to biassed learning and poor fault prediction, models

trained on unbalanced data provide erroneous predictions.

Ruchika Malhotra et al found that Ensemble approaches are

the preferred choice for software quality prediction

modelling among developers and researchers. Software

practitioners and developers will benefit from early defect

detection and reduced testing costs and effort when the class

imbalance problem is handled with Random OverSampling

and Aglomerative Hierarchical Clustering[2].

1 Bharati Vidyapeeth Deemed To Be University, College of

Engineering, India. ORCID ID: 0009-0009-5984-3401

2 Bharati Vidyapeeth Deemed To Be University, College of

Engineering, India. ORCID ID: 0000-0002-2350-4397

* Corresponding Author Email:

ranjeetsinghsuryawanshi@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 184

To exclude many majority samples from the original dataset

as well as a few minority class outliers, an anomaly

detection model should be first trained on the minority

samples. After that, the leftover samples can be combined

to create an overlapping subset with a lower learning

interference from the majority class and minority class than

the original dataset, as well as a low imbalance ratio[3].

2. Related Work

Despite the great contributions for software defect

prediction made by several scholars and academicians, The

NASA research states that if a flaw is done during the

requirement phase and is not corrected, it will cause

substantially greater repairing costs when it reaches the

testing and coding phases[4].

A predictive model's training and testing may be done with

fewer features by using the feature selection approach. The

main goals of lowering the feature count are to save

computing expenses and avoid overfitting issues to improve

model performance. In addition to using the elbow

technique and inertia to determine the ideal number of

clusters, K-means clustering is utilized to determine class

labels[5].

Regardless of the classifier being used, Mike Wasikowski et

al observe a considerable improvement in performance

when we limit the number of features in the data set to about

the same order of magnitude as the samples. When learning

from high-dimensional unbalanced data, feature selection is

important for getting the best potential outcomes[6].

Testing engineers may make efficient use of testing

resources without going overboard by anticipating the

modules that are likely to have defects. Bejjanki et al

proposed approach for creating new samples by figuring out

the centroid of every feature of minority class samples

which will reduce class imbalance. When implemented with

commonly used machine methods, class imbalance

reduction outperforms SMOTE and K-means SMOTE.

When it comes to accuracy, precision, and specificity, KNN

outperforms other classifiers, but logistic regression excels

in recall, F-measure, and geometric mean[7].

Results from the defect prediction system trained on noisy

and unbalanced data are inconsistent and disappointing.

Performance of traditional SDP models decreases when

noise level in datasets rises and the learning process starts

misclassifying the true class. The imbalanced dataset caused

the classifiers to overfit, which produced disappointing

performance results, even if the sampling strategy was not

employed over the standard baseline models[8].

Predictions made by models that are developed using

unbalanced datasets are unreliable due to their bias result.

As a result, the model becomes less efficient[9].

Poor classifications result when there is an imbalance in the

class distribution; although accuracy may be good, the

model is unable to identify data examples in the minority

class[10].To rectify the inaccurate assessment provided by

cross-validation, the Ming Tan et al applies and modifies

online change classification. They also use resampling

approaches and updatable classification to enhance

performance. The evaluation of this work on six open-

source and one commercial project demonstrates that the

precision may be increased by 12.2-89.5%, or 6.4-34.8

percentage points, by using both resampling approaches and

updatable categorization[11].

[12][13][14][15][10][16]

There are significant approaches that are helpful in

comprehending the unbalanced learning issues and that can

be developed in three ways.1) Sampling 2) Cost-Sensitive

Learning 3) Ensemble Learning

(1) Sampling: In sampling, various techniques may be used

to modify or create a balanced data set.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 185

Over-Sampling: In this category, two oversampling

techniques were taken into consideration. In the first, known

as random oversampling, the tiny class is randomly

oversampled until it has the same number of instances as the

other class. Focused oversampling is the second technique,

wherein the minor class is oversampled with data that occurs

around the borders between the idea and its opposite.

Undersampling : In the first, known as random

undersampling, elements from the larger class are randomly

removed until the size of another class is equal. The second

method, focused undersampling, involves removing

features that are farther away[17].

SMOTE Synthetic Minority Over-sampling Technique:

Instead of oversampling with replacement, author provide

an oversampling strategy where the minority class is

oversampled by producing artificial instances. Rather than

working in data space, this approach operates in feature

space, producing synthetic instances[18].Because SMOTE

creates the same amount of synthetic data samples for each

actual minority instance without considering the instances

that are nearby, there is a higher likelihood of overlapping

between classes[19].

ADASYN Adaptive Synthetic Sampling: The foundation of

ADASYN is the concept of adaptively creating minority

data samples based on their spreads, for minority class

samples that are more challenging to learn, additional

synthetic data is produced. In addition to minimizing the

learning bias brought about by the initial unbalanced spread

of data, the ADASYN approach may adaptively move the

decision boundary to concentrate on the samples that are

challenging to learn[20].

(2) Cost-sensitive learning: These methods establish a

matrix known as the cost matrix. To enable the efficient

learning of unbalanced data sets, the cost matrix manages

discrete faults or instances. This suggests that the inherent

characteristics of unbalanced distributions cannot be altered

by cost-sensitive learning strategies. Distinct cost matrices

are used to detect inaccurate defect classification based on

the properties of imbalanced data[21].

(3) Imbalanced Ensemble Learning: Shuo Wang et al

developed three ensemble models, known as

UnderBagging, OverBagging, and SMOTEBagging,

respectively, and each used bagging to integrate each

individual classifier. UnderBagging and OverBagging

involves resampling examples, building each classifier in

the ensemble iteratively using a subset, and selecting the

class with the highest vote total When building a subset,

SMOTEBagging includes the creation phase for synthetic

instances. Two factors need to be determined, per SMOTE:

the number of k nearest neighbours and the degree of

oversampling from the minority class[22].

 3. Methodology

Figure 1 shows proposed model for software defect

prediction using mean absolute deviation to find the best

features and ADASYN for synthetic data generation. The

data repository used in proposed method is the software

defect repository, a dataset made publicly available by

NASA that gives software metrics and labels whether there

is a defect in the written code or not based on various factors

like the number of control flow branches, the complexity of

the program, number of comments, etc. This data has

already been checked and cleaned.

After loading this data, feature selection is applied to the

dataset using the concept of median absolute deviation on

each feature to select the 10 best ones, hence reducing the

dimensionality (this is usually very helpful when the dataset

is huge and confusing). Next, to deal with the minority label,

the technique of ADASYN (Adaptive Synthetic Data

Generation) is used to generate synthetic data and balance

the numbers of yes and no.

This new dataset is divided for training data for creating

model and testing data for evaluation of model.Random

forest algorithm is used to train the model, and performance

metrics are then calculated. The training and testing results

are compared to understand the extent to which the class

imbalance issue could be addressed.

Finally, all this is visualized in the form of a receiver

operating characteristic curve, which further helps us

understand the results of the proposed model

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183– 191| 186

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 187

Fig 1. Software defect prediction proposed framework

Median Absolute Deviation (MAD):

Median Absolute Deviation or MAD is a robust measure of

statistical dispersion. Mathematically it is calculated by

taking median of absolute deviation of data points from the

median. MAD is less sensitive to outliers and has high

resistance against noisy data (which is common in

imbalanced dataset) than other measures of dispersion like

standard deviation and variance which are commonly

preferred for attribute selection. Attribute selection using

MAD helps to reduce dimensionality of dataset by retaining

relevant features. The underlying concept of using MAD as

a factor for attribute selection is, the attributes with highest

MAD are most informative and contribute the most to the

prediction of target variable. MAD as a scoring function

helps in the identification of attributes that exhibit

significant variability (has a larger spread of data), which is

very crucial for distinguishing different classes especially

when we must deal with the issue of class imbalance.

Attributes with high MAD scores are more likely to help in

building a better predictive model as they can capture

essential patterns and characteristics. In simple words we

can say that MAD will help us identify the attributes that are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 188

most discriminatory between the majority and minority

classes which have the biggest differences in values

between the two classes. For example, we are trying to

identify a patient who has a particular disease or not, the

attributes that are most discriminatory between majority and

minority classes will be symptoms, test results, risk factors,

etc. These attributes will more accurately talk about which

patients are more likely to have the disease due to their

larger spread than other attributes. Mathematically MAD

can be expressed as,

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥′|)

where

𝑥𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡

𝑥′𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

For evaluation We will consider a sample feature from the

JM1[23] dataset of NASA software defect repository

named: BRANCH_COUNT (first 15 values already

arranged in an ascending order)

The values are as follows:

[29, 39, 47, 65, 67, 163, 175, 187, 240, 338, 344, 405, 464,

503, 826]

Median of 15 observations is (
15+1

2
) 𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =

 8𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

Median = 187

Absolute differences:

• |826 - 187| = 639

• |29 - 187| = 158

• |405 - 187| = 218

• |240 - 187| = 53

• |464 - 187| = 277

• |187 - 187| = 0

• |344 - 187| = 157

• |47 - 187| = 140

• |163 - 187| = 24

• |67 - 187| = 120

• |503 - 187| = 316

• |175 - 187| = 12

• |39 - 187| = 148

• |338 - 187| = 151

• |65 - 187| = 122

Arranging all these values again in ascending order:

[0, 12, 24, 53, 120, 122, 140, 148, 151, 157, 158, 218, 277,

316, 639]

Now we calculate median of all these deviation values:

Median Absolute Deviation = 148. This will give top 10 best

feature from data.

Appling Adaptive Synthetic sampling as follows:

1. It will calculate the distance of each minority class

sample nearest to its neighbour.

2. Then it selects minority class samples with highest

distances to its nearest neighbour.

3. For the selected minority class sample, a randomly

selected minority class sample is chosen and new

data is generation by taking a random value

between the minority class sample and the nearest

neighbour.

Steps 2 and 3 are repeated until suitable number of data

points are generated.

This unique and adaptive approach makes the technique

more suitable for class imbalance issues.

Figure 2 shows the frequency of labels in the dataset before

any modification.

Fig 2. Class distribution before Oversampling (ADASYN)

Pseudocode

Load the dataset from 'JM1.csv'

For each column in the dataset:

 If column datatype is 'object':

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 189

 Encode the column using Label Encoding

Define a custom MAD scoring function (mad_score)

Use SelectKBest to select the most informative features

based on MAD: X_selected =

SelectKBest(score_func=mad_score,

k=10).fit_transform(X, Y)

\\Apply ADASYN for oversampling:

 X_over, y_over = ADASYN.fit_resample(X_selected, y)

\\Split oversampled data into training and testing sets:

 Xtrain, Xtest, ytrain, ytest

\\Create a Random Forest Classifier

\\Get predicted probabilities for positive class for training

and testing data:

 y_train_prob = rf.predict_proba(X_train)[:, 1]

 y_test_prob = rf.predict_proba(X_test)[:, 1]

\\Calculate ROC curve values:

 Calculate AUC (Area Under the ROC Curve) for

training and testing data

\\Evaluate classifier performance:

 Calculate training accuracy, precision, and recall

 Calculate testing accuracy, precision, and recall

4. Result Discussion

Figure 3 shows the frequency of labels after synthetic data

generation:

Fig 3. Class Distribution after Oversampling (ADASYN)

Various oversampling techniques, along with the proposed

model, have been applied to the software defect dataset. We

can clearly observe that accuracy cannot be the only measure

of how well the model has been trained, i.e., though the base

machine learning model (trained on a random forest classifier)

may have an accuracy of 0.82804, the recall is extremely low,

suggesting it is unable to correctly identify the positives,

which is obvious due to the issue of class imbalance. This is

not a good sign for a machine learning model. Hence, we go

for oversampling methods to balance the number of positives

and negatives. The standard oversampling technique is

SMOTE (Synthetic Minority Oversampling Technique), but

we have opted for ADASYN (Adaptive Synthetic

Oversampling Technique). Firstly, because ADASYN

generates synthetic data points based on difficulty level, unlike

SMOTE, which merely works on the concept of generating

minority classes based on nearest neighbour only, Secondly,

from the results, we can see that SMOTE may have a little

higher accuracy than ADASYN, but it is suitably compensated

by a higher recall. But all these techniques are very

straightforward, which may not give better results. This is

where our proposed model helps to give exceptionally good

results. High accuracy, precision, and recall suggest it can

correctly identify both positive and negative samples from the

dataset, hence making it a more progressive solution over

traditional methods.

A similar conclusion can be inferred from the ROC (Receiver

Operating Characteristic curve) curves of all these methods.

Figure 4 clearly shows the robustness of the proposed model,

which has an AUC (Area Under the Curve) value of 0.93,

which shows it can comfortably identify positive and negative

instances and will also accurately identify newer data points

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 190

better than other models, which only rely upon simple

oversampling, undersampling, or ensemble models.

Fig 4. ROC Curve for MAD + ADASYN

Figures 5, 6, and 7 also give us a sense of comparison

between the various techniques. From AUC value of Simple

ML Model ADASYN and SMOTE in Figures 5, 6, and 7

shows that it correctly identifies positive and negative

instances for training data but for test data its AUC value for

Simple ML Model 0.76, ADASYN 0.74 and for SMOTE

0.74 which is low score compared to MAD + ADASYN

value.

Fig 5. ROC for Simple ML Model

Fig 6. ROC Curve for SMOTE

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 191

Fig 7. ROC Curve for ADASYN

Table 3 shows comparison result for Simple Machine

Learning Model, SMOTE, ADASYN, MAD + ADASYN

for NASA’s JM1

Dataset. From result we conclude recall value using

MAD+ADASYN has been significantly improved

compared to other technique which helps to identify positive

and negative instances correctly and will also identify newer

data points better than other models.

5. Conclusion

This paper addressed issue of class imbalance using mean

absolute deviation to find the best features and ADASYN

for synthetic data generation. This work demonstrate that

recall is more important than accuracy while handling class

imbalance. We have studied various ways to handle class

imbalance like sampling, Cost-sensitive learning, Ensemble

Learning. A recall of 89% and an accuracy of around 85%

suggest that our model's results are quite positive. The AUC

curve for the model is 0.93, indicating that it can accurately

identify both positive and negative events. Future work can

be extended software defect prediction on commercial

projects.

6. References and Footnotes

Author contributions

Ranjeetsingh Suryawanshi: Data collection and analysis,

developing methodology, Design and Development of an

application.. Amol Kadam: Reviewing and Editing of the

article.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] S. Feng et al., “COSTE: Complexity-based

OverSampling TEchnique to alleviate the class

imbalance problem in software defect prediction,” Inf.

Softw. Technol., vol. 129, no. April, p. 106432, 2021,

doi: 10.1016/j.infsof.2020.106432.

[2] R. Malhotra and J. Jain, “Predicting defects in

imbalanced data using resampling methods: An

empirical investigation,” PeerJ Comput. Sci., vol. 8,

pp. 1–34, 2022, doi: 10.7717/peerj-cs.573.

[3] Z. Li, M. Huang, G. Liu, and C. Jiang, “A hybrid

method with dynamic weighted entropy for handling

the problem of class imbalance with overlap in credit

card fraud detection,” Expert Syst. Appl., vol. 175, no.

July 2020, p. 114750, 2021, doi:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 183–191 | 192

10.1016/j.eswa.2021.114750.

[4] S. S. Rathore and S. Kumar, “Software fault prediction

based on the dynamic selection of learning technique:

findings from the eclipse project study,” Appl. Intell.,

vol. 51, no. 12, pp. 8945–8960, 2021, doi:

10.1007/s10489-021-02346-x.

[5] C. L. Prabha and N. Shivakumar, “Software Defect

Prediction Using Machine Learning Techniques,”

Proc. 4th Int. Conf. Trends Electron. Informatics,

ICOEI 2020, pp. 728–733, 2020, doi:

10.1109/ICOEI48184.2020.9142909.

[6] M. Wasikowski and X. W. Chen, “Combating the

small sample class imbalance problem using feature

selection,” IEEE Trans. Knowl. Data Eng., vol. 22, no.

10, pp. 1388–1400, 2010, doi:

10.1109/TKDE.2009.187.

[7] K. K. Bejjanki, J. Gyani, and N. Gugulothu, “Class

imbalance reduction (CIR): A novel approach to

software defect prediction in the presence of class

imbalance,” Symmetry (Basel)., vol. 12, no. 3, 2020,

doi: 10.3390/sym12030407.

[8] S. K. Pandey and A. K. Tripathi, “An empirical study

toward dealing with noise and class imbalance issues

in software defect prediction,” Soft Comput., vol. 25,

no. 21, pp. 13465–13492, 2021, doi: 10.1007/s00500-

021-06096-3.

[9] S. Pandey and K. Kumar, “Software Fault Prediction

for Imbalanced Data: A Survey on Recent

Developments,” Procedia Comput. Sci., vol. 218, pp.

1815–1824, 2022, doi: 10.1016/j.procs.2023.01.159.

[10] N. A. A. Khleel and K. Nehéz, “A novel approach for

software defect prediction using CNN and GRU based

on SMOTE Tomek method,” J. Intell. Inf. Syst., vol.

60, no. 3, pp. 673–707, 2023, doi: 10.1007/s10844-

023-00793-1.

[11] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online

Defect Prediction for Imbalanced Data,” Proc. - Int.

Conf. Softw. Eng., vol. 2, pp. 99–108, 2015, doi:

10.1109/ICSE.2015.139.

[12] H. Shi, J. Ai, J. Liu, and J. Xu, “Improving Software

Defect Prediction in Noisy Imbalanced Datasets,”

Appl. Sci., vol. 13, no. 18, 2023, doi:

10.3390/app131810466.

[13] S. Goyal, “Handling Class-Imbalance with

KNN (Neighbourhood) Under-Sampling for Software

Defect Prediction,” Artificial Intelligence Review, vol.

55, no. 3. pp. 2023–2064, 2022. doi: 10.1007/s10462-

021-10044-w.

[14] T. A. Ruchika Malhotra, Vaibhav Agrawal, Vedansh

Pal, “Support Vector based Oversampling Technique

for Handling Class Imbalance in Software Defect

Prediction,” 2021 11th Int. Conf. Cloud Comput. Data

Sci. Eng., vol. 978-1–6654, pp. 1078–1083, 2021.

[15] N. A. A. Khleel and K. Nehéz, “Software defect

prediction using a bidirectional LSTM network

combined with oversampling techniques,” Cluster

Comput., vol. 0123456789, 2023, doi:

10.1007/s10586-023-04170-z.

[16] R. Malhotra and J. Jain, “Predicting defects in object-

oriented software using cost-sensitive classification,”

IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021,

doi: 10.1088/1757-899X/1022/1/012112.

[17] N. Japkowicz and S. Stephen, “The class imbalance

problem A systematic study fulltext.pdf,” vol. 6, pp.

429–449, 2002.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE: Synthetic Minority Over-

sampling Technique Nitesh,” J. Artif. Intell. Res., vol.

16, no. Sept. 28, pp. 321–357, 2002, [Online].

Available:

https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.s

nopes.com/horrors/insects/telamonia.asp

[19] H. He and E. A. Garcia, “Learning from imbalanced

data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 9,

pp. 1263–1284, 2009, doi: 10.1109/TKDE.2008.239.

[20] S. He, H., Bai, Y., Garcia, E., & Li, “ADASYN:

Adaptive synthetic sampling approach for imbalanced

learning,” IJCNN 2008.(IEEE World Congr. Comput.

Intell. (pp. 1322– 1328), no. 3, pp. 1322– 1328, 2008.

[21] A. Balaram and S. Vasundra, “Sampling-based

Software Prone Technique for an Optimal Prediction

of Software Faults,” Indian J. Comput. Sci. Eng., vol.

13, no. 4, pp. 981–991, 2022, doi:

10.21817/indjcse/2022/v13i4/221304009.

[22] S. Wang and X. Yao, “Diversity analysis on

imbalanced data sets by using ensemble models,” 2009

IEEE Symp. Comput. Intell. Data Mining, CIDM 2009

- Proc., pp. 324–331, 2009, doi:

10.1109/CIDM.2009.4938667.

[23] Promise Software Engineering Repository. Available

online:

http://promise.site.uottawa.ca/SERepository/datasets-

page.html

