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Abstract: Data is the most precious asset to any tech firm since it has ability to totally revolutionize an industry. However, great availability 

does not imply perfection; there are numerous issues with the current quality of publicly available datasets. Class imbalance is one such 

problem, it basically means that one class label appears more frequently than others, and it occurs practically everywhere, such as in 

medical diagnosis, natural language processing, fraud detection, and so on. This issue is extremely serious since it undermines the potential 

of existing machine learning models by lowering their ability to identify newer data that has never been seen before. Many strategies have 

been proposed to address this problem, including oversampling and under sampling. These procedures, however, either overgeneralize or 

over diversify the data points, making them unproductive. The ensemble technique is another solution with good outcomes but high 

complexity. However, to address this challenge more effectively, we propose a model that uses mean absolute deviation to find the best 

features that have the most impact on the outcome, thus lowering dimensionality, and the adaptive synthetic data creation technique to 

balance the data. The model prioritizes recall over accuracy, which is a crucial parameter when dealing with data imbalances. The findings 

of this model appear to be quite promising, with an accuracy of nearly 85% and a recall of 89%. The model's AUC curve is 0.93, 

demonstrating the model's ability to correctly detect positive and negative instances.    
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1. Introduction 

Predictive systems are in high demand right now because of 

the rise of machine learning. Every industry aspires to 

automate time-consuming operations, ranging from 

healthcare and education to geography and logistics. 

Software is one such popular industry, and the need of the 

hour is to create a model that can correctly identify bad 

programmes before they are released for usage. Algorithms 

such as Decision Trees, Random Forest, and Support Vector 

Machine are currently in use to build general models. 

Though these are excellent models, the most significant 

impediment to their effectiveness is a lack of data, or, in 

other words, 'class imbalance,' in which the occurrence of 

one label is significantly more than that of the other. This 

problem is not limited to the software area, but also to other 

fields. As an example, consider credit card fault detection, 

where the occurrence of faults is extremely low in 

comparison to the majority class. One of the most difficult 

problems in online fraudulent transaction detection is class 

imbalance with overlap. To avoid being discovered, 

scammers have tried their hardest to make a fraudulent 

transaction seem as authentic as possible. Based on the 

divide-and-conquer theory, this research suggests a unique 

hybrid method to address the problem of class imbalance 

with overlap. 

The problem of class imbalance causes the model to over fit 

and become less accurate when confronted with fresh data 

points that it has never seen before. As a result, there is a 

need to create a model that outperforms current 

methodologies while also being more functional. 

Datasets used for software defect prediction have a greater 

number of non-faulty than defective cases. To mitigate this 

issue, oversampling techniques are often used to create 

additional, artificially faulty instances. Current methods 

either produce almost identical cases, leading to an 

excessive generalization. provide the innovative 

oversampling method known as Complexity-based 

OverSampling method, which can achieve low likelihood of 

false alarm and high probability of detection[1]. 

Due to biassed learning and poor fault prediction, models 

trained on unbalanced data provide erroneous predictions. 

Ruchika Malhotra et al found that Ensemble approaches are 

the preferred choice for software quality prediction 

modelling among developers and researchers. Software 

practitioners and developers will benefit from early defect 

detection and reduced testing costs and effort when the class 

imbalance problem is handled with Random OverSampling 

and Aglomerative Hierarchical Clustering[2]. 
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To exclude many majority samples from the original dataset 

as well as a few minority class outliers, an anomaly 

detection model should be first trained on the minority 

samples. After that, the leftover samples can be combined 

to create an overlapping subset with a lower learning 

interference from the majority class and minority class than 

the original dataset, as well as a low imbalance ratio[3]. 

2.  Related Work 

Despite the great contributions for software defect 

prediction made by several scholars and academicians, The 

NASA research states that if a flaw is done during the 

requirement phase and is not corrected, it will cause 

substantially greater repairing costs when it reaches the 

testing and coding phases[4].  

A predictive model's training and testing may be done with 

fewer features by using the feature selection approach. The 

main goals of lowering the feature count are to save 

computing expenses and avoid overfitting issues to improve 

model performance. In addition to using the elbow 

technique and inertia to determine the ideal number of 

clusters, K-means clustering is utilized to determine class 

labels[5].  

Regardless of the classifier being used, Mike Wasikowski et 

al observe a considerable improvement in performance 

when we limit the number of features in the data set to about 

the same order of magnitude as the samples. When learning 

from high-dimensional unbalanced data, feature selection is 

important for getting the best potential outcomes[6].  

 

Testing engineers may make efficient use of testing 

resources without going overboard by anticipating the 

modules that are likely to have defects. Bejjanki et al 

proposed approach for creating new samples by figuring out 

the centroid of every feature of minority class samples 

which will reduce class imbalance. When implemented with 

commonly used machine methods, class imbalance 

reduction outperforms SMOTE and K-means SMOTE. 

When it comes to accuracy, precision, and specificity, KNN 

outperforms other classifiers, but logistic regression excels 

in recall, F-measure, and geometric mean[7]. 

Results from the defect prediction system trained on noisy 

and unbalanced data are inconsistent and disappointing. 

Performance of traditional SDP models decreases when 

noise level in datasets rises and the learning process starts 

misclassifying the true class. The imbalanced dataset caused 

the classifiers to overfit, which produced disappointing 

performance results, even if the sampling strategy was not 

employed over the standard baseline models[8]. 

Predictions made by models that are developed using 

unbalanced datasets are unreliable due to their bias result. 

As a result, the model becomes less efficient[9]. 

Poor classifications result when there is an imbalance in the 

class distribution; although accuracy may be good, the 

model is unable to identify data examples in the minority 

class[10].To rectify the inaccurate assessment provided by 

cross-validation, the Ming Tan et al applies and modifies 

online change classification. They also use resampling 

approaches and updatable classification to enhance 

performance. The evaluation of this work on six open-

source and one commercial project demonstrates that the 

precision may be increased by 12.2-89.5%, or 6.4-34.8 

percentage points, by using both resampling approaches and 

updatable categorization[11]. 

[12][13][14][15][10][16] 

There are significant approaches that are helpful in 

comprehending the unbalanced learning issues and that can 

be developed in three ways.1) Sampling 2) Cost-Sensitive 

Learning 3) Ensemble Learning 

(1) Sampling: In sampling, various techniques may be used 

to modify or create a balanced data set. 
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Over-Sampling: In this category, two oversampling 

techniques were taken into consideration. In the first, known 

as random oversampling, the tiny class is randomly 

oversampled until it has the same number of instances as the 

other class. Focused oversampling is the second technique, 

wherein the minor class is oversampled with data that occurs 

around the borders between the idea and its opposite. 

Undersampling : In the first, known as random 

undersampling, elements from the larger class are randomly 

removed until the size of another class is equal. The second 

method, focused undersampling, involves removing 

features that are farther away[17]. 

SMOTE Synthetic Minority Over-sampling Technique: 

Instead of oversampling with replacement, author provide 

an oversampling strategy where the minority class is 

oversampled by producing artificial instances. Rather than 

working in data space, this approach operates in feature 

space, producing synthetic instances[18].Because SMOTE 

creates the same amount of synthetic data samples for each 

actual minority instance without considering the instances 

that are nearby, there is a higher likelihood of overlapping 

between classes[19]. 

ADASYN Adaptive Synthetic Sampling: The foundation of 

ADASYN is the concept of adaptively creating minority 

data samples based on their spreads, for minority class 

samples that are more challenging to learn, additional 

synthetic data is produced. In addition to minimizing the 

learning bias brought about by the initial unbalanced spread 

of data, the ADASYN approach may adaptively move the 

decision boundary to concentrate on the samples that are 

challenging to learn[20]. 

(2) Cost-sensitive learning: These methods establish a 

matrix known as the cost matrix. To enable the efficient 

learning of unbalanced data sets, the cost matrix manages 

discrete faults or instances. This suggests that the inherent 

characteristics of unbalanced distributions cannot be altered 

by cost-sensitive learning strategies. Distinct cost matrices 

are used to detect inaccurate defect classification based on 

the properties of imbalanced data[21]. 

(3) Imbalanced Ensemble Learning: Shuo Wang et al 

developed three ensemble models, known as 

UnderBagging, OverBagging, and SMOTEBagging, 

respectively, and each used bagging to integrate each 

individual classifier. UnderBagging and OverBagging 

involves resampling examples, building each classifier in 

the ensemble iteratively using a subset, and selecting the 

class with the highest vote total When building a subset, 

SMOTEBagging includes the creation phase for synthetic 

instances. Two factors need to be determined, per SMOTE: 

the number of k nearest neighbours and the degree of 

oversampling from the minority class[22]. 

 3. Methodology 

Figure 1 shows proposed model for software defect 

prediction using mean absolute deviation to find the best 

features and ADASYN for synthetic data generation. The 

data repository used in proposed method is the software 

defect repository, a dataset made publicly available by 

NASA that gives software metrics and labels whether there 

is a defect in the written code or not based on various factors 

like the number of control flow branches, the complexity of 

the program, number of comments, etc. This data has 

already been checked and cleaned. 

After loading this data, feature selection is applied to the 

dataset using the concept of median absolute deviation on 

each feature to select the 10 best ones, hence reducing the 

dimensionality (this is usually very helpful when the dataset 

is huge and confusing). Next, to deal with the minority label, 

the technique of ADASYN (Adaptive Synthetic Data 

Generation) is used to generate synthetic data and balance 

the numbers of yes and no. 

This new dataset is divided for training data for creating 

model and testing data for evaluation of model.Random 

forest algorithm is used to train the model, and performance 

metrics are then calculated. The training and testing results 

are compared to understand the extent to which the class 

imbalance issue could be addressed. 

Finally, all this is visualized in the form of a receiver 

operating characteristic curve, which further helps us 

understand the results of the proposed model 
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Fig 1. Software defect prediction proposed framework 

Median Absolute Deviation (MAD):  

Median Absolute Deviation or MAD is a robust measure of 

statistical dispersion. Mathematically it is calculated by 

taking median of absolute deviation of data points from the 

median. MAD is less sensitive to outliers and has high 

resistance against noisy data (which is common in 

imbalanced dataset) than other measures of dispersion like 

standard deviation and variance which are commonly 

preferred for attribute selection. Attribute selection using 

MAD helps to reduce dimensionality of dataset by retaining 

relevant features. The underlying concept of using MAD as 

a factor for attribute selection is, the attributes with highest 

MAD are most informative and contribute the most to the 

prediction of target variable. MAD as a scoring function 

helps in the identification of attributes that exhibit 

significant variability (has a larger spread of data), which is 

very crucial for distinguishing different classes especially 

when we must deal with the issue of class imbalance. 

Attributes with high MAD scores are more likely to help in 

building a better predictive model as they can capture 

essential patterns and characteristics. In simple words we 

can say that MAD will help us identify the attributes that are 
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most discriminatory between the majority and minority 

classes which have the biggest differences in values 

between the two classes. For example, we are trying to 

identify a patient who has a particular disease or not, the 

attributes that are most discriminatory between majority and 

minority classes will be symptoms, test results, risk factors, 

etc. These attributes will more accurately talk about which 

patients are more likely to have the disease due to their 

larger spread than other attributes. Mathematically MAD 

can be expressed as, 

𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑥′|)  

where  

𝑥𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 

𝑥′𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

For evaluation We will consider a sample feature from the 

JM1[23] dataset of NASA software defect repository 

named: BRANCH_COUNT (first 15 values already 

arranged in an ascending order) 

The values are as follows: 

[29, 39, 47, 65, 67, 163, 175, 187, 240, 338, 344, 405, 464, 

503, 826] 

Median of 15 observations is (
15+1

2
) 𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =

 8𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

Median = 187 

Absolute differences: 

• |826 - 187| = 639  

• |29 - 187| = 158  

• |405 - 187| = 218  

• |240 - 187| = 53  

• |464 - 187| = 277  

• |187 - 187| = 0  

• |344 - 187| = 157  

• |47 - 187| = 140  

• |163 - 187| = 24  

• |67 - 187| = 120  

• |503 - 187| = 316  

• |175 - 187| = 12  

• |39 - 187| = 148  

• |338 - 187| = 151  

• |65 - 187| = 122 

 

Arranging all these values again in ascending order: 

[0, 12, 24, 53, 120, 122, 140, 148, 151, 157, 158, 218, 277, 

316, 639] 

Now we calculate median of all these deviation values: 

Median Absolute Deviation = 148. This will give top 10 best 

feature from data. 

Appling Adaptive Synthetic sampling as follows:  

1. It will calculate the distance of each minority class 

sample nearest to its neighbour. 

2. Then it selects minority class samples with highest 

distances to its nearest neighbour.   

3. For the selected minority class sample, a randomly 

selected minority class sample is chosen and new 

data is generation by taking a random value 

between the minority class sample and the nearest 

neighbour.  

Steps 2 and 3 are repeated until suitable number of data 

points are generated.  

This unique and adaptive approach makes the technique 

more suitable for class imbalance issues. 

Figure 2 shows the frequency of labels in the dataset before 

any modification.

 

Fig 2. Class distribution before Oversampling (ADASYN) 

Pseudocode 

Load the dataset from 'JM1.csv' 

For each column in the dataset: 

    If column datatype is 'object': 



International Journal of Intelligent Systems and Applications in Engineering  IJISAE, 2024, 12(12s), 183–191 |  189 

         Encode the column using Label Encoding 

Define a custom MAD scoring function (mad_score) 

Use SelectKBest to select the most informative features 

based on MAD: X_selected = 

SelectKBest(score_func=mad_score, 

k=10).fit_transform(X, Y) 

\\Apply ADASYN for oversampling: 

   X_over, y_over = ADASYN.fit_resample(X_selected, y) 

\\Split oversampled data into training and testing sets: 

              Xtrain, Xtest, ytrain, ytest  

\\Create a Random Forest Classifier 

\\Get predicted probabilities for positive class for training 

and testing data: 

     y_train_prob = rf.predict_proba(X_train)[:, 1] 

     y_test_prob = rf.predict_proba(X_test)[:, 1] 

\\Calculate ROC curve values: 

     Calculate AUC (Area Under the ROC Curve) for 

training and testing data 

\\Evaluate classifier performance: 

     Calculate training accuracy, precision, and recall 

     Calculate testing accuracy, precision, and recall 

4.  Result Discussion 

Figure 3 shows the frequency of labels after synthetic data 

generation:

 

 

Fig 3. Class Distribution after Oversampling (ADASYN) 

Various oversampling techniques, along with the proposed 

model, have been applied to the software defect dataset. We 

can clearly observe that accuracy cannot be the only measure 

of how well the model has been trained, i.e., though the base 

machine learning model (trained on a random forest classifier) 

may have an accuracy of 0.82804, the recall is extremely low, 

suggesting it is unable to correctly identify the positives, 

which is obvious due to the issue of class imbalance. This is 

not a good sign for a machine learning model. Hence, we go 

for oversampling methods to balance the number of positives 

and negatives. The standard oversampling technique is 

SMOTE (Synthetic Minority Oversampling Technique), but 

we have opted for ADASYN (Adaptive Synthetic 

Oversampling Technique). Firstly, because ADASYN 

generates synthetic data points based on difficulty level, unlike 

SMOTE, which merely works on the concept of generating 

minority classes based on nearest neighbour only, Secondly, 

from the results, we can see that SMOTE may have a little 

higher accuracy than ADASYN, but it is suitably compensated 

by a higher recall. But all these techniques are very 

straightforward, which may not give better results. This is 

where our proposed model helps to give exceptionally good 

results. High accuracy, precision, and recall suggest it can 

correctly identify both positive and negative samples from the 

dataset, hence making it a more progressive solution over 

traditional methods. 

A similar conclusion can be inferred from the ROC (Receiver 

Operating Characteristic curve) curves of all these methods. 

Figure 4 clearly shows the robustness of the proposed model, 

which has an AUC (Area Under the Curve) value of 0.93, 

which shows it can comfortably identify positive and negative 

instances and will also accurately identify newer data points 
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better than other models, which only rely upon simple 

oversampling, undersampling, or ensemble models.  

 

Fig 4. ROC Curve for MAD + ADASYN 

Figures 5, 6, and 7 also give us a sense of comparison 

between the various techniques. From AUC value of Simple 

ML Model ADASYN and SMOTE in Figures 5, 6, and 7 

shows that it correctly identifies positive and negative 

instances for training data but for test data its AUC value for 

Simple ML Model 0.76, ADASYN 0.74 and for SMOTE 

0.74 which is low score compared to MAD + ADASYN 

value. 

 

Fig 5. ROC for Simple ML Model 

 

Fig 6. ROC Curve for SMOTE 
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Fig 7. ROC Curve for ADASYN 

 

Table 3 shows comparison result for Simple Machine 

Learning Model, SMOTE, ADASYN, MAD + ADASYN 

for NASA’s JM1 

Dataset. From result we conclude recall value using 

MAD+ADASYN has been significantly improved 

compared to other technique which helps to identify positive 

and negative instances correctly and will also identify newer 

data points better than other models. 

5. Conclusion 

This paper addressed issue of class imbalance using mean 

absolute deviation to find the best features and ADASYN 

for synthetic data generation. This work demonstrate that 

recall is more important than accuracy while handling class 

imbalance. We have studied various ways to handle class 

imbalance like sampling, Cost-sensitive learning, Ensemble 

Learning. A recall of 89% and an accuracy of around 85% 

suggest that our model's results are quite positive. The AUC 

curve for the model is 0.93, indicating that it can accurately 

identify both positive and negative events. Future work can 

be extended software defect prediction on commercial 

projects.   
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