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Abstract: Software defect detection is a valuable tool for enhancing the quality of technology and testing management. It allows 

for the quick identification of flaws in simulation models before the real testing phase begins. These prediction results ass ist 

technology designers in efficiently allocating their limited resources to areas that are more susceptible to shortcomings. This research 

presents a novel method for software bug prediction using deep learning techniques. A Recurrent Neural Network is used to classify 

source code, using various soft computing approaches. Data balancing for normalisation has included the use of many pre-processing 

and data filtering procedures. The generation of the Vector Space Model (VSM) has included the use of TF-IDF and related feature 

extraction approaches. The classification was performed using Recurrent Neural Networks (RNN) based on the training module fo r 

both the training and validation datasets. The proposed deep learning framework comprises many optimisation strategies, each with 

its own distinct advantages and constraints. We have assessed all methodologies and chosen the most superior one. To conduct the 

observations and test the suggested technique, a range of real-time and synthetic accessible datasets are assessed. The evaluation 

findings demonstrate that the proposed framework version surpasses both simple models of outstanding quality and complex deep  

learning classification models. 

Keywords: LSTM, Bug prediction; ensembles; segmentation; classification; neural network; class imbalance learning; re-sampling 

methods; software defect prediction. 

1. Introduction: 

The identification of weaknesses in source code or 

software has emerged as a prominent area of study. While 

previous research has shown the effectiveness of various 

detection techniques, models, and software vulnerability 

analysis tools in discovering source code vulnerabilities, 

improving the efficiency of these detection models and 

tools continues to be a significant problem for researchers. 

Every year, a large number of security vulnerabilities are 

discovered in virtual instruments. These vulnerabilities 

are then made public and added to a database that contains 

information on the weaknesses found in the code of these 

instruments. Threats may also manifest in indirect ways 

that may not be immediately apparent to code inspectors 

or programmers. It is essential to comprehend the 

intricacies of vulnerabilities that might directly cause 

system problems by analysing the raw data, which 

includes a vast amount of publicly accessible source code. 

This paper introduces an information-based approach to 

security technologies via the use of deep learning. 

Building upon the success of previous research in 

identifying vulnerabilities in source code and software, 

we use a theoretical framework to assess its potential in 

detecting these flaws. The first findings suggest that it is 

possible to define and identify assaults inside the given 

realm. 

 In order to address the gap between different domains, we 

may suggest that each feature in a programme be seen as 

a neural network in the field of computer vision. This is 

because fault detectors may just need to determine if a 

feature is unsecured and provide a comprehensive 

explanation of vulnerability situations. We want a 

discerning analysis of fault management programmes. It 

is advisable to consider each piece of code as a 

vulnerability detection unit, meaning that comments and 

code are utilised interchangeably in this research. 

Notably, there are significant exceptions to this diagnosis: 

(i) The majority of comments in a programme are likely 

to be certain, suggesting that only a small number of 

samples are vulnerable; and (ii) many comments are not 

considered as a cohesive unit that is semantically 

connected to one another. 

A novel approach was developed to detect defects in huge 

volumes of random code by using classic programming 

techniques such as k-means cluster analysis and the 

generative adversarial model. The k-means cluster 
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transformation has been used to choose the most suitable 

code using an interactive analysis framework and 

software code rework generation [1]. The Tree-LSTM 

system, as described in the literature on object-oriented 

code analysis, utilises an LSTM network that operates as 

a tree structure. The model's validity is confirmed via the 

tasks of analysing conceptual relationships using coding 

pairs and identifying feelings [2]. Furthermore, this 

research study focuses on the kind of compilation that 

facilitates error detection for new developers while 

working with large source code. It also provides 

recommendations for addressing source code issues. The 

research use a previously established coding technique to 

identify vulnerabilities in particular code snippets [3]. An 

LSTM network would be used to forecast the level of 

motivation shown by the learners' instructor. A different 

research proposed a technique for detecting system 

software vulnerabilities using LSTM[4]. In order to 

determine the highest possible accuracy in classification, 

the number of neurons in the LSTM model was adjusted. 

The LSTM model achieves accurate outcomes in the 

detection of system software bugs [5]. 

Researchers often use traditional semi-supervised 

classifiers, recurrent neural networks (RNNs), long short-

term memory (LSTM) models, or convolutional neural 

networks (CNNs) as classification methods for web 

application bug discovery and vulnerability classification. 

RNNs outperform typical language models, such as n-

grams, although they have limitations in comprehending 

lengthy sequence data. LSTM, short for Long Short-Term 

Memory, is a variant of Recurrent Neural Networks 

(RNNs) that surpasses the constraints of traditional 

RNNs. The current research introduces a model that 

combines the process of consciousness with Long Short-

Term Memory (LSTM) - Recurrent Neural Network 

(RNN). The LSTM-RNN network serves as a feature 

vector for the assessment and recognition of source code, 

relying on the anticipated maximum limit. The LSTM-

AttM network outperforms the LSTM network, despite 

the fact that the former solely utilises the last hidden state 

outputs for estimate. When it comes to predicting 

activities, LSTM-RNN takes into account all the 

consequences of previously concealed states. The 

majority of the investigations have used different system 

software and classification methods to identify faults, 

functional programming, archive code, and basic error 

detection. Conversely, our proposed approach clearly 

identifies logic, grammar, and other system software 

flaws. Furthermore, instead of the erroneous location, the 

suggested model is used to forecast the accurate terms. In 

general, our proposed Language model differs from many 

previous models in its pursuit of distinct aims. 

This study presents a new approach to active tracking in 

deep learning, which enables the automated learning of 

characteristics for anticipating vulnerabilities in runtime 

environments. When code components are located widely 

away in the source code, we use LSTM to capture 

enduring connections. For instance, when certain code 

tokens must occur together at the same time in a computer 

programme (e.g. in Java) or when they need to be used 

together based on the setting of an API (e.g. Lock() and 

active()), but they do not automatically come together, 

they are effectively managed. The acquired syntactic 

properties accurately represent the semantic functioning 

and hierarchical structure of the source code symbols. Our 

automated feature learning system eliminates the need for 

automated feature selection in traditional methods, hence 

reducing the significant amount of labour required. 

Ultimately, after subjecting the framework to extensive 

evaluation on several Java programmes for the Desktop 

edition, it becomes evident that our approach is 

exceptionally precise in elucidating code weaknesses. 

2. Related Work : 

Software defect prediction is used to identify potential 

defects throughout the software maintenance process with 

the aim of enhancing software dependability. The primary 

emphasis of conventional software defect prediction 

methodologies is on creating static code measurements, 

which are then used as input for machine learning 

classifiers to estimate the likelihood of code defects. 

Evaluating seven Apache open-source Java projects by 

using the area under the curve (AUC) and the F1 metric. 

The experimental results indicate that, on average, DP-

ARNN surpasses the most advanced methods in terms of 

F1-measure and AUC by 14% and 7%, respectively [6]. 

Bug reports are a crucial and indispensable source of 

information for software development. When these 

reports are misclassified, bias is always introduced. 

Manual inspections may help reduce noise, but they 

impose a substantial burden on developers. In order to 

streamline the prediction process, Zhou et.al [7] proposed 

a multi-stage approach that included text mining and data 

mining methodologies. 

An essential responsibility in the continuous development 

and upkeep of a programme is the resolution of software 

defects. Jin et.al [8] proposed a method to improve the 

accuracy of bug severity prediction. The bug reports for 

our classifier model comprise 'normal' severity bug 

reports, which constitute a significant proportion of all 

reported defects, together with the text and meta-fields. 

Accurately determining the severity level of a bug report 

is an essential aspect in resolving bugs. To achieve 

equilibrium in the bug triaging process, it is necessary to 

categorise the severity of a bug report. To address these 

challenges, they propose a novel deep learning model 

called Bug Severity classification, which leverages 

Convolutional Neural Networks and Random Forest with 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 |  306 

Boosting (BCR) for multiclass severity classification. 

This model directly learns the latent and highly 

representative characteristics. The bug report text is first 

subjected to preprocessing using natural language 

techniques, followed by the extraction of its features using 

n-grams [9]. 

The approach consists mostly of two phases: the two-

stage ensemble (TSE) phase and the deep learning phase. 

Tong et. al [10] introduced a method where the DPs were 

originally derived from the traditional software metrics 

using SDAEs. They then tackled the problem of class-

imbalance by using a unique ensemble learning technique 

called TSE. 

3. Proposed System Design: 

 

Fig 1: proposed system architecture design 

A system overview of the execution process flow is 

shown in Figure 1, which can be seen above. This figure 

also outlines how the framework functions with various 

algorithms. 

3.1 Feature Execution 

A thorough compilation of the source code or modules is 

performed by the function, which also collects real 

statistics. The behaviour of the code is analysed using this 

method in order to locate any vulnerabilities. In order to 

construct the Vector Space Model (VSM) using the 

recovered characteristics during the course of the 

research, four different dynamic analysis procedures were 

used. These approaches were fault infusion, mutation 

suitable starting, dynamic taint assessment, and dynamic 

system check. 

3.2. Data Pre-processing and normalization 

At the beginning of the process of discovering a few 

clones, the source code is split, and the region of 

comparison is first agreed upon. In the phases that follow, 

there are three primary categories of objectives. 

Remove the following portion of code: This step involves 

removing the source code that contains the boring 

comparison phase. 

• Ascertain the units of origin and The remaining 

portion of the source code is separated into a series of 

distinct parts that are referred to as source units. This 

is accomplished by deleting all of the code that is not 

interesting. 

• Determine the units and granularity of the correlation. 

• portions of the source code have to be manually 

separated into smaller portions, with the division 

being determined by the evaluation approach that is 

used by a tool. 

3.3 Extraction of heterogeneous features 

The extraction process modifies the programme to its 

right form, while providing assistance for the actual 

comparison procedure. Depending on the device, it 

includes the following: 

Tokenization : If an event involving token-based 

techniques occurs, each line of source code in the 

programme is divided into tokens according to the lexical 

rules of the programme design platforms. Utilise various 

tokens from source code lines or forms and then compare 

them using a token system framework. All whitespace and 

explanations among inscriptions are removed from the 

token groupings. 
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When it comes to parsing, syntactic techniques include 

describing the whole source code in order to build a parse 

tree or maybe a refined abstract syntax tree. After that, the 

source components that are going to be examined are 

shown as subordinate structures of the description tree or 

the tree, and correlation algorithms are used in order to 

find subordinate structures that are appropriate for 

verification as clones. Methodologies that are dependent 

on measurements could use a parse tree representation in 

order to detect clones, with the size of the sub trees being 

the determining factor. 

The generation of dependencies from source code is 

accomplished via the use of semantic approaches in 

control and data flow analysis. The components of a 

Programme Dependence Graph are a visual representation 

of the reports and conditions of a system, while the edges 

of the graph display the control and information 

conditions. The subgraphs that include the source units 

that need to be matched are shown inside these PDGs. 

When looking for clones, one of the many ways that may 

be used is to search for isomorphic subgraphs. In order to 

compute information based on control stream data, many 

different ways make use of subgraphs. 

3.4 Feature Selection 

Different feature selection techniques have been used 

throughout the training of the module. The function 

compiles the complete source code or modules, capturing 

actual statistics. This technique analyses the behaviour of 

the code to find vulnerabilities. When considering a larger 

dataset, the importance of all variables becomes less 

significant. However, the more variables there are, the 

more challenging the analysis becomes. Consequently, it 

is sometimes more desirable to decrease the quantity of 

variables in a dataset and use crucial variables. To 

determine the value of a variable in a dataset, we may use 

a Function Selection strategy to decrease the parameter. 

Four dynamic analysis methodologies, including fault 

infusion, mutation appropriate beginning, dynamic taint 

evaluation, and dynamic system check, were used 

throughout the study. To create the Vector Space Model 

(VSM) from the collected characteristic. 

3.5 Vulnerability Detection 

The identification of vulnerabilities has been carried out 

by making use of the features that were gathered from the 

training dataset. developed on the basis of extracted 

characteristics such as TF-IDF, relational features, and 

certain bigram features, the vector space model has been 

developed. Recurrent neural networks, more especially 

the long short-term memory approach, were used in order 

to carry out the categorising process. The detection 

approach is also effective in avoiding attacks on web 

applications that are carried out using software as a 

service technologies. In addition to identifying and 

facilitating both internal and external attacks, the 

vulnerable code also makes it possible for unauthorised 

individuals to get access to the system. During the 

execution of code, the major objective of vulnerability 

detection is to automatically identify instances of attacks 

that include exception handling and buffer overflow. The 

strategy that is proposed in the code snippet provides 

increased detection accuracy in the sector that is specified. 

4. Results and Discussion: 

We have used RNN classification algorithms, which are 

well-suited for fault prediction even on unlabeled 

datasets, to verify the assessment of the suggested bug 

forecast method. The confusion matrix, which comprises 

the accuracy, recall, and F-score metrics, is used to 

evaluate software defect prediction ability (Table 1). 

Table 1: confusion matrix evaluation 

 

In order to assess the suggested system, we used machine 

learning classifiers such as Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), and Adaboost. 

In addition, we have implemented a deep learning 

framework. This framework utilises activation functions . 

The classification accuracy results, together with the 

confusion matrix, for all methods are shown in Table 2. 

The evaluation was performed using 20-fold cross-

validation. The metrics used for algorithm comparison 

include Accuracy, Precision, Recall, and Micro-score. 

Based on the data, it can be inferred that the RNN (ReLU) 

achieves the greatest level of performance compared to 

the others. 

4.1 Experiment using Artificial Neural Network: 

Figure 2 displays the accuracy of the ANN classification 

method. Initially, it was trained using built-in functions 

from the Weka tool. Several cross-validation approaches 

have been used for classification, and different parameters 

have been adjusted for the artificial neural network 

(ANN) throughout the classification process. This 

technique may categorise each validation based on a 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 |  308 

probability function, which is why this algorithm has a 

somewhat higher mistake rate compared to other 

supervised classification algorithms. 

 

Table 2: Classification accuracy with confusion matrix for ANN 

 

The Artificial Neural Network (ANN) model is 

straightforward to construct and especially valuable for 

the categorization of extensive datasets via the use of 

supervised machine learning techniques or Artificial 

Intelligence (AI). In addition to its simplicity, Artificial 

Neural Networks (ANN) are renowned for their ability to 

surpass even the most advanced categorization 

techniques. The suggested artificial neural network 

(ANN) forecasts the likelihood of an individual 

occurrence based on the present values. 

Figure 2 depicts the assessment of the performance of 

Artificial Neural Network (ANN) classification using a 

20-fold classification approach. The achieved accuracy 

for the provided input dataset is around 85.60%. We used 

a multinomial event model, where the samples indicate 

the frequency at which certain events have been created 

by a multinomial probability distribution. Based on this 

probability distribution, the system makes predictions for 

the final class. 

 

Fig. 2: An analysis of the discovery of bugs and vulnerabilities using artificial neural networks with twentyfold data cross 

validation 

4.2 Analysis using SV model 

According to the results of the classification study with 

different cross validations, which are shown in table 3 

below, we have determined that the 20 fold cross-

validation delivers the maximum classification accuracy 

for SVM, which is 95.2%. 

 

Table 3: Classification accuracy with confusion matrix for SVM 
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Fig. 3: Analysis of bug and vulnerability detection using SVM with 20-fold data cross validation 

Figure 3 above illustrates the implementation of Support 

Vector Machine (SVM) classification for vulnerability 

detection using a 20-fold cross-validation approach. 

Generating a training set by labelling instances may be 

time-consuming and costly in many machine learning 

scenarios. Therefore, it is beneficial to explore methods 

for minimising the number of instances that need 

supervised classification. The Kernel-Based method has 

been used to minimise occurrences by enhancing 

performance. In this approach, we categorise everything 

as a point in n-dimensional spaces based only on the 

direction of a certain feature. We identify clones by 

locating the hyper-plane that effectively divides the two 

groups. 

4.3 Experiment using Adaboost: 

According to the results of the classification study with 

different cross validations, which are shown in table 4 

below, we have determined that the 20 fold cross-

validation delivers the maximum classification accuracy 

for Adaboost, which is 81.30%.  

 

Table 4: Classification accuracy with confusion matrix for Adaboost 

 

Adaboost is said to be adaptive since it modifies weak 

learners in the future in favour of situations that were 

incorrectly identified by previous classifiers. It is possible 

that, under some circumstances, it is less likely to 

experience the problem of overfitting than other learning 

methods. The whole model will converge to a strong 

learner as long as the performance of individual learners 

is considerably better than real guessing.  

 

Fig. 4: Adaboost was used to do an analysis of bug and vulnerability detection, and 20-fold data cross validation was then 

performed. 

Figure 4 provides a description of the Adaboost 

classification system for the identification of bogus 

accounts using 20-fold cross-validation. An example of a 

particular training method for boosted classifiers is the 

AdaBoost method. 

 

The term "classifier" may also refer to a "boost classifier." 

Each and every Ft is a weak learner that takes an object x 

as its input and then returns a result that denotes the class 
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of the object. In the case of the two-class problem, for 

instance, the sign of the weak learner output identifies the 

object class that is predicted, but the absolute value 

reflects the degree of confidence in that classification. In 

a similar vein, the Tth classifier is positive if the sample 

is a member of a positive class; otherwise, it is negative. 

 

 

 

 

4.4 Experiment using Recurrent Neural Network 

(Sigmoid): 

Within the scope of this experiment, we show the 

accuracy of the RNN (Sigmoid) classification algorithm 

by using a synthetic dataset. Similar tests have been 

conducted with a variety of cross validations, and the 

results are presented in table 5. Based on the findings of 

this investigation, we have determined that the 

implementation of RNN with Sigmoid function has the 

maximum classification accuracy of 96.10% when 

utilising 20 fold cross validation. 

Table 5: Classification accuracy with confusion matrix for RNN (Sigmoid) 

 

 

Fig 5 : Detection of accuracy using a Sigmoid Recurrent Neural Network (RNN) with 20-fold data cross validation  

Based on the explanation provided in Figure 5, the 20-fold 

cross validation also achieves 96.10% using RNN with 

sigmoid function. This RNN functions accomplish about 

greater accuracy than the typical machine learning 

methods when it comes to module testing. 

 

 

 

4.5 :Recurrent Neural Network, was used in the 

experiment with Tanh 

The classification accuracy of RNN is shown in figure 6, 

and the results of comparable trials conducted with a 

variety of cross validations are presented in table 6. Based 

on the findings of this investigation, we have come to the 

conclusion that the maximum classification accuracy for 

RNN utilising Tanh is achieved via the use of 20 fold 

cross validation.

Table 6: Classification accuracy with confusion matrix for RNN (Tanh) 
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Fig. 6: Detection of accuracy using RNN (Tanh) with 20-fold data cross validation 

4.5 Experiment using RNN (ReLU): 

In this experiment, we investigate the accuracy of the 

ReLU classification algorithm by making use of a 

synthetic dataset. Previous experiments of a similar kind 

have been conducted using a variety of cross-validation 

methods, and the results are shown in table 7. Based on 

the findings of this investigation, we have come to the 

conclusion that the system offers the maximum accuracy 

of 97.5% for 20-fold cross validation classification 

accuracy for RNN.. 

 

Table 7: Classification accuracy with confusion matrix for RNN (ReLU) 

 

 

Fig. 7: Detection of accuracy using RNN (ReLU) with 20-fold data cross validation 

A suggested deep learning classification method with a 

machine learning algorithm is described in the 

experiments that were shown before. The outcome is 

shown in this picture both with and without the assistance 

of cross-validation. The identification of code clone has 

been accomplished with the use of a minimum of three 

hidden layers. As a result of this experiment, we have 

come to the conclusion that the RNN with sigmoid 

detector offers superior detection accuracy in comparison 

to the other two activation functions and the random forest 

machine learning technique. A comparison of all of the 

outcomes of the tests described above can be seen in table 

8. 
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Table 8: Classification accuracy with 20 folds cross-validation for all methods 

 

 

Fig. 8: Classification accuracy with 20-fold cross-validation for all methods 

Another analysis demonstrated that our suggested 

solution had the highest prediction performance among 

the evaluated RNN algorithms, as shown by these 

assessment measures. Furthermore, certain datasets may 

not accurately capture all software problems and new 

defects due to limitations in data comprehensiveness and 

quantity. It is advisable to do further testing of the 

proposed solution inside real-world software applications. 

The three data splitting mechanisms are used in the form 

of 10-fold, 15-fold, and 20-fold cross-validation. 

Table 9: An explanation of the source code that was taken from Android APK files as a dataset 

Total Size 2500 

Training Samples 2000 

Testing Samples 500 

The system provides a description of four assessments 

that compare the findings of this study with the findings 

of various current systems that have been computed on 

several datasets that are related to each other. This 

comparison between the suggested machine learning 

algorithms and some of the current ones is shown in 

Figure 9, which can be seen below. 

 

Fig. 9: A comparison of the proposed categorization with the current classification for the purpose of vulnerability 

detection 

The Figure 9 displays the classification accuracy of the 

suggested methods for vulnerability detection, compared 

to two current machine learning techniques. This image 

illustrates that the suggested Recurrent Neural Network 

(RNN) offers superior accuracy in detecting compared to 

other machine learning techniques.. 

5. Conclusion and Future Work: 

Detecting vulnerabilities in imbalanced source codes may 

be a laborious task. Vulnerable code might enable the 
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generation of software attacks on distant users. 

Occasionally, when the susceptible code is being 

executed, it may also give rise to internal attacks such as 

buffer overflow, session hijacking, and authentication 

bypass. Software literature annually identifies several 

issues with software. Vulnerabilities often do not manifest 

in concealed forms that can be readily identified by 

software testers. This system outlines the approach of 

identifying limitations by using deep learning techniques. 

This study presents the development of a Recurrent 

Neural Network (RNN) that incorporates Long Short-

Term Memory (LSTM) for the purpose of creating code 

vulnerability detection and bug triage systems across 

several platforms. Many technologies lack the capability 

to assist a web-based application in identifying code 

vulnerabilities. The suggested system is capable of 

detecting vulnerabilities by performing feature extraction 

on various datasets. Recurrent Neural Networks (RNN) 

provide superior outcomes compared to conventional 

machine learning classifiers. In the future, developers will 

want the ability to identify code triage for runtime mobile-

based application programmes, since the current tools 

lack support for such programmes. Code clone 

management is another need in software engineering. 

Superior design quality may be attained by the use of 

glitches. Open-source code replication in software 

development. 
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