

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 304

Software Vulnerability Assessment and Classification

Using Recurrent Neural Network and LSTM

Ashok V. Markad1, Dipak R. Patil2, Bharat S. Borkar3, Vilas S. Ubale4, Sunildatta S. Kadlag5, Manoj A.

Wakchaure6, Rohit N. Devikar7

Submitted: 21/11/2023 Revised: 28/12/2023 Accepted: 09/01/2024

Abstract: Software defect detection is a valuable tool for enhancing the quality of technology and testing management. It allows

for the quick identification of flaws in simulation models before the real testing phase begins. These prediction results ass ist

technology designers in efficiently allocating their limited resources to areas that are more susceptible to shortcomings. This research

presents a novel method for software bug prediction using deep learning techniques. A Recurrent Neural Network is used to classify

source code, using various soft computing approaches. Data balancing for normalisation has included the use of many pre-processing

and data filtering procedures. The generation of the Vector Space Model (VSM) has included the use of TF-IDF and related feature

extraction approaches. The classification was performed using Recurrent Neural Networks (RNN) based on the training module fo r

both the training and validation datasets. The proposed deep learning framework comprises many optimisation strategies, each with

its own distinct advantages and constraints. We have assessed all methodologies and chosen the most superior one. To conduct the

observations and test the suggested technique, a range of real-time and synthetic accessible datasets are assessed. The evaluation

findings demonstrate that the proposed framework version surpasses both simple models of outstanding quality and complex deep

learning classification models.

Keywords: LSTM, Bug prediction; ensembles; segmentation; classification; neural network; class imbalance learning; re-sampling

methods; software defect prediction.

1. Introduction:

The identification of weaknesses in source code or

software has emerged as a prominent area of study. While

previous research has shown the effectiveness of various

detection techniques, models, and software vulnerability

analysis tools in discovering source code vulnerabilities,

improving the efficiency of these detection models and

tools continues to be a significant problem for researchers.

Every year, a large number of security vulnerabilities are

discovered in virtual instruments. These vulnerabilities

are then made public and added to a database that contains

information on the weaknesses found in the code of these

instruments. Threats may also manifest in indirect ways

that may not be immediately apparent to code inspectors

or programmers. It is essential to comprehend the

intricacies of vulnerabilities that might directly cause

system problems by analysing the raw data, which

includes a vast amount of publicly accessible source code.

This paper introduces an information-based approach to

security technologies via the use of deep learning.

Building upon the success of previous research in

identifying vulnerabilities in source code and software,

we use a theoretical framework to assess its potential in

detecting these flaws. The first findings suggest that it is

possible to define and identify assaults inside the given

realm.

 In order to address the gap between different domains, we

may suggest that each feature in a programme be seen as

a neural network in the field of computer vision. This is

because fault detectors may just need to determine if a

feature is unsecured and provide a comprehensive

explanation of vulnerability situations. We want a

discerning analysis of fault management programmes. It

is advisable to consider each piece of code as a

vulnerability detection unit, meaning that comments and

code are utilised interchangeably in this research.

Notably, there are significant exceptions to this diagnosis:

(i) The majority of comments in a programme are likely

to be certain, suggesting that only a small number of

samples are vulnerable; and (ii) many comments are not

considered as a cohesive unit that is semantically

connected to one another.

A novel approach was developed to detect defects in huge

volumes of random code by using classic programming

techniques such as k-means cluster analysis and the

generative adversarial model. The k-means cluster

1,3, 7 Department of Information Technology, Amrutvahini COE, Sangamner,

Maharashtra, India
2,6 Department of Computer Engineering, Amrutvahini COE, Sangamner,

Maharashtra, India 4Department of Computer & Electronics Engineering,

Amrutvahini COE, Sangamner, Maharashtra, India 5Department of

Electrical Engineering, Amrutvahini COE, Sangamner, Maharashtra,

India 1ashok.markad@avcoe.org, 2dipak.patil@avcoe.org,
3bharat.borkar@avcoe.org, 4vilas.ubale@avcoe.org,
5sunil.kadlag@avcoe.org, 6manoj.wakchaure@avcoe.org,
7rohit.devikar@avcoe.org

mailto:1ashok.markad@avcoe.org
mailto:2dipak.patil@avcoe.org
mailto:3bharat.borkar@avcoe.org
mailto:4vilas.ubale@avcoe.org
mailto:5sunil.kadlag@avcoe.org
mailto:6manoj.wakchaure@avcoe.org
mailto:7rohit.devikar@avcoe.org

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 305

transformation has been used to choose the most suitable

code using an interactive analysis framework and

software code rework generation [1]. The Tree-LSTM

system, as described in the literature on object-oriented

code analysis, utilises an LSTM network that operates as

a tree structure. The model's validity is confirmed via the

tasks of analysing conceptual relationships using coding

pairs and identifying feelings [2]. Furthermore, this

research study focuses on the kind of compilation that

facilitates error detection for new developers while

working with large source code. It also provides

recommendations for addressing source code issues. The

research use a previously established coding technique to

identify vulnerabilities in particular code snippets [3]. An

LSTM network would be used to forecast the level of

motivation shown by the learners' instructor. A different

research proposed a technique for detecting system

software vulnerabilities using LSTM[4]. In order to

determine the highest possible accuracy in classification,

the number of neurons in the LSTM model was adjusted.

The LSTM model achieves accurate outcomes in the

detection of system software bugs [5].

Researchers often use traditional semi-supervised

classifiers, recurrent neural networks (RNNs), long short-

term memory (LSTM) models, or convolutional neural

networks (CNNs) as classification methods for web

application bug discovery and vulnerability classification.

RNNs outperform typical language models, such as n-

grams, although they have limitations in comprehending

lengthy sequence data. LSTM, short for Long Short-Term

Memory, is a variant of Recurrent Neural Networks

(RNNs) that surpasses the constraints of traditional

RNNs. The current research introduces a model that

combines the process of consciousness with Long Short-

Term Memory (LSTM) - Recurrent Neural Network

(RNN). The LSTM-RNN network serves as a feature

vector for the assessment and recognition of source code,

relying on the anticipated maximum limit. The LSTM-

AttM network outperforms the LSTM network, despite

the fact that the former solely utilises the last hidden state

outputs for estimate. When it comes to predicting

activities, LSTM-RNN takes into account all the

consequences of previously concealed states. The

majority of the investigations have used different system

software and classification methods to identify faults,

functional programming, archive code, and basic error

detection. Conversely, our proposed approach clearly

identifies logic, grammar, and other system software

flaws. Furthermore, instead of the erroneous location, the

suggested model is used to forecast the accurate terms. In

general, our proposed Language model differs from many

previous models in its pursuit of distinct aims.

This study presents a new approach to active tracking in

deep learning, which enables the automated learning of

characteristics for anticipating vulnerabilities in runtime

environments. When code components are located widely

away in the source code, we use LSTM to capture

enduring connections. For instance, when certain code

tokens must occur together at the same time in a computer

programme (e.g. in Java) or when they need to be used

together based on the setting of an API (e.g. Lock() and

active()), but they do not automatically come together,

they are effectively managed. The acquired syntactic

properties accurately represent the semantic functioning

and hierarchical structure of the source code symbols. Our

automated feature learning system eliminates the need for

automated feature selection in traditional methods, hence

reducing the significant amount of labour required.

Ultimately, after subjecting the framework to extensive

evaluation on several Java programmes for the Desktop

edition, it becomes evident that our approach is

exceptionally precise in elucidating code weaknesses.

2. Related Work :

Software defect prediction is used to identify potential

defects throughout the software maintenance process with

the aim of enhancing software dependability. The primary

emphasis of conventional software defect prediction

methodologies is on creating static code measurements,

which are then used as input for machine learning

classifiers to estimate the likelihood of code defects.

Evaluating seven Apache open-source Java projects by

using the area under the curve (AUC) and the F1 metric.

The experimental results indicate that, on average, DP-

ARNN surpasses the most advanced methods in terms of

F1-measure and AUC by 14% and 7%, respectively [6].

Bug reports are a crucial and indispensable source of

information for software development. When these

reports are misclassified, bias is always introduced.

Manual inspections may help reduce noise, but they

impose a substantial burden on developers. In order to

streamline the prediction process, Zhou et.al [7] proposed

a multi-stage approach that included text mining and data

mining methodologies.

An essential responsibility in the continuous development

and upkeep of a programme is the resolution of software

defects. Jin et.al [8] proposed a method to improve the

accuracy of bug severity prediction. The bug reports for

our classifier model comprise 'normal' severity bug

reports, which constitute a significant proportion of all

reported defects, together with the text and meta-fields.

Accurately determining the severity level of a bug report

is an essential aspect in resolving bugs. To achieve

equilibrium in the bug triaging process, it is necessary to

categorise the severity of a bug report. To address these

challenges, they propose a novel deep learning model

called Bug Severity classification, which leverages

Convolutional Neural Networks and Random Forest with

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 306

Boosting (BCR) for multiclass severity classification.

This model directly learns the latent and highly

representative characteristics. The bug report text is first

subjected to preprocessing using natural language

techniques, followed by the extraction of its features using

n-grams [9].

The approach consists mostly of two phases: the two-

stage ensemble (TSE) phase and the deep learning phase.

Tong et. al [10] introduced a method where the DPs were

originally derived from the traditional software metrics

using SDAEs. They then tackled the problem of class-

imbalance by using a unique ensemble learning technique

called TSE.

3. Proposed System Design:

Fig 1: proposed system architecture design

A system overview of the execution process flow is

shown in Figure 1, which can be seen above. This figure

also outlines how the framework functions with various

algorithms.

3.1 Feature Execution

A thorough compilation of the source code or modules is

performed by the function, which also collects real

statistics. The behaviour of the code is analysed using this

method in order to locate any vulnerabilities. In order to

construct the Vector Space Model (VSM) using the

recovered characteristics during the course of the

research, four different dynamic analysis procedures were

used. These approaches were fault infusion, mutation

suitable starting, dynamic taint assessment, and dynamic

system check.

3.2. Data Pre-processing and normalization

At the beginning of the process of discovering a few

clones, the source code is split, and the region of

comparison is first agreed upon. In the phases that follow,

there are three primary categories of objectives.

Remove the following portion of code: This step involves

removing the source code that contains the boring

comparison phase.

• Ascertain the units of origin and The remaining

portion of the source code is separated into a series of

distinct parts that are referred to as source units. This

is accomplished by deleting all of the code that is not

interesting.

• Determine the units and granularity of the correlation.

• portions of the source code have to be manually

separated into smaller portions, with the division

being determined by the evaluation approach that is

used by a tool.

3.3 Extraction of heterogeneous features

The extraction process modifies the programme to its

right form, while providing assistance for the actual

comparison procedure. Depending on the device, it

includes the following:

Tokenization : If an event involving token-based

techniques occurs, each line of source code in the

programme is divided into tokens according to the lexical

rules of the programme design platforms. Utilise various

tokens from source code lines or forms and then compare

them using a token system framework. All whitespace and

explanations among inscriptions are removed from the

token groupings.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 307

When it comes to parsing, syntactic techniques include

describing the whole source code in order to build a parse

tree or maybe a refined abstract syntax tree. After that, the

source components that are going to be examined are

shown as subordinate structures of the description tree or

the tree, and correlation algorithms are used in order to

find subordinate structures that are appropriate for

verification as clones. Methodologies that are dependent

on measurements could use a parse tree representation in

order to detect clones, with the size of the sub trees being

the determining factor.

The generation of dependencies from source code is

accomplished via the use of semantic approaches in

control and data flow analysis. The components of a

Programme Dependence Graph are a visual representation

of the reports and conditions of a system, while the edges

of the graph display the control and information

conditions. The subgraphs that include the source units

that need to be matched are shown inside these PDGs.

When looking for clones, one of the many ways that may

be used is to search for isomorphic subgraphs. In order to

compute information based on control stream data, many

different ways make use of subgraphs.

3.4 Feature Selection

Different feature selection techniques have been used

throughout the training of the module. The function

compiles the complete source code or modules, capturing

actual statistics. This technique analyses the behaviour of

the code to find vulnerabilities. When considering a larger

dataset, the importance of all variables becomes less

significant. However, the more variables there are, the

more challenging the analysis becomes. Consequently, it

is sometimes more desirable to decrease the quantity of

variables in a dataset and use crucial variables. To

determine the value of a variable in a dataset, we may use

a Function Selection strategy to decrease the parameter.

Four dynamic analysis methodologies, including fault

infusion, mutation appropriate beginning, dynamic taint

evaluation, and dynamic system check, were used

throughout the study. To create the Vector Space Model

(VSM) from the collected characteristic.

3.5 Vulnerability Detection

The identification of vulnerabilities has been carried out

by making use of the features that were gathered from the

training dataset. developed on the basis of extracted

characteristics such as TF-IDF, relational features, and

certain bigram features, the vector space model has been

developed. Recurrent neural networks, more especially

the long short-term memory approach, were used in order

to carry out the categorising process. The detection

approach is also effective in avoiding attacks on web

applications that are carried out using software as a

service technologies. In addition to identifying and

facilitating both internal and external attacks, the

vulnerable code also makes it possible for unauthorised

individuals to get access to the system. During the

execution of code, the major objective of vulnerability

detection is to automatically identify instances of attacks

that include exception handling and buffer overflow. The

strategy that is proposed in the code snippet provides

increased detection accuracy in the sector that is specified.

4. Results and Discussion:

We have used RNN classification algorithms, which are

well-suited for fault prediction even on unlabeled

datasets, to verify the assessment of the suggested bug

forecast method. The confusion matrix, which comprises

the accuracy, recall, and F-score metrics, is used to

evaluate software defect prediction ability (Table 1).

Table 1: confusion matrix evaluation

In order to assess the suggested system, we used machine

learning classifiers such as Artificial Neural Networks

(ANN), Support Vector Machines (SVM), and Adaboost.

In addition, we have implemented a deep learning

framework. This framework utilises activation functions .

The classification accuracy results, together with the

confusion matrix, for all methods are shown in Table 2.

The evaluation was performed using 20-fold cross-

validation. The metrics used for algorithm comparison

include Accuracy, Precision, Recall, and Micro-score.

Based on the data, it can be inferred that the RNN (ReLU)

achieves the greatest level of performance compared to

the others.

4.1 Experiment using Artificial Neural Network:

Figure 2 displays the accuracy of the ANN classification

method. Initially, it was trained using built-in functions

from the Weka tool. Several cross-validation approaches

have been used for classification, and different parameters

have been adjusted for the artificial neural network

(ANN) throughout the classification process. This

technique may categorise each validation based on a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 308

probability function, which is why this algorithm has a

somewhat higher mistake rate compared to other

supervised classification algorithms.

Table 2: Classification accuracy with confusion matrix for ANN

The Artificial Neural Network (ANN) model is

straightforward to construct and especially valuable for

the categorization of extensive datasets via the use of

supervised machine learning techniques or Artificial

Intelligence (AI). In addition to its simplicity, Artificial

Neural Networks (ANN) are renowned for their ability to

surpass even the most advanced categorization

techniques. The suggested artificial neural network

(ANN) forecasts the likelihood of an individual

occurrence based on the present values.

Figure 2 depicts the assessment of the performance of

Artificial Neural Network (ANN) classification using a

20-fold classification approach. The achieved accuracy

for the provided input dataset is around 85.60%. We used

a multinomial event model, where the samples indicate

the frequency at which certain events have been created

by a multinomial probability distribution. Based on this

probability distribution, the system makes predictions for

the final class.

Fig. 2: An analysis of the discovery of bugs and vulnerabilities using artificial neural networks with twentyfold data cross

validation

4.2 Analysis using SV model

According to the results of the classification study with

different cross validations, which are shown in table 3

below, we have determined that the 20 fold cross-

validation delivers the maximum classification accuracy

for SVM, which is 95.2%.

Table 3: Classification accuracy with confusion matrix for SVM

P
er

ce
n

ta
g
e

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 309

Fig. 3: Analysis of bug and vulnerability detection using SVM with 20-fold data cross validation

Figure 3 above illustrates the implementation of Support

Vector Machine (SVM) classification for vulnerability

detection using a 20-fold cross-validation approach.

Generating a training set by labelling instances may be

time-consuming and costly in many machine learning

scenarios. Therefore, it is beneficial to explore methods

for minimising the number of instances that need

supervised classification. The Kernel-Based method has

been used to minimise occurrences by enhancing

performance. In this approach, we categorise everything

as a point in n-dimensional spaces based only on the

direction of a certain feature. We identify clones by

locating the hyper-plane that effectively divides the two

groups.

4.3 Experiment using Adaboost:

According to the results of the classification study with

different cross validations, which are shown in table 4

below, we have determined that the 20 fold cross-

validation delivers the maximum classification accuracy

for Adaboost, which is 81.30%.

Table 4: Classification accuracy with confusion matrix for Adaboost

Adaboost is said to be adaptive since it modifies weak

learners in the future in favour of situations that were

incorrectly identified by previous classifiers. It is possible

that, under some circumstances, it is less likely to

experience the problem of overfitting than other learning

methods. The whole model will converge to a strong

learner as long as the performance of individual learners

is considerably better than real guessing.

Fig. 4: Adaboost was used to do an analysis of bug and vulnerability detection, and 20-fold data cross validation was then

performed.

Figure 4 provides a description of the Adaboost

classification system for the identification of bogus

accounts using 20-fold cross-validation. An example of a

particular training method for boosted classifiers is the

AdaBoost method.

The term "classifier" may also refer to a "boost classifier."

Each and every Ft is a weak learner that takes an object x

as its input and then returns a result that denotes the class

P
er

ce
n

ta
g
e

P
er

ce
n

ta
g
e

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 310

of the object. In the case of the two-class problem, for

instance, the sign of the weak learner output identifies the

object class that is predicted, but the absolute value

reflects the degree of confidence in that classification. In

a similar vein, the Tth classifier is positive if the sample

is a member of a positive class; otherwise, it is negative.

4.4 Experiment using Recurrent Neural Network

(Sigmoid):

Within the scope of this experiment, we show the

accuracy of the RNN (Sigmoid) classification algorithm

by using a synthetic dataset. Similar tests have been

conducted with a variety of cross validations, and the

results are presented in table 5. Based on the findings of

this investigation, we have determined that the

implementation of RNN with Sigmoid function has the

maximum classification accuracy of 96.10% when

utilising 20 fold cross validation.

Table 5: Classification accuracy with confusion matrix for RNN (Sigmoid)

Fig 5 : Detection of accuracy using a Sigmoid Recurrent Neural Network (RNN) with 20-fold data cross validation

Based on the explanation provided in Figure 5, the 20-fold

cross validation also achieves 96.10% using RNN with

sigmoid function. This RNN functions accomplish about

greater accuracy than the typical machine learning

methods when it comes to module testing.

4.5 :Recurrent Neural Network, was used in the

experiment with Tanh

The classification accuracy of RNN is shown in figure 6,

and the results of comparable trials conducted with a

variety of cross validations are presented in table 6. Based

on the findings of this investigation, we have come to the

conclusion that the maximum classification accuracy for

RNN utilising Tanh is achieved via the use of 20 fold

cross validation.

Table 6: Classification accuracy with confusion matrix for RNN (Tanh)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 311

Fig. 6: Detection of accuracy using RNN (Tanh) with 20-fold data cross validation

4.5 Experiment using RNN (ReLU):

In this experiment, we investigate the accuracy of the

ReLU classification algorithm by making use of a

synthetic dataset. Previous experiments of a similar kind

have been conducted using a variety of cross-validation

methods, and the results are shown in table 7. Based on

the findings of this investigation, we have come to the

conclusion that the system offers the maximum accuracy

of 97.5% for 20-fold cross validation classification

accuracy for RNN..

Table 7: Classification accuracy with confusion matrix for RNN (ReLU)

Fig. 7: Detection of accuracy using RNN (ReLU) with 20-fold data cross validation

A suggested deep learning classification method with a

machine learning algorithm is described in the

experiments that were shown before. The outcome is

shown in this picture both with and without the assistance

of cross-validation. The identification of code clone has

been accomplished with the use of a minimum of three

hidden layers. As a result of this experiment, we have

come to the conclusion that the RNN with sigmoid

detector offers superior detection accuracy in comparison

to the other two activation functions and the random forest

machine learning technique. A comparison of all of the

outcomes of the tests described above can be seen in table

8.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 312

Table 8: Classification accuracy with 20 folds cross-validation for all methods

Fig. 8: Classification accuracy with 20-fold cross-validation for all methods

Another analysis demonstrated that our suggested

solution had the highest prediction performance among

the evaluated RNN algorithms, as shown by these

assessment measures. Furthermore, certain datasets may

not accurately capture all software problems and new

defects due to limitations in data comprehensiveness and

quantity. It is advisable to do further testing of the

proposed solution inside real-world software applications.

The three data splitting mechanisms are used in the form

of 10-fold, 15-fold, and 20-fold cross-validation.

Table 9: An explanation of the source code that was taken from Android APK files as a dataset

Total Size 2500

Training Samples 2000

Testing Samples 500

The system provides a description of four assessments

that compare the findings of this study with the findings

of various current systems that have been computed on

several datasets that are related to each other. This

comparison between the suggested machine learning

algorithms and some of the current ones is shown in

Figure 9, which can be seen below.

Fig. 9: A comparison of the proposed categorization with the current classification for the purpose of vulnerability

detection

The Figure 9 displays the classification accuracy of the

suggested methods for vulnerability detection, compared

to two current machine learning techniques. This image

illustrates that the suggested Recurrent Neural Network

(RNN) offers superior accuracy in detecting compared to

other machine learning techniques..

5. Conclusion and Future Work:

Detecting vulnerabilities in imbalanced source codes may

be a laborious task. Vulnerable code might enable the

A
cc

u
ra

cy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 304–313 | 313

generation of software attacks on distant users.

Occasionally, when the susceptible code is being

executed, it may also give rise to internal attacks such as

buffer overflow, session hijacking, and authentication

bypass. Software literature annually identifies several

issues with software. Vulnerabilities often do not manifest

in concealed forms that can be readily identified by

software testers. This system outlines the approach of

identifying limitations by using deep learning techniques.

This study presents the development of a Recurrent

Neural Network (RNN) that incorporates Long Short-

Term Memory (LSTM) for the purpose of creating code

vulnerability detection and bug triage systems across

several platforms. Many technologies lack the capability

to assist a web-based application in identifying code

vulnerabilities. The suggested system is capable of

detecting vulnerabilities by performing feature extraction

on various datasets. Recurrent Neural Networks (RNN)

provide superior outcomes compared to conventional

machine learning classifiers. In the future, developers will

want the ability to identify code triage for runtime mobile-

based application programmes, since the current tools

lack support for such programmes. Code clone

management is another need in software engineering.

Superior design quality may be attained by the use of

glitches. Open-source code replication in software

development.

References:

[1] Terada, K.; Watanobe, Y., "Automatic Generation

of Fill-in-the-Blank Programming Problems", In

Proceedings of the 2019 IEEE 13th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), Singapore, 1–4

October 2019; pp. 187–193.

[2] Tai, K.S.; Socher, R.; Manning, C.D., "Improved

semantic representations from tree-structured long

short-term memory networks", In Proceedings of the

53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing,

Beijing, China, 26–31 July 2015; pp. 1556–1566.

[3] Pedroni, M.; Meyer, B., "Compiler error messages:

What can help novices?", In Proceedings of the 39th

SIGCSE Technical Symposium on Computer

Science Education, Portland, OR, USA, 12–15

March 2008; pp. 168–172.

[4] Saito, T.; Watanobe, Y., "Learning Path

Recommendation System for Programming

Education based on Neural Networks", Int. J.

Distance Educ. Technol. (Ijdet) 2019, 18, 36–64.

[5] Teshima, Y.; Watanobe, Y., "Bug detection based on

LSTM networks and solution codes", In Proceedings

of the 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), Miyazaki,

Japan, 7–10 October 2018; pp. 3541–3546.

[6] Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L.,

"Software Defect Prediction via Attention-Based

Recurrent Neural Network", Sci. Program. 2019,

2019, 6230953.

[7] Zhou, Y.; Tong, Y.; Gu, R.; Gall, H., "Combining

text mining and data mining for bug report

classification", J. Softw. Evol. Process 2016, 28,

150–176.

[8] Jin, K.; Dashbalbar, A.; Yang, G.; Lee, J.-W.; Lee,

B., "Bug severity prediction by classifying normal

bugs with text and meta-field information", Adv.

Sci. Technol. Lett. 2016, 129, 19–24.

[9] Goseva-Popstojanova, K.; Tyo, J., "Identification of

security related bug reports via text mining using

supervised and unsupervised classification", In

Proceedings of the IEEE International Conference

on Software Quality, Reliability and Security,

Lisbon, Portugal, 16–20 July 2018; pp. 344–355.

[10] Tong, H.; Liu, B.; Wang, S., "Software defect

prediction using stacked denoising auto encoders

and two-stage ensemble learning", Inf. Softw.

Technol. 2018, 96, 94–111.

[11] Singh, H., Ahamad, S., Naidu, G.T., Arangi, V.,

Koujalagi, A., Dhabliya, D. Application of Machine

Learning in the Classification of Data over Social

Media Platform (2022) PDGC 2022 - 2022 7th

International Conference on Parallel, Distributed

and Grid Computing, pp. 669-674.

[12] Veeraiah, D., Mohanty, R., Kundu, S., Dhabliya, D.,

Tiwari, M., Jamal, S.S., Halifa, A. Detection of

Malicious Cloud Bandwidth Consumption in Cloud

Computing Using Machine Learning Techniques

(2022) Computational Intelligence and

Neuroscience, 2022, art. no. 4003403, .

