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Abstract: The partial discharge (PD) in electrical systems is a very important part of making sure that the power grid is safe and reliable. 

In this study, we compare and contrast a wide range of machine learning techniques for finding causes of partial discharge. We specifically 

look at how well artificial neural networks (ANN), k-nearest neighbours (KNN), Gaussian Naive Bayes (GNB), and convolutional neural 

networks (CNN) can find different patterns connected with partial discharges. The study uses a large set of different electrical signals that 

were collected during PD events. These signals show a lot of different working conditions and discharge features. To rate the effectiveness 

of each machine learning method, we carefully look at its accuracy, precision, memory, and F1-score. Our results show what each method 

does well and what it can't do well, which helps us understand how well they work for different parts of finding partial discharge sources. 

The artificial neural network (ANN) shows that it can learn complex patterns and connections in data, making it a useful tool for finding 

the source of information. The K-nearest neighbours (KNN) method is good at finding local patterns, and the Gaussian Naive Bayes (GNB) 

method works best when statistical modelling is helpful. The convolutional neural network (CNN) is very good at finding spatial 

relationships in data. This is especially helpful when looking at sound patterns related to partial discharges. This paper helps to understand 

to find the source of a partial discharge, also gives students and practitioners who want to use machine learning in electrical power systems 

useful information. Findings help people make smart choices about which method to use based on their personal practical needs and the 

way partial discharge events happen. 

Keyword: Partial Discharge Source Identification, Machine Learning Methods, Artificial Neural Networks (ANN), Comparative Analysis, 

Convolutional Neural Networks (CNN) 

1. Introduction 

Electrical power systems must be strong and reliable in 

order for current structures to work without any problems. 

There are many problems that power systems have to deal 

with, but partial discharge (PD) events are one of the 

worst because they can damage shielding, break down 

equipment, and cause power blackouts. Because of this, 

accurately finding and identifying partial discharge 

sources is now necessary to keep electrical parts in good 

shape and make them last a long time. Recently, machine 

learning techniques have become very useful for finding 

faults and keeping an eye on conditions [1]. They could 

also be used to improve the accuracy and speed of finding 

the source of a partial discharge. The goal of this study is 

to compare how well different machine learning 

techniques work at finding partial discharge sources by 

looking into an extensive range of them. Artificial Neural 

Networks (ANN), K-Nearest Neighbors (KNN), Gaussian 

Naive Bayes (GNB), and Convolutional Neural Networks 

(CNN) are some of the ways that are being looked at. You 

can use any of these ways because they are all good at 

different things and could help you figure out trends 

related to partial discharge events. The need for this study 

is urgent because power systems are getting more 

complicated, and old ways of finding partial releases 

might not be able to handle the fine details of different 

operating situations. By [2] letting systems learn and react 

to the changing nature of electrical signs that show partial 

discharge events, machine learning methods might be able 

to get around these problems. 

This study uses a large and varied collection that includes 

a lot of different electrical signs that were recorded during 

real partial discharge events. The dataset includes 

different types of equipment, working situations, and 

discharge traits. This makes it a practical and useful base 

for testing machine learning methods. With [3] such a 

large sample, this study hopes to show how each machine 

learning method works in a variety of situations. In recent 

years, Artificial Neural Networks (ANN) have gotten a lot 

of attention because they can describe complicated 

connections in data. When used to find the cause of a 

partial discharge, ANNs might be able to pick up on 

complex patterns that aren't obvious with more standard 

analysis methods. Because ANNs are adaptable, they can 

learn from the information. This lets us find small changes 

in electrical patterns that are caused by different partial 

discharge sources. This research looks at how well ANN 

works by measuring its accuracy, precision, memory, and 

F1-score. This gives us a full picture of how it can be used 

in real life. K-Nearest Neighbors (KNN) is a type of non-

1Post Doctoral Fellow,Srinivas University,Managalore,India 

priyankakothoke@gmail.com 
2Research Director, Srinivas University, Mangalore,India 

researchdirector@srinivasuniversity.edu.in 

 

mailto:priyankakothoke@gmail.com
mailto:researchdirector@srinivasuniversity.edu.in


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 361–372 |  362 

parametric and instance-based learning method that uses 

patterns found locally in a dataset. This method seems to 

be a good way to find the spatial relationships between 

data points. This makes it a good choice for situations 

where the closeness of similar events can help find partial 

discharge sources [4].  

 

Fig 1: Overview of identification of PD source flow 

This study looks into how well KNN can find partial 

discharge sources in different situations. This helps us 

understand its pros and cons when it comes to tracking 

power systems. Gaussian Naive Bayes (GNB) is a 

probabilistic way to learn machines that is based on the 

idea that traits are not connected to each other [5]. If you 

want to find a partial discharge source, GNB gives you a 

unique view by modeling the chances of different traits 

for a certain class. This study looks at how well GNB 

works in situations where probabilistic modeling matches 

the basic features of partial discharge events. This gives 

us useful information about how well it works in real-life 

situations. In picture and signal processing jobs, 

convolutional neural networks (CNN) have shown great 

success, showing that they can pull out spatial 

relationships in data. CNNs have the potential to capture 

sound patterns linked to a variety of discharge sources, 

which is useful for identifying partial discharge sources 

[6]. This research looks into how well CNNs can pick out 

spatial traits in electrical data. This gives us a better idea 

of how they can be used in the complicated field of power 

system tracking. The comparing different machine 

learning methods for finding the cause of a partial 

discharge is an important step toward making power 

system tracking even better. Researchers and practitioners 

may be able to learn from the results of this study about 

the pros and cons of different machine learning methods 

when it comes to partial discharge events. As power 

systems become more complicated, the study helps to 

create strong and flexible ways to make them more 

reliable and resilient. 

2. Related Work 

There has been a lot of study into finding and locating 

partial discharge (PD) sources in electrical systems. This 

is because of the need to make power infrastructure more 

reliable and safe. Time-domain and frequency-domain 

studies, which [7] use set limits and expert knowledge, 

have been used for a long time to find PD. However, these 

methods have trouble dealing with how complicated and 

changing partial discharge events are, especially in today's 

modern power systems. To deal with these problems, 

using machine learning techniques has become more 

popular in recent years. This shows promise for a better 

and more flexible way to find PD sources. The [8] use of 

artificial neural networks (ANNs) in finding partial 

discharge sources is an important part of connected 

research. ANNs have been shown to be good at finding 

complicated patterns in data, which makes them a good fit 

for the complex nature of electrical signals related to 

partial discharges. In their 2018 study, Li et al. used ANNs 

to find trends in PD data and were very good at finding 

different PD causes. Because ANNs are flexible, they can 

learn from different sets of data. This makes them good at 

dealing with changes in working conditions and output 

traits. A method called K-Nearest Neighbors (KNN) has 

also been looked into for finding the cause of a partial 

release. In 2016, Liu et al. looked into how KNN could be 
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used to find partial shocks in power transformers by using 

the closeness of similar events to find possible causes. The 

study showed that KNN is good at finding local trends, 

especially when the way PD events are spread out in space 

is very important for finding the source. The results 

showed that KNN could be a useful tool in the larger field 

of machine learning methods for finding PD sources [9]. 

Because it is easy to use and good at dealing with 

statistical models, Gaussian Naive Bayes (GNB) has been 

used in many areas. When [10] trying to find the cause of 

a partial discharge, GNB provides a unique view by 

simulating the chances of various traits occurring for a 

certain class. Researchers Zhang et al. (2019) looked into 

how GNB can be used to tell the difference between 

different kinds of PD sources. They showed that it works 

well when probabilistic modeling matches the basic 

features of partial discharge events. More and more 

research is being done on using Convolutional Neural 

Networks (CNNs), which are great at handling images and 

signals, to find the source of Parkinson's disease. [11] 

suggested using CNN to find sources of partial discharge 

in high-voltage equipment. CNNs showed they could pick 

up complex waveform patterns linked to a variety of 

discharge sources by pulling spatial relationships from 

electrical signals. This area of study shows how CNNs 

might be able to handle the complicated and multifaceted 

nature of partial discharge events. 

Different studies have looked at how different machine 

learning methods can be used, but a full comparison is 

needed to see what their strengths and weaknesses are. So 

far as we know, there isn't a single study that looks at 

various machine learning methods for PD source 

recognition in a range of working situations and discharge 

traits. To [12] fill this gap, this study looks at the success 

of artificial neural networks, k-nearest neighbors, 

Gaussian Naive Bayes, and convolutional neural networks 

as a whole. It hopes to make the field better and help guide 

future research. In the earlier study has set the stage for 

machine learning techniques to be used in finding the 

cause of a partial release. Some studies have shown that 

certain methods work well, but to see how well they do in 

a wide range of real-life situations, we need to do a full 

comparative analysis. This study adds to what has already 

been done and aims to give new ideas that will help make 

better and more flexible ways to find PD sources in 

current power systems. 

Table 1: Summary of related work in PD 

Methodology Finding Limitation Scope 

Time-Domain 

Analysis [13] 

Effective in detecting PD 

events with distinct 

waveforms 

Limited ability to handle 

complex signal variations 

Classic PD detection in 

controlled environments 

Frequency-Domain 

Analysis [14] 

Identifies PD sources 

based on frequency 

components 

Struggles with real-time 

analysis and adaptability 

Frequency-centric PD 

characterization 

Artificial Neural 

Networks [15] 

Captures complex 

patterns in PD signals 

Requires substantial training 

data for effectiveness 

Adaptive PD source 

identification 

K-Nearest 

Neighbors [16] 

Utilizes proximity to 

similar events for 

identification 

Sensitive to noise and 

outliers in the dataset 

Local pattern-based PD 

source discernment 

Gaussian Naive 

Bayes [17] 

Models likelihood of 

features given a class 

Assumes independence 

between features 

Probabilistic PD source 

differentiation 

Convolutional 

Neural Networks 

[18] 

Extracts spatial 

dependencies in 

electrical signals 

Requires significant 

computational resources 

Spatial-pattern-based PD 

source identification 

Support Vector 

Machines [19] 

Separates PD sources in 

high-dimensional space 

Performance may degrade 

with high-dimensional data 

Effective in binary 

classification of PD 

sources 

Decision Trees [20] Hierarchical decision-

making for PD source 

identification 

Prone to overfitting and may 

lack generalization 

Structured PD source 

identification 
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Ensemble Methods 

[21] 

Combines multiple 

models for enhanced 

accuracy 

Computational complexity 

may be a limiting factor 

Improved robustness in 

PD source identification 

Data Mining 

Techniques [22] 

Identifies natural 

groupings of PD sources 

Sensitivity to initial 

conditions in some methods 

Group-based analysis for 

PD source 

characterization 

Wavelet Transform 

[23] 

Decomposes signals for 

multi-resolution analysis 

Selection of appropriate 

wavelet basis critical 

Time-frequency 

representation of PD 

signals 

Principal 

Component 

Analysis [24] 

Reduces dimensionality 

of PD signal data 

Assumes linear relationships 

between variables 

Dimensionality reduction 

for PD source analysis 

Fuzzy Logic [25] Models uncertainty in 

PD source identification 

Complexity increases with 

the number of variables 

Handling uncertainty in 

PD source 

characterization 

Transfer Learning 

[26] 

Applies knowledge from 

related domains for PD 

source identification 

Limited availability of 

transferable knowledge 

Leveraging existing 

knowledge for PD source 

ID 

 

3. Methodology 

The study uses a structured approach to compare different 

methods for finding the cause of a partial discharge using 

machine learning. The process starts with defining the 

problem and getting the dataset. It then moves on to data 

preparation, feature extraction, and dataset splitting. 

Artificial Neural Networks (ANN), K-Nearest Neighbors 

(KNN), Gaussian Naive Bayes (GNB), and Convolutional 

Neural Networks (CNN) are chosen as the four machine 

learning methods. Metrics like accuracy and precision are 

used to train, test, and compare models. Results are 

confirmed by statistical analysis, and images help make 

sense of them. The results are talked about in the context 

of other research that has already been done. The paper 

ends with some suggestions for further study. 

1. Data Input 

The fact that real-world partial discharge (PD) data comes 

from many different places and has a wide range of noise 

levels makes our work very difficult. Using unique 

devices with lower sampling rates adds background noise, 

which makes it even more important to have strong 

classification. The uneven sample shows that PD events 

don't happen very often when the system is working 

normally. It works to use extensive feature extraction 

models, especially ones that are based on basics. Pattern 

recognition is improved by using discrete wavelet 

transform (DWT) for signal estimates, Butterworth filters 

to get rid of sine waves, and wavelet transforms. This 

magic formula is very important for getting rid of noise 

interference, and it fits with the main goal of making it 

easier to find PD sources in real-world situations that are 

complicated.

  

 

Fig 2: Sample input data from Dataset 
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Procuring a comprehensive dataset is paramount. Our 

approach involves gathering authentic electrical signals 

from diverse partial discharge events. This dataset 

encapsulates variations in operational conditions and 

discharge characteristics, ensuring a representative 

sample. Real-world scenarios, spanning multiple 

locations, contribute to the richness and complexity 

necessary for a robust comparative analysis of machine 

learning methods in partial discharge source 

identification. 

2. Data Preprocessing: 

Data preprocessing is crucial in preparing a reliable 

dataset for machine learning analysis. Addressing missing 

values, outliers, and noise in electrical signals ensures the 

integrity of the data. Normalizing or standardizing the 

dataset guarantees consistent scaling, preventing bias in 

feature importance. 

● Clean the dataset by handling missing values, 

outliers, and noise in the electrical signals. 

● Normalize or standardize the data to ensure 

consistent scaling across features. 

3. Feature Extraction: 

Feature extraction is used to find the important differences 

between the different partial discharge sources. Signal 

processing methods, like wavelet transforms and Fourier 

analysis, are very important for getting useful information 

out of signals. When done together, these steps improve 

the quality of the information and help later machine 

learning methods find partial discharge sources more 

correctly.  

● Identify relevant features from the electrical signals 

that can aid in distinguishing different partial 

discharge sources. 

● Utilize signal processing techniques, such as wavelet 

transforms or Fourier analysis, to extract informative 

features. 

4. Machine Learning Algorithms: 

A. ANN 

Artificial Neural Network Algorithm for Partial 

Discharge Source Investigation 

Step 1: Initialization 

- Initialize weights and biases randomly. 

- Choose the number of layers (input, hidden, output) and 

the number of neurons in each layer. 

Step 2: Forward Propagation 

- For each training example: 

  - Compute the weighted sum of inputs for each neuron 

in the hidden layer: 

    𝑍^(1)  =  𝑊^(1)  ∗  𝑋 +  𝑏^(1) 

  - Apply an activation function (e.g., sigmoid or ReLU) 

to the hidden layer outputs: 

    𝐴^(1)  =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑍^(1)) 

  - Repeat the process for the output layer: 

    𝑍2 = 𝑊2 ∗  𝐴1 + 𝑏2 

    𝑌𝑛 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑍2) 

Step 3: Compute Loss 

- Calculate the loss between the predicted output (Y^) and 

the actual output (Y) using a suitable loss function (e.g., 

mean squared error): 

  𝐽(𝜃) =  (
1

2𝑚
)∑(𝑌𝑛 −  𝑌)2 

Step 4: Backward Propagation 

- Compute the gradients of the loss with respect to the 

weights and biases: 

 
𝜕𝐽

𝜕𝑊2
= (

1

𝑚
) (𝐴1)𝑇 ∗  (𝑌𝑛 −  𝑌) 

 
𝜕𝐽

𝜕𝑏2
= (

1

𝑚
)∑(𝑌𝑛 −  𝑌) 

  - Propagate the error back to the hidden layer: 

    𝜕𝐽/𝜕𝑍^(1)  =  (𝑌^  −  𝑌)  ∗  (𝑊^(2))^𝑇 

    𝜕𝐽/𝜕𝑊^(1)  =  (1/𝑚) 𝑋^𝑇 ∗  𝜕𝐽/𝜕𝑍^(1) 

    𝜕𝐽/𝜕𝑏^(1)  =  (1/𝑚) ∑𝜕𝐽/𝜕𝑍^(1) 

Step 5: Update Parameters 

- Update weights and biases using a learning rate (α): 

  𝑊2 = 𝑊2 −  𝛼
𝜕𝐽

𝜕𝑊2
 

  𝑏2 = 𝑏2 −  𝛼
𝜕𝐽

𝜕𝑏2
 

  𝑊1 = 𝑊1 −  𝛼
𝜕𝐽

𝜕𝑊1
 

  𝑏1 = 𝑏1 −  𝛼
𝜕𝐽

𝜕𝑏1
 

Step 6: Training 

- Iterate steps 2-5 for a specified number of epochs until 

the model converges. 

Step 7: Prediction 

- Use the trained ANN to predict the partial discharge 

source for new data. 

B. KNN 
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Implementing the k-Nearest Neighbors (KNN) algorithm 

for the investigation and determination of partial 

discharge source involves several steps. Below is a step-

by-step  algorithm with mathematical equations: 

k-Nearest Neighbors (KNN) Algorithm for Partial 

Discharge Source Investigation 

Step 1: Initialization 

● Choose the value of k (number of neighbors). 

Step 2: Training 

● Store the feature vectors and corresponding 

labels of the training dataset. 

Step 3: Prediction 

● For each testing example: 

● Calculate the distance between the test example 

and all training examples using a distance metric 

(e.g., Euclidean distance): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑡𝑒𝑠𝑡 , 𝑋𝑡𝑟𝑎𝑖𝑛) =  𝛴𝑖

= 1𝑛 (𝑋𝑡𝑒𝑠𝑡 , 𝑖 −  𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑖)
2 

● Identify the k-nearest neighbors with the smallest 

distances. 

● Assign the class label by majority voting among 

the k-nearest neighbors. 

 For a given test example X_test, let X_train(i) represent 

the i-th training example  and Y_train(i) its corresponding 

label. 

Calculate distances: 

Identify k-nearest neighbors: 

NearestNeighbors = argmin i (Distance(i)) for i=1,2,...,k 

Assign class label by majority voting: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑐 ∑𝑖

∈ 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝐼(𝑌𝑡𝑟𝑎𝑖𝑛(𝑖)

=  𝑐) 

C. Gaussian Naïve Bayes (GNB) 

Gaussian Naive Bayes (GNB) Algorithm for Partial 

Discharge Source Investigation 

Step 1: Initialization 

Collect training data containing feature vectors and 

corresponding class labels. 

Step 2: Training 

Calculate the class prior probabilities: 

    𝑃(𝑌 = 𝑦_𝑖)  

=  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑙𝑎𝑏𝑒𝑙 𝑦_𝑖) 

/ (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

For each feature X_j and each class y_i: 

    Calculate the mean (μ) and standard deviation (σ) of 

X_j for instances with class y_i. 

Step 3: Prediction 

For a given test example with feature vector X_test: 

For each class y_i: 

    Calculate the class-conditional probability: 

        𝑃(𝑋_𝑡𝑒𝑠𝑡, 𝑗 | 𝑌 = 𝑦_𝑖)  

=  (1 / (𝑠𝑞𝑟𝑡(2𝜋) ∗  𝜎_𝑦_𝑖, 𝑗))  

∗  𝑒𝑥𝑝 (−(𝑋_𝑡𝑒𝑠𝑡, 𝑗 

−  𝜇_𝑦_𝑖, 𝑗)^2 / (2 ∗  𝜎_𝑦_𝑖, 𝑗^2)) 

    Calculate the posterior probability for each class: 

        𝑃(𝑌 = 𝑦_𝑖 | 𝑋_𝑡𝑒𝑠𝑡)  ∝  𝑃(𝑌 = 𝑦_𝑖)  ∗  ∏_{𝑗

= 1}^{𝑛} 𝑃(𝑋_𝑡𝑒𝑠𝑡, 𝑗 | 𝑌 = 𝑦_𝑖) 

Predict the class label: 

    𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙 =  𝑎𝑟𝑔𝑚𝑎𝑥_𝑦_𝑖 𝑃(𝑌

= 𝑦_𝑖 | 𝑋_𝑡𝑒𝑠𝑡) 

D. CNN 

Convolutional Neural Network (CNN) Algorithm for 

Partial Discharge Source Investigation 

Step 1: Initialization 

● Initialize the CNN architecture, including 

convolutional layers, pooling layers, fully 

connected layers, and output layer. 

● Specify hyperparameters such as the learning 

rate (α), the number of filters, filter sizes, etc. 

Step 2: Convolutional and Pooling Layers 

For each convolutional layer: 

  Apply convolution operation: 

𝑍[𝑙] =  𝑊[𝑙] ∗  𝐴[𝑙 − 1] +  𝑏[𝑙] 

  Apply activation function (e.g., ReLU): 

𝐴[𝑙] =  𝑅𝑒𝐿𝑈(𝑍[𝑙]) 

  Apply pooling (e.g., max pooling): 

    𝐴[𝑙]  =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐴[𝑙 − 1]) 

Step 3: Fully Connected Layers 

Flatten the output from the last convolutional/pooling 

layer to create a vector. 

For each fully connected layer: 

  Apply linear transformation: 

𝑍[𝑙]  =  𝑊[𝑙]  ∗  𝐴[𝑙 − 1]  +  𝑏[𝑙] 

  Apply activation function: 
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𝐴[𝑙]  =  𝑅𝑒𝐿𝑈(𝑍[𝑙]) 

Step 4: Output Layer 

For the output layer: 

  Apply a softmax activation function for multi-class 

classification: 

    A[L] = Softmax(Z[L]) 

Step 5: Loss Calculation 

Calculate the cross-entropy loss between predicted and 

actual labels: 

  𝐽(𝜃) =  −
1

𝑚
∑

{𝐶}

{𝑐=1}

𝑌𝑖
𝑐{𝑚} ∗𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴𝑖

𝑐)  

Step 6: Backpropagation and Parameter Update 

● Compute gradients with respect to parameters 

using backpropagation. 

Update parameters using gradient descent: 

𝜃[𝑙] =  𝜃[𝑙]–  𝛼
𝜕𝜃[𝑙]

𝜕𝐽
 

Step 7: Training 

● Iterate steps 2-6 for a specified number of epochs 

until the model converges. 

Step 8: Prediction 

● Use the trained CNN to predict the partial 

discharge source for new data. 

5. Statistical Analysis: 

Perform statistical tests, such as t-tests or ANOVA, to 

determine if observed differences in performance are 

statistically significant. 

Mean (X̄): 

𝑋̄ =  (
1

𝑛
) ∑

{𝑛}

{𝑖=1}

𝑥_𝑖 

Variance (σ^2): 

𝜎2 = (
1

𝑛
) ∑

{𝑛}

{𝑖=1}

(𝑥_𝑖 −  𝑋 )^2 

Standard Deviation (SD): 

𝑆𝐷 =  √𝜎2 

Kurtosis: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  (1/𝑛) ∑_{𝑖

= 1}^{𝑛} (𝑥_𝑖 

−  𝑋  )^4 / [(
1

𝑛
) ∑

{𝑛}

{𝑖=1}

(𝑥_𝑖 

−  𝑋 )^2]^2 

Skewness: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  (1/𝑛) ∑_{𝑖

= 1}^{𝑛} (𝑥_𝑖 

−  𝑋  )^3 / [(
1

𝑛
) ∑

{𝑛}

{𝑖=1}

(𝑥_𝑖 

−  𝑋  )^2]^(3/2) 

These equations provide a mathematical representation 

for calculating the Mean, Variance, Standard Deviation, 

Kurtosis, and Skewness from a set of data points x_1, x_2, 

..., x_n. 

Both t-tests and ANOVA (Analysis of Variance) are 

statistical methods used to analyze differences between 

groups. 

Independent Two-Sample t-test 

Step 1: Formulate Hypotheses 

● Null Hypothesis (H0): There is no significant 

difference between the means of two 

independent groups. 

● Alternative Hypothesis (H1): There is a 

significant difference between the means of two 

independent groups. 

Step 2: Collect Data 

● Collect data from two independent groups. 

Step 3: Calculate Means 

Calculate the means (X̄1 and X̄2) of each group. 

Step 4: Calculate Variance 

Calculate the sample variances (S1^2 and S2^2) of each 

group. 

Step 5: Calculate t-statistic 

𝑡 =
(𝑋̄1 −  𝑋̄2)

𝑠𝑞𝑟𝑡 ((
𝑆12

𝑛1
) + (

𝑆22

𝑛2
))

 

Step 6: Determine Degrees of Freedom 

Degrees of Freedom (df) is 𝑛1 +  𝑛2 −  2. 

Step 7: Find Critical Value or p-value 

Using the t-distribution table or software, find the critical 

value or p-value. 

Step 8: Make a Decision 
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𝐼𝑓 |𝑡|  >  𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒, reject the null hypothesis. 

Validate the robustness of results and draw meaningful 

conclusions. 

ANOVA Test 

Step 1: Collect Data 

Collect data from three or more independent groups. 

Step 2: Calculate Means 

● Calculate the means (X̄1, X̄2, ..., X̄k) of each 

group. 

Step 3: Calculate Overall Mean 

● Calculate the overall mean (X̄overall). 

Step 4: Calculate Between-Group and Within-Group 

Variance 

𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛 =  ∑𝑖 = 1𝑘 𝑛𝑖(𝑋 𝑖 −  𝑋 𝑜𝑣𝑒𝑟𝑎𝑙𝑙)^2 

𝑆𝑆𝑊𝑖𝑡ℎ𝑖𝑛 =  ∑𝑖 = 1𝑘 ∑𝑗 = 1𝑛𝑖 (𝑋𝑖𝑗 −  𝑋 𝑖)^2 

Step 5: Calculate F-statistic 

𝐹 =  𝑀𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛 / 𝑀𝑆𝑊𝑖𝑡ℎ𝑖𝑛 

𝑀𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛 =  𝑆𝑆𝐵𝑒𝑡𝑤𝑒𝑒𝑛 / (𝑘 −  1) 

𝑀𝑆𝑊𝑖𝑡ℎ𝑖𝑛 =  𝑆𝑆𝑊𝑖𝑡ℎ𝑖𝑛 / (𝑁 −  𝑘) 

Step 6: Determine Degrees of Freedom 

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 (𝑑𝑓𝐵𝑒𝑡𝑤𝑒𝑒𝑛, 𝑑𝑓𝑊𝑖𝑡ℎ𝑖𝑛). 

Step 7: Find Critical Value or p-value 

● Using the F-distribution table or software, find 

the critical value or p-value. 

Step 8: Make a Decision 

● If F > Critical Value, reject the null hypothesis. 

4. Result and Discussion 

Table 2 shows a complete list of all the machine learning 

models and the evaluation factors that go with them. This 

makes it possible to compare different approaches in a 

useful way. K-Nearest Neighbors (KNN), Artificial 

Neural Network (ANN), Gaussian Naive Bayes (GBN), 

Convolutional Neural Network (CNN), and Self-

Organizing Map with Artificial Neural Network (SOM 

with ANN) are some of the methods that were looked at. 

The following are used to judge performance: Accuracy, 

Precision, Recall, F1 Score, and Area Under the Receiver 

Operating Characteristic curve (AUC-ROC). The 

Accuracy number shows how accurate the model's 

predictions are generally by showing the percentage of 

instances that were successfully identified. 

Table 2: Summary of ML model with evaluation parameter comparison 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

AUC_ROC 

(%) 

KNN 86.52 87.63 96.32 89.63 93.12 

ANN 93.52 92.45 94.11 93.45 95.36 

GBN 89.63 90.22 89.52 90.75 94.66 

CNN 95.42 95.45 96.45 95.12 97.21 

SOM with 

ANN 
94.21 91.25 92.33 90.52 92.45 

CNN has the best success rate (95.42%), which shows 

how good it is at making correct predictions. ANN comes 

in second with 93.52%, which shows how good it is at 

sorting jobs. Precision shows how well the model can pick 

out positive examples among the expected positives.  
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Fig 3: Comparison of Evaluation parameter of different methods for PD source information 

CNN has the highest level of accuracy, at 95.45%, which 

means that there are very few wrong hits. KNN, GBN, and 

SOM with ANN all have high accuracy numbers, which 

makes their good results more reliable. Recall, which is 

also called Sensitivity or True Positive Rate, measures 

how well the model can tell the difference between false 

positives and real positives. CNN has a great memory rate 

of 96.45%, which means it can pick up on a lot of real 

good cases. The memory rates for KNN, GBN, and SOM 

with ANN are also very good. The F1 Score is a fair way 

to judge how well a model is doing because it takes into 

account both accuracy and memory. Strong F1 Scores for 

CNN and ANN show that they can find a good mix 

between accuracy and memory. AUC-ROC measures how 

well the model can tell the difference between positive 

and negative events at various cutoff levels. With an 

AUC-ROC of 97.21%, CNN does better than other 

methods, showing how well it can tell the difference 

between classes. 

 

Table 3: Comparative Table of Parameters for statistical method 

Attribute Mean SD Ske Kur Var 

Mean 52.22 7.3 1.5 1.8 52.99 

Std 7.86 2.3 2.3 2.3 4.52 

Min 41.3 5.6 1.7 0.8 26.32 

25% 51.2 7.41 2.5 0.9 38.45 

50% 55.3 8.23 1.24 1.4 48.21 

75% 64.23 8.56 1.8 2.5 73.25 

 

Mean, Standard Deviation (SD), Skewness (Ske), 

Kurtosis (Kur), and Variance (Var) are some of the 

statistical factors that are compared in Table 3. You can 

use these measures to figure out the dataset's form, center 

tendency, spread, and skew. The Mean numbers point to 

an average of 52.22, which shows where the data is most 

common. Standard Deviation of 7.86 means that there is 

modest variation. 
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Fig 4: Representation of statistical parameter 

The skewness and kurtosis of a distribution show how 

symmetric it is and what its tail traits are. The range of the 

middle half of the data, from 25% to 75%, is shown by the 

interquartile range. Together, these statistical factors give 

a full picture of the dataset's features, making it easier to 

understand and compare across different aspects. 

 

Fig 5: Representation of Partial discharge fault detection 

 

Fig 6: Spreading of the used information and a statistics description 
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5. Conclusion 

Comparative study of partial discharge (PD) source 

identification using different machine learning methods 

has given us useful information about how well they work. 

The studied methods, which included k-Nearest 

Neighbors (KNN), Artificial Neural Network (ANN), 

Gaussian Naive Bayes (GNB), Convolutional Neural 

Network (CNN), and Self-Organizing Map (SOM) mixed 

with ANN, were judged on important factors like F1 

score, accuracy, precision, recall, and area under the ROC 

curve (AUC-ROC). CNN had the best total success, with 

higher accuracy, precision, memory, and F1 score than the 

other methods. Furthermore, its ability to instantly learn 

hierarchical features from the raw data makes it useful, 

especially when there are complicated patterns like PD 

signs. Furthermore, ANN and SOM with ANN both 

showed impressive results, highlighting the importance of 

neural network-based methods in finding the source of 

PD. Although KNN and GNB had slightly lower 

performance measures in this particular study, it is 

important to remember that how well these methods work 

can depend a lot on the dataset and the type of partial 

discharge signals. Additionally, the machine learning 

method picked should be customized to the needs and 

limitations of the application. How to choose the best 

method for a real-world situation depends on things like 

how fast it is to compute, how easy it is to understand, and 

how readily available labeled training data is. Potential 

areas for future study include finding the best 

hyperparameters, looking into ensemble methods, and 

testing how well these models work with different sets of 

data. Additionally, this comparison helps move machine 

learning applications forward in the areas of electrical 

system status tracking and problem detection, especially 

when it comes to finding the source of a partial discharge. 
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