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Abstract: Accurate daily rainfall prediction is essential for enhancing agricultural productivity and ensuring the availability of food and 

water resources. This research explores the field of data mining and deep learning techniques, specifically focusing on the utilization of 

LSTM (long short-term memory) and ARIMA (auto-regressive integrated moving average) models utilizing environmental datasets from 

diverse regions. This study offers an exhaustive investigation of these two models to improve the precision of daily rainfall forecasting. 

The research outcomes underscore a comparative assessment of LSTM and ARIMA models in the field of precipitation prediction. LSTM 

demonstrates remarkable results with minimal RMSE during both the training and testing phases, achieving a high R2 score, which signifies 

its efficacy in capturing rainfall patterns. Conversely, the ARIMA model exhibits competitive performance, characterised by low MSE, 

MAE, and RMSE values, underscoring its dependability in predicting rainfall. The study draws attention to the unexplored Vidarbha region, 

which includes 11 districts, using Nagpur district as a representative instance. This study offers valuable insights into the realm of climate 

prediction, particularly concerning rainfall forecasting. These insights carry substantial implications for strategic decision-making in 

agriculture and water resource management, ultimately promoting food and water security and safeguarding the well-being of the populace. 

Keywords: Deep learning, linear regression, Arima model, LSTM, Rainfall prediction. 

1. Introduction 

Deep learning methods utilised for the prediction of daily 

rainfall encompass both the LSTM and ARIMA models. 

These algorithms fall under the umbrella of ensemble 

learning, a technique that combines multiple models to 

enhance predictive accuracy [1]. Accurate rainfall 

forecasting plays a pivotal role in bolstering agricultural 

output, thereby ensuring a stable food supply and access 

to clean water resources for a country’s population. The 

insufficiency of rainfall has adverse implications on 

aquatic ecosystems, water quality, and agricultural 

productivity. The sustenance of agriculture and water 

quality hinges on the daily and annual fluctuations in 

rainfall and water availability. Consequently, the precise 

prediction of daily rainfall presents a formidable challenge 

to effectively managing these critical aspects of 

agriculture and water supply. 

The dataset spans from January 1, 2016, to December 31, 

2022, encompassing temperature readings ranging from 

14.38 degrees Celsius to 32.58 degrees Celsius and 

humidity levels spanning from 49.62% to 98.55%. This 

dataset serves as a valuable resource for scrutinising 

temperature and humidity patterns in Nagpur. Researchers 

have harnessed data mining techniques [2], conducted 

extensive big data analyses, and leveraged various deep 

learning algorithms to enhance the precision of rainfall 

predictions at daily, monthly, and annual scales. 

In a previous study, we employed machine learning 

techniques to investigate how various environmental 

factors impact both the occurrence and intensity of rainfall 

[4]. These factors included temperature, relative humidity, 

sunshine, pressure, and evaporation, all of which were 

assessed for their direct or indirect roles in shaping rainfall 

patterns. Building on this earlier work, the current study 

shifts its focus to the application of deep learning models, 

specifically LSTM and ARIMA, with the goal of 

identifying significant atmospheric features responsible 

for rainfall and making predictions about daily rainfall 

intensity [5]. To ensure data suitability for analysis, the 

dataset utilised in this experiment is the Nagpur xlsx, 

which underwent thorough pre-processing. This study 

exclusively delves into the utilisation of LSTM and 

ARIMA deep learning models for the precise prediction 

of rainfall. 

2. Related Work 

A comprehensive literature review was conducted, 

integrating recent research on rainfall prediction and its 

multidisciplinary implications. The convolutional 3D 

GRU (Conv3D-GRU) model, as introduced by Sun et al. 

[6], was examined. This model employs 3D convolution 

and GRU for the analysis of radar echo patterns over time, 

effectively extracting spatial information. It was observed 

that this approach, which combines both temporal and 

spatial data, is vital for enhancing the precision of short-

term rainfall forecasts. The study by Srivastava and 

Nigam [7] on the influence of inclement weather, 

including rainfall, on intelligent transportation systems 
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(ITS) was reviewed. Deep learning models like CNN-

LSTM and LSTM-LSTM were employed to predict traffic 

flow and speed. The integration of rainfall data into their 

models was found to improve prediction accuracy, 

showcasing the pertinence of rainfall prediction to diverse 

domains. In addition, the image-based Rainfall CNN 

(irCNN) model described by Yin et al. [8] was evaluated. 

This model harnesses rainfall images and associated 

intensity data from various sensors to predict urban 

rainfall with remarkable precision. Its spatiotemporal 

granularity renders it suitable for urban flood risk 

management, making it a cost-effective solution. The 

literature review also encompassed Nithyashri et al.'s [9] 

work on coastal rainfall prediction in India, employing 

deep reinforcement learning. Their model achieved an 

impressive accuracy rate of 89%, highlighting the 

potential for integrating advanced machine learning 

techniques into specialised geographical contexts. Lastly, 

the research by Flores et al. [10] applied functional data 

analysis and regression models to predict rainfall for 

maize fields in Ecuador. Their high-accuracy models were 

observed to have broader applicability to similar 

agricultural regions like North Peru. 

Several studies have contributed valuable insights in these 

domains, offering opportunities for integration to advance 

our understanding. Khan and Maity [11] introduced a 

hybrid Conv1D-MLP model for rainfall prediction, 

excelling at capturing complex relationships but facing 

challenges with longer lead times. This limitation aligns 

with Essa et al.'s [13] study on thunderstorm severity 

prediction, emphasising the need to address declining 

model performance over extended lead times. Combining 

insights from these studies could improve long-range 

rainfall forecasts, which are vital for disaster 

preparedness. Hydrological modelling, as explored by 

Kim [15] using LSTM networks, underscores the 

importance of historical hydrological data. This 

perspective resonates with Khan and Maity's call for 

incorporating GCM simulations, offering an opportunity 

to fuse different data sources for more robust models. 

Climate change impacts and adaptation are central to 

understanding shifting precipitation patterns. Shigute et 

al.'s [14] research in Ethiopia's Genale River basin, 

revealing drier trends and rising temperatures, has 

implications for water resource management akin to Kim 

and Kim's work. Integrating these findings can inform 

adaptive strategies for regions facing similar challenges. 

As Essa et al. [12] emphasise, improving input data and 

model fusion requires data integration from several 

sources, such as climate data, meteorological stations, and 

lightning detection networks. Such fusion can enhance the 

accuracy of rainfall predictions and water resource 

management models. 

Rainfall prediction plays a pivotal role in water resource 

management. Recent studies in this domain offer valuable 

insights and potential integration opportunities across 

various regions. Statistical models have been prominently 

used, with a study in northern Ghana by Paul Dankwa et 

al. [16] highlighting the straightforward seasonal 

exponential smoothing model as a strong predictor. 

However, to enhance accuracy and address missing data 

issues, researchers like Muhammed E. Akiner [17] in 

Duzce and Bolu, Turkey, suggest integrating machine 

learning, specifically artificial neural networks (ANNs). 

Handling missing data is a recurring challenge in rainfall 

prediction. Akiner's study demonstrates how the 

Levenberg-Marquardt method can be employed to train 

ANNs when historical data is incomplete, serving as a 

useful reference for researchers dealing with extended 

data gaps. Urban water management poses distinctive 

challenges, as showcased in a study for the Kolkata 

Municipal Corporation by Md. Juber Alam and Arijit 

Majumder [18], where Excel regression functions and 

Python ARIMA models proved effective. Collaboration 

with studies like the one in northern Ghana can help assess 

changing rainfall impacts on local hydrological systems, 

emphasising the significance of integrated water resource 

planning. Expanding spatial coverage by collaborating 

across regions can lead to more comprehensive rainfall 

pattern insights. Researchers in Sylhet, Bangladesh Bari 

et al. [19], and Nanchang, Jiangxi Province Zhao et al. 

[20], could share methodologies and findings, facilitating 

model cross-validation and transferability assessments. 

Additionally, the merging of conventional ARIMA 

models with neural networks, as in Nanchang's study [20], 

shows promise in enhancing forecasting accuracy, 

inspiring future research into model combinations for 

improved predictions. Integrating these insights can 

advance rainfall prediction and, subsequently, water 

resource management strategies, addressing the evolving 

challenges posed by changing rainfall patterns [21]. 

3. Methodology 

3.1 Modelling Annual Temperature Dynamics: 

Identifying Trends as well as Variations 

The yearly temperature fluctuations in Nagpur, 

Maharashtra, are graphically shown in Figure 1, This 

graphically depicts the temperature range from year to 

year, including both the minimum and highest values [22]. 

This graph efficiently depicts the trends of variations in 

temperature over time by using the horizontal axis to 

signify years and the vertical axis to represent temperature 

in degrees Celsius, providing greater knowledge of the 

local climate dynamics. By selectively focusing on 

Nagpur as a single, valuable instance, the research 

simplifies the presentation of substantial data from several 

districts.
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Fig 1. Annual Temperature Distribution Variations 

The average daily reported precipitation in Nagpur, 

Maharashtra, emerges dynamically as a time series visual 

in Figure 2. The x-axis represents the date and spans the 

full dataset, while the y-axis represents the amount of 

precipitation in millimeters (mm). This visual 

representation illustrates daily rainfall variations, 

indicating certain patterns throughout the selected 

timeframe [23]. The depicted blue line adequately 

illustrates these variances, allowing for visual 

interpretation of precipitation level variations. This 

dataset provides useful insights into Nagpur's climatic 

patterns, allowing for an in-depth analysis of the area's 

precipitation pattern and facilitating directed weather-

related variants. 

 

Fig 2. Daily Precipitation in Nagpur 

The forecasting approach employing different ML 

algorithms is shown in the figure 3. It includes 

fundamental procedures, data pre-processing, data 

cleaning, missing value management, and scalability. 

Following that, the data is separated into training and test 

sets [25]. These sets are used to train and assess ML-

learning algorithms such as ARIMA, LSTM, CNN, and 

Simple RNN. The accuracy of the models is evaluated and 

investigated, and the best-performing model is chosen for 

prediction. This method may be used for a variety of 

forecasting jobs, such as forecasting product sales [40]. 

Data gathering, pre-processing, splitting, training models, 

assessing performance, and finally picking the best model 

for future forecasts are all part of the process [26]. The 

flowchart provides an adaptable structure that may be 

applied to a variety of forecasting instances. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 380–393 |  383 

 

Fig 3. flowchart for forecasting 

In this study, the rainfall was predicted using a deep 

learning technique. Deep learning algorithms such as the 

Arima, LSTM, CNN and Simple RNN Model were 

analysed, which took input variables having moderately 

and strongly related environmental variables with rainfall 

[34]. The better deep learning algorithm was identified 

and reported based on performance measures using MSE 

(Fig. 3). 

3.2  Deep Learning Algorithms for Rainfall 

Prediction 

An accurate evaluation of relevant research on rainfall 

prediction was undertaken in order to determine the best 

deep learning algorithms for forecasting daily rainfall 

quantities [27]. Two relevant algorithms, LSTM and 

ARIMA, were selected for the experimental study in order 

to estimate daily rainfall intensity using real-time 

environmental data. To identify the best method for daily 

rainfall quantity prediction, the study concentrated on the 

comparative assessment of LSTM and ARIMA models 

[28]. 

A. Arima Model 

The ARIMA model is a popular analytical tool for 

estimating time series, incorporating daily rainfall 

quantities [29]. It is made up of three parts: auto-

regressive (AR), integrated (I), and moving average (MA) 

[30]. 

AutoRegressive (AR) Component: This section of the 

model adjusts for the link between the time series current 

value and its prior values. It employs a linear regression 

of the current value on its lags. The AR element is 

represented by the letter 'p', which denotes the total 

number of lag values in the equation [31]. 

 AR Equation (of order p): 

𝑋𝑡 = 𝑐 + ∅1 ∗  𝑋𝑡−1 + ∅2 ∗  𝑋𝑡−2 + ⋯ 𝑋𝑡−𝑝 + 𝜀 𝑡 

Integrated (I) Component: This component represents the 

number of differences needed to make the time series 

stationary (i.e., with a constant mean and variance). The 

letter 'd' denotes the order of differencing required to 

achieve stationarity [32]. 

I Equation (of order d): 

𝑌𝑖 = 𝑋𝑡 − 𝑋𝑡−𝑑 

Moving Average (MA) Component: This part accounts 

for the relationship between the current value and past 

forecast errors. It uses a linear combination of past 

forecast errors. The MA component is denoted by the 

letter 'q,' which represents the number of past errors 

included in the model [33]. 

MA Equation (of order q): 

𝑋𝑡 = 𝑐 + 𝜀𝑡 + ∅1 ∗  𝜀𝑡−1 + ∅2 ∗  𝜀𝑡−2 ⋯ ∅𝑞 ∗  𝜀𝑡−𝑞 

B. LSTM (Long Short-Term Memory) 

Long Short-Term Memory (LSTM) is a sort of recurrent 

neural network (RNN) architecture that excels at 

modelling and forecasting data series with long-term 

dependencies [34]. It was developed to overcome the 

diminishing gradient issue that may arise in regular RNNs, 

resulting in it being more successful for applications such 

as time series forecasting, considering daily rainfall 

quantities [35]. 

Memory cells and filtering mechanisms in networks of 

LSTM allow them to capture and recall information over 

lengthy sequences [36]. They are made up of three main 

gates: 
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Input Gate (𝑖𝑡): This gate controls what information from 

the current input should be stored in the cell state [37]. It 

uses the current input and the previous cell state to 

calculate this. The equation for the input gate is: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [𝑙𝑡 , 𝑥𝑡] + 𝑏𝑖 

Forget Gate (𝑓𝑡): The forget gate determines what 

information from the previous cell state should be 

forgotten or retained [38]. It considers the previous cell 

state and the current input to make this decision. The 

equation for the forget gate is: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [𝑙𝑡 , 𝑥𝑡] + 𝑏𝑓 

Output Gate (𝑜𝑡): The output gate determines which data 

from the current cell state will be utilized to generate the 

result [39]. It considers the current input, previous cell 

state, and the information the cell has gathered. The 

equation for the output gate is: 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [𝑙𝑡 , 𝑥𝑡] + 𝑏𝑜 

Here, 

𝑖𝑡 , 𝑓𝑡   and 𝑜𝑡 are the input, forget, and output gate vectors, 

accordingly. 

𝑊𝑖  , 𝑊𝑓 and 𝑊𝑜 are weight matrices for the gates. 

𝑙𝑡  denotes the prior cell state (long-term memory). 

𝑥𝑡 is the current input at time step 𝑡. 

𝝈 denotes the sigmoid activation function.  

gates and the current candidate values (𝑐𝑡 )̃ as follows: 

𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡 − 1 + 𝑖𝑡 ∙ 𝑐𝑡̃ 

Lastly, the outcome (ℎ𝑡) for every single point is 

computed depending upon the modified cell state: 

ℎ𝑡 =  𝑜𝑡  ∙ tanh 𝑐𝑡    

4. Experimental Results and Data Analysis 

4.1 Performance Evaluation of ARIMA Model 

The variations between expected and observed amounts of 

precipitation are shown in Figure 4, which examines 

precipitation predictions for the months of May through 

January.  Key metrics such as MSE, MAE and RMSE 

were produced to quantify the effectiveness of the model. 

The computed results are 90.85 for MSE, 4.91 for MAE, 

and 9.53 for RMSE, in that order. These metrics are used 

to assess the level of forecast accuracy as well as the 

variation among predictions and actual outcomes.

 

 

Fig 4. Predicted vs. Actual Precipitation (Arima)  

4.2 Deep Learning Techniques for Predicting Daily 

Rainfall Amount Using LSTM 

The importance of the LSTM model is precisely 

illustrated in Figure 5 in the study of time series 

estimation, with a special emphasis on daily rainfall, with 

an effective test RMSE of 7.643. Expanding training data 

to promote generalization and fine-tuning 

hyperparameters for best performance are recommended 

methods to improve prediction accuracy. A possible path 

is combining the LSTM model with complementary 

methodologies, possibly combining its trend recognition 

skills with the accuracy of another approach to assessing 

rainfall amounts. This collaborative approach has the 

ability to produce thorough projections. 
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Fig 5. LSTM Model Performance on Test Data 

4.3 Comparative Analysis of Precipitation Prediction 

Models and RMSE Evaluation 

The ARIMA and LSTM models anticipated precipitation 

outputs are shown in Figure 6 (a). The blue line is the 

ARIMA model's estimate; the green line is the LSTM 

model's estimate; and the green line is the actual rainfall 

data. The visual depiction clearly depicts the LSTM 

model's superior capacity for collecting data trends as 

compared to the ARIMA model. The LSTM framework 

successfully predicts highs and lows, demonstrating its 

ability to recognize the data's complicated structures. This 

ability arises from the LSTM's ability to comprehend 

long-term dependencies, as opposed to ARIMA's 

emphasis on short-term interactions. The LSTM model's 

potential to overfit the data highlights its capacity to 

absorb noise alongside underlying patterns, restricting its 

flexibility to new data. The RMSE for both approaches is 

shown in Figure 6 (b). RMSE measures the difference 

between anticipated and actual values, with smaller values 

showing a better fit. The graph shows that the LSTM 

model has a lower RMSE than the ARIMA model, 

indicating greater forecasting accuracy.

 

Fig 6 (a). Predicted vs. Actual Precipitation Comparison 
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Fig 6 (b). RMSE Evaluation for Prediction Models 

4.4 Analysis of Temperature Data Using Seasonal 

Decomposition 

The trend component captures the data's long-term 

temporal evolution. The trend in this instance is positive, 

implying a steady temperature increase, as shown in figure 

7. The seasonality factor represents repeating variations 

that occur at regular intervals. The seasonality component 

follows an angular structure with frequent fluctuations. 

These swings are greatest in the summer and lowest in the 

winter. The residual element is low, highlighting the trend 

and seasonality aspects' success in explaining a major 

percentage of the data variation. Using seasonal 

breakdown to improve temperature data offers potential 

for improving the precision of forecasting. Models that 

include the seasonality element make more exact forecasts 

and cover a larger range of variations in time. 

 

Fig 7. Trend, Seasonality, and Residual Components of Temperature Data 

4.5 Enhancing Daily Rainfall Forecasts through 

Arima and LSTM Machine Learning Models: A 

Comparative Analysis on Temperature Prediction 

Our study focuses on improving daily precipitation 

predictions using machine learning, especially the Arima 

and LSTM models. These models have the potential to 

improve forecast accuracy dramatically. The study 

performs a thorough comparison analysis with an 

emphasis on temperature forecasting. The study provides 

insight into the prediction capacities of both models by 

rigorously examining their performance. Figures 8(a) and 

8(b) provide graphical representations of the Arima and 

LSTM models' predictions of temperature trends. These 

visualizations provide insights into how each model 

shows and forecasts temperature fluctuations over time, 

laying the groundwork for evaluating model success and 

finding ways to enhance it. This comparative study 

increases rainfall prediction approaches by emphasizing 

machine learning's critical role in deciphering complex 
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environmental data for more precise forecasting. The 

research adds to the continuous effort of refining daily 

rainfall forecasts and increasing readiness and 

management techniques in the face of changing climatic 

circumstances.

 

Fig 8 (a). Temperature Prediction by Arima Model 

 

Fig 8 (b). Temperature Prediction by LSTM Model 

4.6 Deep learning Model Evolution CNN and RNN   

In the comparative analysis of projected and actual rainfall 

levels presented in Figure 9, the CNN and RNN 

algorithms take center stage. The CNN framework has 

great accuracy, with the majority of samples correlating 

projected and real temperatures. Some outliers, in which 

projected temperatures diverge greatly from real values, 

are linked to the CNN model's ability to extract 

geographical properties from data. The findings of the 

RNN model are shown in Figure 10, which likewise 

shows promise in temperature prediction; however, there 

are notable instances with significant disparities between 

predicted and actual temperatures. For this comparison 

evaluation, we used both RNN and CNN models in all 11 

districts, especially Nagpur, although we chose Nagpur as 

an example for demonstrative purposes. These findings 

highlight the potential of both techniques in rainfall 

prediction, with CNN being outstanding at recognizing 

spatial trends and the RNN model showing promise but 

requiring extra fine-tuning for accurate and predictable 

forecasts. 
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Fig 9. Actual vs. Predicted Precipitation (CNN1D)  

 
Fig 10. Actual vs. Predicted Precipitation (Simple RNN) 

 

4.7 Evaluation Metrics for 1D CNN and Simple RNN 

Models 

The efficiency of two deep learning algorithms, CNN and 

RNN, is meticulously examined across multiple districts 

in Table 1. The RNN model clearly outperforms CNN at 

its best in Bhandara (88.40%), although it is more precise 

in a few districts, including Buldhana (86.72%). 

Compared to the RNN, the CNN model frequently 

demonstrates lower error rates (MSE, RMSE, and MAE) 

in most districts, signifying that its forecasts are typically 

more exact. CNN accuracy varies slightly among districts, 

with figures varying from 50.59% to 88.40%. Figure 11 

indicates that, in comparison to RNN, CNN achieves the 

highest efficiency in Bhandara and Nagpur. 

Table 1: Comparison of CNN and RNN Model Performance Districts 

District 

RNN CNN 

MSE 
RMS

E 

MA

E 

R2 

Score 

Accurac

y 
MSE 

RMS

E 

MA

E 

R2 

Scor

e 

Accurac

y 

Akola 
42.64

7 
6.53 

2.62

3 
0.415 84.77% 

37.87

1 
6.154 

2.89

4 
0.48 77.15% 

Amravati 
44.57

1 
6.676 2.77 0.485 75.78% 

45.13

1 
6.718 

3.36

5 
0.479 50.59% 

Bhandara 
53.56

7 
7.319 

4.14

1 
0.522 52.93% 

51.91

4 
7.205 

3.64

5 
0.537 88.48% 
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Buldhana 
31.63

3 
5.624 

2.67

2 
0.45 86.72% 28.02 5.293 

2.89

8 
0.513 75.00% 

Chandrapu

r 

90.87

2 
9.533 

3.92

8 
0.436 60.74% 

100.1

16 
10.006 

3.71

9 
0.379 81.64% 

Gadchiroli 
89.75

4 
9.474 

3.85

4 
0.464 68.75% 95.54 9.774 

4.12

3 
0.43 62.50% 

Nagpur 
71.81

9 
8.475 3.47 0.359 87.11% 

47.88

3 
6.92 3.67 0.573 88.09% 

Wardha 47.98 6.927 3.5 0.555 59.38 
59.73

9 
7.729 

3.75

9 
0.446 86.13% 

Yavatmal 41.3 6.427 3.16 0.527 84.38% 
46.64

2 
6.83 

3.05

3 
0.466 75.20% 

Washim 
32.62

9 
5.712 

2.99

6 
0.496 53.32% 

30.03

3 
5.48 

3.06

6 
0.536 69.53% 

Gondia 
34.66

4 
5.888 

2.87

7 
0.633 62.50% 

37.09

4 
6.09 

2.49

8 
0.608 44.73% 

 

 

Fig 11. Comparison of Model Performance Metrics for Different Districts 

4.8 Comparative Evaluation of Forecasting Systems 

for Regular Rainfall Forecasting: Evaluation 

Perspectives and Systems Choice 

a visualization of the test RMSE values for the ARIMA 

and LSTM algorithms when applied to the daily rainfall 

forecast is shown in figure 12. The graphic clearly 

demonstrates the LSTM model's improved performance, 

with a lower test RMSE of 7.65 compared to the ARIMA 

model's test RMSE of 9.56. This visual illustration 

emphasizes the LSTM model's improved prediction 

accuracy, focusing on its utility as a reliable tool for 

predicting daily rainfall amounts. 
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Fig 12. Comparative Analysis of Predictive Models for Daily Rainfall 

In the thorough assessment of deep learning models for 

rainfall prediction shown in Table 2, in terms of accurate 

rainfall forecasting in districts such as Akola, Amravati, 

Bhandara, and Buldhana, In Akola, for example, the 

LSTM model operates the ARIMA model, with a much 

lower RMSE of 6.947 compared to the ARIMA model's 

RMSE of 8.3819. This enhanced accuracy is especially 

essential in areas where precise predictions of rainfall are 

essential for crop forecasting and effective water resource 

management. As seen in Table 2, variances in the model's 

effectiveness are less obvious in Chandrapur, Gadchiroli, 

and Nagpur, with the LSTM model typically exhibiting 

slightly lower RMSE values. This indicates that specific 

regional characteristics and data anomalies may impact 

the approach to selecting. As seen in Table 2, Wardha, 

Yavatmal, Washim, and Gondia all have efficiency that is 

equal for both models, giving decision-makers a chance to 

select the model that best meets their requirements. 

Weather experts and water resource managers may utilize 

our research, as shown in Table 2, to help them decide 

which rainfall forecast model is appropriate for their 

specific locations. These findings illustrate the capabilities 

of deep learning, namely the LSTM approach, in boosting 

rainfall forecasting precision within specific regions while 

recognizing the importance of geographical specifics in 

choosing models. Figure 13 depicts the differences in 

performance metrics- ARIMA MSE, RMSE, MAE and 

LSTM RMSE across districts.  

 

Table 2: Comparative Performance of LSTM and ARIMA Models in Rainfall Prediction across Districts. 

District  Traditional ARIMA LSTM 

  MSE RMSE MAE RMSE 

Akola 70.255 8.3819 4.0662 6.947 

Amravati 86.23  4.27  9.28 7.568 

Bhandara 91.46  4.903  9.56 7.708 

Buldhana 48.99  3.68  6.99 5.948 

Chandrapur 101.51  4.95  10.07 10.631 

Gadchiroli 144.63  5.38  12.02 10.541 

Nagpur 91.46  4.90  9.56 7.65 

Wardha 80.73  4.45  8.98 7.79 

yavatmal 84.03  4.16  9.16 7.408 

Washim 49.97  3.65  7.06 6.324 

Gondia 89.65 4.705 9.468 7.337 
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Fig 13. Comparative Performance of LSTM and ARIMA Models in Rainfall Prediction across Districts 

5. Conclusion 

This research emphasizes the critical importance of 

precise daily rainfall projections for agricultural, food, and 

water resource availability and public health. We 

conducted a thorough investigation of environmental 

datasets from several regions, applying DL and ML 

approaches, with a particular emphasis on LSTM, 

ARIMA, RNN, and CNN models. According to our 

research, LSTM excels at identifying complicated rainfall 

patterns, with excellent R2 scores and continuously low 

RMSE values. The ARIMA model is dependable, with 

low MSE, MAE, and RMSE values highlighting its 

superior performance. The expanded research further 

demonstrates the effective use of RNN and CNN models 

in various districts, with capabilities in precision and 

accuracy. The model should be chosen based on 

geographical details and unique features of the data. The 

research gives significant information for weather 

projections, especially rainfall forecasting, allowing for 

more accurate choices for optimal agricultural and water 

resource management. It shows how deep learning 

approaches may improve rainfall prediction accuracy in a 

variety of regions.
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