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Abstract: Human Activity Recognition (HAR) holds a pivotal role in a diverse range of applications that impact various aspects of human 

life. Advancements in sensor technology and the integration of IoT have expanded the scope of research in HAR through the utilization of 

deep learning algorithms. End-to-end learning is provided by the advanced deep learning paradigm from complex and amorphous data. 

Smartphones and IoT wearables are now widely employed in Ambience Assisted Living, e-health monitoring, fitness tracking, biometrics, 

smart cities, IIoT and other applications. Wearables and Smartphones employ Inertial measurement units (IMU) for the detection of human 

activities. This research proposes different hybrid neural network model built using GRU, bidirectional GRU, LSTM and bidirectional 

LSTM with CNN. WISDM, USCHAD, and MHEALTH activity recognition datasets are used to test the method. The hybrid model 

outperforms the other activity recognition algorithms in terms of accuracy. 

 Keywords:  Human Activity Recognition , IMU ,Hybrid Deep Neural network,Wearables, Phones, CNN, BiLSTM ,BiGRU 

1. Introduction 

Physical activity can provide important details about a 

person's daily schedule, habits, and mental state. 

Monitoring how and when people engage in physical 

activity can yield information that can be used to tailor 

workout regimens, spot potential health problems, and 

promote wellbeing. Human activity recognition (HAR) is 

used in numerous different sectors, including Healthcare, 

AAL, Psychiatry, Sports and fitness, Entertainment such 

as online game console, Home automation, 

Transportation, Fall detection, Industrial applications, 

Groupware, Biometrics. 

 Human activity recognition is a technique for recognizing 

human actions from raw data of activities that has been 

gathered over a given period. The sequential data can be 

represented as images, videos, or discrete readings from 

accelerometers, gyroscopes, magnetometers, and other 

sensors used by wearables and other portable electronic 

devices. Smartphones, wearable devices, ambient sensors, 

device-free systems, object tagged sensors, and video-

based systems all have the potential to be employed in the 

recognition of various human activities. The HAR system 

frequently makes use of a number of additional sensors, 

such as sound sensors, motion sensors, proximity sensors 

and GPS tracking for location tracking. According to a 

recent review [1], majority of HAR focuses on sensor-

based data as opposed to RFID, vision based, and Wi-Fi 

data. Sensor-based human activity recognition is widely 

used because it offers a balance between accuracy, non-

intrusiveness, real-time monitoring, adaptability, privacy 

preservation, cost–effective, low power consumption, 

scalabilty, robustness and the availability of sensors in 

Smartphones.  

 

Fig 1. Sensors in Smartphone 
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The common sensors used for motion detection 

,accelerometer and gyroscope is widely present in recent 

smartphones. Gyroscope which is used to detect 

orientation is also present. The various environment 

sensors like  Barometer Sensor,Ambient Light Sensor,      

Ambient Temperature Sensor, Air Humidity Sensor 

,Harmful Radiation Sensor, Proximity Sensor etc are 

equipped within. The ambient light sensor is responsible 

for detecting the surrounding light conditions in your 

environment. It plays a crucial role in the functioning of 

your screen's automatic brightness adjustment feature. 

This sensor is designed to capture the ambient light and 

transmit this data to the operating system. Subsequently, 

the operating system utilizes this information to 

dynamically regulate the screen's brightness. The various 

Application oriented Sensors included are Finger Print 

Sensor,NFC Sensor,Pedometer Sensor,Compass sensor 

etc. 

Deep neural network technology has also advanced, 

making it simple to classify data from sensors efficiently, 

which will likely provide the HAR operations a 

tremendous boost. There has been a substantial boom in 

the field of HAR because of the advancements in the field 

of IoT, which is based upon multiple sensors. HAR has 

numerous applications in context-aware computing, 

Human Computer Interaction, surveillance, security and 

industrial manufacturing. Behavioural analysis using 

HAR is useful in areas like health monitoring, shopping 

and security. Personal biometrics obtained from HAR can 

be utilized for forensic, access control, security and 

healthcare. Monitoring patient status to support medical 

diagnoses, promoting quicker healing, and assisting old 

and chronic patients are a few important applications for 

HAR in contemporary medical practises. Applications for 

HAR include video game consoles, sports, and fitness 

training. The majority of past research in this field has 

utilised different Machine Learning (ML) techniques and 

has attained an accuracy rate exceeding 80 %. Machine 

learning and signal processing techniques have powerful 

non-linear feature extraction techniques and a shallow 

architecture that are not adaptive to variations. In 

controlled situations with few labelled data or little 

domain expertise needed (such as disease named entity 

recognition), these simple strategies produce pleasing 

results. As machine learning systems for HAR tasks 

traditionally depend on manually designed features 

derived from domain-specific expertise, their 

performance is limited by the extent of human knowledge 

in that domain [2].These methods [3] can only learn 

superficial aspects from some statistical numbers, which 

undermines performance and only allows them to identify 

simple activity. Deep learning (DL) is a subcategory of 

ML techniques that uses several layers of neural networks 

in a hierarchical manner to improve pattern recognition, 

enhance feature learning, and improve accuracy. 

Improvements in cloud computing and GPU processing 

power, the automatic extraction of features from 

enormous datasets, and latest developments in hybrid DL 

models are three key factors in the popularity of DL. The 

generative nature of the model is complemented by the 

addition of a discriminative top layer, allowing it to excel 

in tasks that require classification. It facilitates learning in 

an unsupervised manner from a massive amount of 

unlabeled training data, which is used to extract features 

at a profound level. Further benefit of DL is that the 

models simultaneously perform the feature extraction and 

model building processes. The deep network enables 

autonomous feature learning without any operator input. 

Deep learning networks, which can learn a hierarchy of 

increasingly abstract features and retrieve high-level 

properties in multiple hidden layer, can be used to 

recognise complex activities. 

Hybrid architectures encompass a wide spectrum of 

designs, incorporating both parallel and series 

configurations, and sometimes a combination of the two. 

Within these architectures, the series learning approach 

plays a pivotal role in delivering solutions to prognostic 

problems. . In a recent research endeavor, a novel hybrid 

model was introduced, integrating Gated Recurrent Units 

(GRU)[4] in conjunction with Recurrent Neural Networks 

(RNN) featuring a gating mechanism, aimed at enhancing 

activity recognition.  The GRU block is incorporated to 

model dynamic shifts in the temporal data so that possible 

characteristics in time sequence data can be better learned. 

The processing of spatiotemporal matrices and their 

mapping into the feature vector are done using the 

Convolutional Neural Networks (CNN) module. Transfer 

learning is a subfield within deep neural networks where 

researchers leverage pre-trained models to reduce training 

time, enhance learning rates, and improve accuracy by 

utilizing a strong initial model. This study aims to explore 

the feasibility of utilizing a both CNN and GRU for the 

effective recognition of similar pairs of human activities 

using accelerometer data. 

While RNN structures are compatible for capturing 

temporal dependencies in sequential data, they can face 

challenges, particularly when it comes to performance and 

their reliance on available data from restricted situations. 

As a solution, we propose the development of a hybrid 

bidirectional model that integrates CNN with 

Bidirectional Long Short-Term Memory (BiLSTM) and 

GRU networks for the recognition of Activities of Daily 

Life (ADL).  

The paper's primary contributions and key concepts can 

be succinctly summarized as follows: 

In this research work, a novel Hybrid Deep Neural 

Network is introduced for recognizing activities using 
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Smartphones and IoT wearable sensors. This approach 

showcases the capability to improve the overall 

performance of research focused on human activity 

recognition based on inertial measurement units. The 

fundamental model used in this research is the hybrid 

model using CNN-BiGRU and CNN-BiLSTM. The CNN 

within the CNN-BiLSTM architecture is responsible for 

breaking down multidimensional temporal data into 

unidimensional version, facilitating the extraction of 

valuable features from the input data. These extracted 

features are then passed on to the bidirectional modules of 

GRU or LSTM. The BiLSTM component within the 

hybrid model plays a crucial role in learning long term 

dependencies in either directions from the output of the 

convolutional layer. By leveraging the strengths of both 

CNN and BiLSTM, this adopted basic model showcases 

the potential to significantly enhance the accuracy of 

activity recognition.The hybrid model including CNN and 

GRU is also proposed. The advantage of CNN and GRU 

is utilised .Bidirectional GRU is experimented to prove 

the power of bidirectional neural networks. 

The proposed approach makes use of four models with 

overlapping windows: CNN-GRU, CNN-LSTM,  CNN-

BiLSTM, and CNN-BiGRU. The use of the sliding 

window approach improves classifier accuracy overall. 

Each basic model's hyper-parameters are set adaptively 

based on the length of the time frame. This will increase 

the basic model's diversity and make it more relevant to 

IoT-based real-time applications. 

The structure of the rest of this paper is organized as 

outlined below. Section 2 provides an overview of 

previous research within this domain. Section 3 delves 

into the fundamental Human Activity Recognition (HAR) 

process. In Section 4, we introduce our proposed 

approach, which is succeeded by an assessment in Section 

5 and concluding statements in Section 6. 

2. Related Work 

 Shallow neural networks constitute the foundation for the 

majority of the previous models for HAR. Numerous 

shallow learning methods have been applied over time, 

including Decision Trees (DT), Naive Bayes, Hidden 

Markov Models (HMM), Random Forest(RF), Support 

Vector Machines (SVM) and K-Nearest Neighbours 

(KNN).Majority of the works for HAR using DL utilized 

CNN[5-7]. Alsheikh et al.'s research, as described in [8], 

demonstrated the potential application of Deep Belief 

Networks (DBNs) for activity recognition. RNN and 

LSTM are also a focus of this field of study. In their work, 

Jiho Park et al.[9], introduced a Residual Recurrent Neural 

Network (RNN) model designed for predicting human 

actions. Because it contains sequence data throughout 

time, the study made use of the properties of the (RNN) 

structure. Numerous research based on the GRU based 

models [10] and CNN-BiGRU, CNN-GRU [4] hybrid 

models were put out to demonstrate the efficacy of the 

hybrid model. Additionally, previous research efforts 

have explored the performance of LSTM and its various 

adaptations [11],[12],[13], showcasing their capability for 

robust classification when compared to baseline models. 

A recent study [14] has introduced a CNN-LSTM-Based 

Late Sensor Fusion technique, which notably enhances the 

accuracy in recognizing similar activities. In another work 

[15], an attention-based BiLSTM was employed to design 

a Wi-Fi system dedicated to activity recognition. In a 

separate study, a model grounded in transfer learning, 

utilizing Gated Recurrent Units (GRUs), was proposed for 

the identification of collateral, complex, interleaved, and 

diverse activities of human nature [16] Moreover, a HAR 

technique by Chen et al. [17] was introduced, centered on 

the fusion of data from diverse wearable sensors, offering 

portability and improved accuracy, making it suitable for 

real-time applications..In a recent work by Abbaspour et 

al. [18] they four different  hybrid models that integrate 

CNNs with four  RNNs. They evaluate model using 

PAMAP2 dataset and the hybrid models attain an 

exceptional level of performance. 

Fig 2. HAR methods 
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According to the type of data they use, HAR approaches 

can be divided into two primary divisions based on a 

hierarchical classification: namely  multimodal and 

unimodal activity recognition systems. The classification 

of human activity recognition techniques is organized 

hierarchically, with further subcategories within each of 

the two primary categories, depending on how they 

represent human activities. Figure 2 illustrates this 

hierarchical structure. Unimodal approaches, which are 

further divided into the following classifications: (a) rule-

based (b)space time (c) stochastic (d) shape based 

methods. Unimodal techniques depict human actions from 

data of a single modality, like images. Rule based 

approach involve the use of predefined rules and 

conditions to analyse the data and infer the activities being 

performed. Activity recognition techniques that describe 

human actions in terms of spatiotemporal features or 

trajectories fall under the category of space-time methods. 

Stochastic approaches use statistical models to represent 

human behaviour, such as HMM to identify activities. In 

HAR, they are effective for recognizing activities that 

have well-defined temporal patterns and sequential 

dependencies. Shape based approaches efficiently 

replicate advanced reasoning processes by simulating the 

mobility of different human body parts. Multimodal 

approaches are harnessed across both research and 

practical domains to attain a comprehensive 

comprehension of human behavior, emotions, and 

interactions. 

3. HAR Process 

The following steps constitute the algorithm for human 

activity recognition. Acquire the input signals from 

various sensors in Step 1. Step 2: Some data pre-

processing is required as the data is obtained from raw 

sensor data. Noise removal using filters and segmentation 

of the sensor data readings is done.Step 3: The whole 

dataset is divided into train, test and validation data in the 

appropriate ratio. Step 4: In order to train the models, 

features are manually or automatically taken from the 

network. Step 5: Draw conclusions about activity from 

actual HAR tasks. What actions are meant to be 

acknowledged? The choice of sensor, where the sensor is 

placed, and how the data gathering environment is 

configured will all affect the response to this question. The 

ability to distinguish more complicated activities 

increases with the number of sensors included. Depending 

on the type of activity that has to be detected, the sensors 

need to be placed optimally. The process of HAR is 

depicted in Figure 3. 

 

Fig 3. HAR process 

In their research, Zhang and Sawchuk (2012) [19] 

highlighted that the accelerometer stands out as the most 

effective motion sensor for recognizing a wide range of 

daily activities. This includes activities such as sitting 

,walking, using elevators (both ascending and 

descending), climbing stairs, and even tasks like brushing 

teeth. They found that the accelerometer is particularly 

well-suited for these purposes. 

Furthermore, their study indicated that gyroscope 

measurements, which capture rotation angles, offer 

enhanced results when it comes to fall detection. The 

reliability of the recognition process is substantially 

improved by combining data from both the gyroscope and 

accelerometer, in contrast to relying on other sensors. 

Shoaib et al.'s (2013)[13] research underscores the merits 

and limitations of various sensors in the context of activity 

recognition. Their study underscores the importance of 

selecting the appropriate sensor based on the distinct 

demands of the activity being identified. Accelerometers, 

for instance, prove adept at recognizing static activities 

such as standing, whereas gyroscopes demonstrate a 

superior capacity for capturing the dynamic nature of 

actions like stair climbing. In contrast, the magnetometer's 

reliance on magnetic fields and orientations renders it less 

suitable for these applications, potentially resulting in 

complications during classifier training and undermining 

the overall effectiveness of activity recognition 

systems..It should be mentioned that the number of 

sensors used and their distribution over the body will have 

an impact on classification accuracy. With good 

classification accuracy, sensors placed on the wrist, knee, 

waist, and thigh can identify the majority of daily 

activities. Additionally, it is shown that for the research 

cited, most of the activities can be identified using a 

combination of arm and leg positioned readings. 

According to research investigations by (Bao and Intille, 

2004)[21], sensors must be dispersed across the body in 

order to detect complicated activities, with at least one 

sensor on the lower body and one on the upper body. The 
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combination of a smartphone and an IMU sensor, placed 

at the right ankle  along with the deep neural network 

model, led to a substantial improvement of 23% as 

opposed to only using smartphone[22].This work utilised 

CNN and achieved a good F1-score of 96.89 %. 

3.1.DataAcquisition 

Ambient sensors/Environmental sensors like temperature, 

humidity sensors or embedded sensors, like smartphones 

and wearables, are the most often utilised types of sensors 

for activity identification. Wearable sensors are among 

them and are effective at sensing activities. The most 

frequently used sensors include magnetometers, 

barometers, proximity sensors, accelerometers, and 

gyroscopes. Smart watches, activity trackers, and smart 

clothing are examples of wearable technology. The ease 

of use, portability, continuous monitoring capabilities, 

and even the ability to recognise complicated activities 

make wearables appealing for HAR. Several biosensors, 

in addition to inertial measurement sensors like an 

accelerometer, gyroscope, or magnetometer, are utilised 

for activity recognition. Since muscle activity is a crucial 

component of the majority of human activities and the 

electromyogram detects the bioelectrical impulses 

released by muscles, it has previously been widely 

employed in HAR research. Barometers and other 

microphone kinds, like piezoelectric (PZT) or airborne, 

are also included in the devices for HAR. 

Ambient sensors are immobile or permanent sensors 

positioned within spaces where human activities occur. 

Ambient sensors use a variety of technologies, such as 

microphones, cameras, IR motion detectors, and pressure 

mats. They are designed to collect information related to 

movements, audio patterns, or interactions with objects in 

the given environment. Importantly, these sensors enable 

the system to detect and identify activities without 

requiring individuals to wear specialized devices, 

typically in confined or specific coverage areas. 

Deviceless HAR, often referred to as device-free HAR, 

tries to identify human activities without forcing people to 

wear any specific sensors or carry any electronic devices. 

Rather it makes advantage of already-existing 

infrastructure to track changes in wireless signals brought 

on by human movement, such as Wi-Fi, RFID, or radio 

frequency signals. Algorithms can be used to analyse the 

fluctuations in these signals to identify routine activities 

or even more complex ones like dancing or working out. 

Device-free recognition systems can be noninvasive, but 

the surroundings may have an impact on its accuracy. CSI 

is used in device-free HAR to track changes in the 

wireless network. In a wireless communication system, 

channel state information (CSI) is knowledge of the 

wireless channel characteristics between the transmitter 

and receiver [3]. CSI is used in device-free HAR to track 

changes in wireless signals brought on by the presence 

and motion of human bodies in the environment. 

The accelerometer is discovered to be more effective than 

the other sensors out of a variety. The majority of studies 

have focused on this area since smartphones contain the 

majority of the sensors including IMU used for activity 

recognition and because smartphones have become an 

integral aspect of our daily existence. 

3.2. Data Pre-processing 

The standardisation and transformation preparation 

procedures used in HAR are both common. The stages of 

standardisation are as follows: Relabeling is the process 

of labelling unknown activities by looking at nearby data. 

Trimming is used to achieve balance in training. 

Interpolation is the process of replacing lost data with 

nearby contiguous observations. Denoising is the process 

of removing unnecessary components. The process of 

transformation includes various methods a) Normalisation 

to a uni-dimensional vector magnitude b) Augmentation 

of data c) Separation to divide the signal into gravitational 

and linear components d)Resampling and 

e)Dimensionality reduction.Activity recognition 

performance is influenced by the choice of window 

length, type of  window and window overlap percentage. 

In situations where subject independent cross validation is 

employed, overlapping sliding windows outperform non-

overlapping sliding windows, according to research by 

(Dehghani et al., 2019) [23]. The accuracy is significantly 

influenced by the window length selection. A wider 

window size is required for the recognition of complicated 

operations, whereas a shorter window enables faster 

recognition with less resource use. However, each 

window must contain least ways one occurrence of a 

recurrent action of the activities in order to distinguish one 

activity from the others. e.g., stepping forward to run or 

jog. But employing a large window size does not ensure 

that performance will improve. Janidarmian et al., 

(2017)[24]. The study conducted by (Banos et al., 

2014)[25] revealed that the maximum level of 

performance in the recognition of activities is attained 

when employing small window size, lasting less than two 

seconds. Moreover, their research indicated that the most 

precise activity recognition results are achieved using 

very short windows of 0.25 seconds. Transforming raw 

sensor data into different domains, such as multi-channel 

plots and spectrograms allows for a richer representation 

of the data. This enhanced representation can lead to more 

accurate and robust recognition of human activities in 

specific applications. The multi-channel approach has the 

highest accuracy and requires minimal training. Longer 

segment lengths result in a slower rate of accuracy 

improvement. According to the study's findings, 

accelerometer readings from the shin obtained the peak 
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accuracy of 90.51%. By the studies of X. Zheng et al., 

(2018), the forearm and shin data were combined, and a 

respectable accuracy of 93 % was obtained. [26]  

3.3 Feature Extraction 

Feature extraction is a crucial stage in the process of 

converting raw sensor signals into a set of relevant and 

distinguishing features that are instrumental for 

classifying activities. For unprocessed sensor data, there 

are various feature representations available, including 

features in the frequency and time domains, multichannel 

spectrums obtained from multi-mode sensor signal 

channels, spectrums with shallow features, and deep 

features. The best accuracy is achieved by the multi-

channel transformations since the image size is drastically 

lowered and training time is reduced compared to the raw 

plot technique. This approach can offer a more 

comprehensive set of features and offer valuable insights 

into the interconnections among various sensor 

measurements. 

The study conducted by Ravi et al. [27] highlighted the 

necessity of utilizing a spectrogram representation for 

feature extraction. This approach is crucial to capture 

characteristics that enable the interpretation of intensity 

variations among adjacent inertial data points. By 

representing sampling time and frequency invariance 

within a spectrogram, the researchers achieved accurate 

and robust data classification, even in the presence of 

challenges like temporal shifts, changes in sampling rates, 

and variation in signal loudness. Furthermore, the use of 

the spectrogram domain proved to be highly successful in 

filtering out noise from the data. 

3.4. Feature Classification 

A variety of machine learning approaches were used for 

the majority of the classification up until recently. Deep 

neural classifiers are currently in use due to deep 

learning's advancements. The two most popular deep 

learning techniques are ensemble methods and hybrid 

techniques, which include AutoEncoder, CNN, and RNN. 

Data from sensors has been used in a variety of research 

studies. 

In the field of transfer learning, there are primarily four 

areas into which the studies fall. Features representation 

and instance transfer methods are included in the first 

division. Shallow learning and active learning are 

examples of transfer learning approaches, which fall 

under the second group. The third classification is based 

on the types of learning: transductive ,inductive and 

unsupervised learning, with the unsupervised group 

receiving the majority of research. A popular approach for 

data analysis is to examine the point of transfer in domains  

across user, environment , sampling rate and task. In 

circumstances where there is a dearth of labelled data, 

active learning is utilised to tackle the problem. 

The combining of data from a variety of various types of 

sensors is covered by multi-sensor fusion approaches. The 

information may consist of attributes that have been 

retrieved or judgements made based on these 

characteristics by various categorization methods [28]. 

This method aims to increase accuracy and inference 

quality through the usage of many sensors. The benefits 

of sensor fusion are numerous, including increased 

resolution, dependability, and robustness against 

interference. Fusion of multi-sensor  is divided into 3 

primary categories namely data level or observation level, 

decision level and feature level fusion, based on the 

abstraction level at which the data are fused. [29]. The 

selection of the fusion level depends on factors such as the 

nature of the sensor data, the particular application, and 

the inherent characteristics of the sensors being used. 

Because the arrangement order of neural networks in an 

architectural design can profoundly impact the 

performance of hybrid approaches, substantial research is 

currently underway in this domain. One major concern 

with bidirectional networks such as BiLSTM and BiGRU 

is their computational demands.. Although this effective 

strategy has another side that involves computing 

complexity, it yields superior results. GRU represents an 

enhanced iteration of LSTM, and both models share a 

common architecture.. While LSTM employs both input 

and forget gates to manage information flow, GRU 

simplifies this process by using a reset gate and an update 

gate. This design difference contributes to GRU's 

computational efficiency and makes it a competitive 

alternative to LSTM for various sequential data tasks. The 

update gate is responsible for determining the amount of 

data to be transferred from the previous state to the next 

state, as well as what should be discarded. The reset gate, 

on the other hand, dictates the extent to which past 

knowledge should be forgotten. GRU is quicker to train 

since its architecture is simpler than that of LSTM. On 

each step, GRU completely uncovers its memory content 

and uses leaky integration with an adaptive time constant 

managed by the update gate to preserve a balance between 

the previous and subsequent memory contents. GRU 

trains more quickly than LSTM because it employs less 

training parameters. A type of generative deep learning 

called BiGRU creates a classifier in the forward direction 

and a generator in the other. The output layer of this model 

can simultaneously receive data from past state ,in 

backward time direction and future state towards forward 

time direction ,which is another benefit. 

4.  Approach 

Bidirectional Recurrent Neural Networks (BRNN) belong 

to a class of deep learning architectures that connect 2 
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deep layers operating in opposing directions to obtain a 

single output. Architecture for Bidirectional RNN is given 

in Figure 4. This setup enables them to capture 

information from both preceding and subsequent states. 

BRNNs find valuable applications in sequence-to-

sequence tasks, including Natural Language 

Processing(NLP), Speech Recognition and time series  

prediction. 

.  

Fig 4. Birectional RNN 

While BRNNs can be used for semi supervised or 

unsupervised learning, they are more commonly used in 

supervised learning approaches. This is because 

calculating a reliable probabilistic model for BRNNs can 

be demanding, particularly when dealing with complex 

and variable-length input sequences. Bidirectional 

Recurrent Neural Networks (BRNNs) are engineered to 

make predictions in both the positive and negative 

temporal directions simultaneously. In contrast to 

conventional recurrent neural networks, BRNNs 

segregate their neurons into two directions: one set for the 

forward states, representing the positive time direction, 

and another set for the backward states, denoting the 

negative time direction. Notably, the output states of each 

direction are not interconnected with the inputs of the 

opposite direction. This dual-directionality empowers 

BRNNs to incorporate input data from both the past and 

future relative to the current time frame for concurrent 

output calculation. In contrast, standard recurrent 

networks need an additional layer to incorporate future 

information. Therefore, BRNNs are unique because they 

can incorporate both past and future information without 

needing an extra layer.  

Hybrid neural network models are used in this 

experiment. Four different hybrid models are proposed i) 

CNN-GRU ii) CNN-LSTM iii) CNN-BiGRU iv) CNN-

BiLSTM. 

The full structure of the hybrid model is as shown in 

Figure 5.Two stages of convolutional layer with following 

Maxpooling layer is implemented.After the flatten layer it 

is forwarded to two consecutive Bidirectional GRU or 

Bidirectional LSTM layer. Final output is then obtained 

after passing through the dense layer with activation as 

Softmax. Output comprises of the number of classes of 

different activity. Adam is the optimiser used with a batch 

size of 64.Hyperparameters are tuned using Optuna. 

 

Fig 5 Proposed Hybrid architecture using CNN-BiGRU 

4. Experimental Setup 

Three datasets that are publicly available consisting of 

daily life activities recorded using IMU are utilised for 

this study; USC-HAD [30], WISDM [31] and 

MHEALTH[32].The MHEALTH is a data collection that 

includes information from three sensor devices that track 

physical activity and vital indicators. The dataset makes 

use of magnetometer, ECG, gyroscope, accelerometer, 
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and measurements from each. Ten individuals with 

various backgrounds were given 12 distinct physical tasks 

to complete. These exercises included standing, sitting, 

jogging, running, walking, crouching, lying down, 

cycling, jumping, escalating stairs, bending forward at the 

waist, and raising the arms in front of one's body. Each 

individual had an accelerometer attached to their lower 

right arm, left ankle, and chest, while their right lower arm 

and left ankle were used to collect magnetometer and 

gyroscope measurements. Additionally, it offers 2-lead 

ECG readings for observing the heart from locations 

where the sensors are placed on the chest. The resulting 

signals are sampled at the HAR standard sampling rate of 

50 Hz. A smartwatch and a smartphone were used to 

capture everyday activities in the WISDM dataset. Each 

of the 51 participants in the study carried a Google Nexus 

or Samsung Galaxy S5 smartphone in their right pocket 

and wore an LGG smartwatch with a software ,Android 

Wear version 1.5 on their left wrist. The phone's screen 

was facing away from the body and was positioned right-

side up. Each participant completed 18 different tasks 

using their smartwatch and smartphone for three 

consecutive minutes each.A sampling rate of 20 discrete 

samples in a second using a sliding window approach is 

used. The sensor data from each device comprises values 

obtained from both its gyroscope and accelerometer.  The 

target or dependable variable is the code for different 

activity and the independent or predictor variables are the 

gyroscope and accelerometer sensor readings in the x, y, 

and z directions. The 18 actions in  WISDM  are divided 

into three groups for better analysis. 1) Ambulation-

related actions, such as those conducted without using 

hands 2) Hand-oriented activities, which include hand-

only, non-eating activities 3) Hand-oriented activities, 

which are made up of eating-related activities. Using 14 

participants, 12 different activities from the USC-HAD 

dataset are chosen and classed as long term, short term, 

low level, and high level activities. 

In order to recognise human actions from data collected 

using sensors from a smart watch and a smartphone, we 

combined CNN with the benefits of the Gated Recurrent 

Unit (GRU) , and its modifications. 

 

Fig 6. Accuracy-Loss plot for Mhealth using different hybrid models 

Proposed algorithm Method 

Step 1:- Apply the overlapping sliding window method to 

preprocess the raw data. 

Step 2:-Divide the data set into the following sections 

namely; train, test and  validation sets. 

Step 3:- The different deep neural network models are 

considered and integrate two  models to form the hybrid  

architecture with proper design. 

Step 4: -Train and validate the model using the designed 

neural network. 

Step 5:-Determine performance matrices using testing. 

Table 1. Evaluation for Mhealth dataset 

 

Model 

 

Parameters 

 

MHealth 

 

Stand 

 

Climb 

 

Cycling 

 

Jogg 

 

Run 

 

Knee 

Bend 

 

Walk 

 

CNN-GRU 

 

Precision 

 

 0.953 

 

0.941 

 

1.000 

 

1.000 

 

0.942 

 

0.939 

 

0.981 

 

Recall 

 

1.000 

 

0.914 

 

0.993 

 

0.938 

 

1.000 

 

0.838 

 

0.982 

 

F1-score 

 

0.935 

 

0.927 

 

0.996 

 

0.968 

 

0.970 

 

0.886 

 

0.979 
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Fig 7.  MHEALTH CNN-BiGRU Confusion Matrix 

Table 2. Evaluation for WISDM dataset 

Model Parameters WISDM Smartphone WISDM SmartWatch 

AO HOE HOG AO HOE HOG 

CNN-GRU Precision 0.916 0.899 0.893 0.967 0.945 0.978 

Recall 0.944 0.859 0.900 0.964 0.971 0.961 

F1-score 0.930 0.879 0.896 0.965 0.958 0.969 

 

 

CNN-BiGRU 

 

Precision 

 

0.993 

 

0.984 

 

1.000 

 

0.979 

 

0.973 

 

0.992 

 

1.000 

 

Recall 

 

1.000 

 

0.935 

 

1.000 

 

0.972 

 

0.979 

 

0.946 

 

0.994 

 

F1-score 

 

0.976 

 

0.959 

 

1.000 

 

0.976 

 

0.976 

 

0.969 

 

0.974 

 

 

CNN- LSTM 

 

Precision 

 

0.941 

 

0.978 

 

1.000 

 

0.960 

 

0.993 

 

0.971 

 

0.988 

 

Recall 

 

1.000 

 

0.957 

 

1.000 

 

0.993 

 

0.959 

 

0.926 

 

0.994 

 

F1-score 

 

0.969 

 

0.967 

 

1.000 

 

0.976 

 

0.975 

 

0.948 

 

0.991 

 

 

CNN- 

BiLSTM 

 

Precision 

 

0.953 

 

0.978 

 

1.000 

 

0.986 

 

0.979 

 

0.985 

 

0.977 

 

Recall 

 

1.000 

 

0.957 

 

1.000 

 

0.979 

 

0.986 

 

0.939 

 

0.994 

 

F1-score 

 

0.976 

 

0.967 

 

1.000 

 

0.982 

 

0.983 

 

0.962 

 

0.985 
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CNN-LSTM Precision 0.912 0.870 0.889 0.971 0.953 0.976 

Recall 0.934 0.852 0.885 0.959 0.972 0.973 

F1-score 0.923 0.861 0.887 0.965 0.962 0.974 

CNN-BiGRU Precision 0.935 0.917 0.917 0.935 0.917 0.917 

Recall 0.957 0.890 0.919 0.957 0.890 0.919 

F1-score 0.946 0.903 0.918 0.946 0.903 0.918 

CNN-BiLSTM Precision 0.934 0.916 0.871 0.975 0.954 0.975 

Recall 0.928 0.854 0.926 0.967 0.961 0.976 

F1-score 0.931 0.884 0.898 0.971 0.958 0.976 

 

 

Fig 8.  USCHAD CNN-BiGRU Confusion Matrix 

In this study, we introduce a novel hybrid model that 

combines both the 1D Convolutional Neural Network 

(CNN) and Bidirectional Gated Recurrent Unit (BiGRU) 

models. In this structural design, the CNN layer precedes 

the GRU layers, with the output from the CNN being 

further handled by the custom-designed GRU layers.What 

distinguishes our proposed model is the utilization of 

bidirectional GRU layers, each comprising two hidden 

 

  

Fig 9.  CNN-BiGRU Confusion Matrix WISDM Smartphone 

layers operating in opposing directions with respect to the 

output. The initial segment manages the input in a positive 

orientation, whereas the following component governs the 

input in the negative direction. The dataset is split into 

three sections for model creation and evaluation: 60% 

training data, 20% validation data, and 20% test data. The 
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validation data and the training data are mixed together. 

Additionally, the data is shuffled to make sure that all of 

the likely occurrences defining the problem are included 

in the testing, training, and validation sets. 

Convolutional layers make up its input. After two stages 

of CNN, a maxpooling layer is simulated, and then the 

bidirectional layer follows. ReLu and Softmax layers are 

applied in the end. The sensor readings are segmented into 

a window size of 5 seconds with an overlap of 50 % 

employing the sliding window approach. The smallest 

window size that still gives the classifier decent 

performance is 5 seconds, thus that is the value that is 

used. The dataset is split into three groups—train, 

validation, and test sets—with a ratio of 6:2:2 to guarantee 

that all classes are represented in each segment. The 

experiment uses appropriate  batch size for each dataset 

and a weight decay parameter of 0.0001. During the 

training process in this study, the optimizer employed is 

Adam, featuring a learning rate set at 0.001.

 

 

Fig 10.  Accuracy graph using various models 

The learning rate is initially configured at 0.0001 and 

subsequently reduced through the utilization of Keras' 

ReduceLROnPlateau library. The model undergoes 

training for a total of 40 epochs.. The experiments were 

conducted within the Google Colab environment, utilizing 

Keras, and were executed on a GPU equipped with 

approximately 12 GB of RAM.. The advantage of Colab's 

GPU processor is utilised, resulting in a quicker 

completion of the training phase. Various classifiers 

employing a hybrid DL approach are utilized for data 

categorization. For classification purposes, four distinct 

classifiers; CNN-GRU, CNN-LSTM, CNN-BiLSTM, and 

CNN-BiGRU models have been developed. 

5. Evaluation 

The evaluation of a model is a pivotal step in gauging its 

effectiveness, reliability and recognising potential issues 

or areas for improvement. Accuracy is a frequently 

utilized metric in classification tasks, assessing the 

general correctness of predictions. However, to gain a 

more nuanced understanding of a model's performance, it 

is essential to consider additional metrics such as 

sensitivity (recall), precision, and the F1-score. These 

metrics hold particular value in multiclass classification 

scenarios, and their computation relies on the information 

furnished by the confusion matrix. 

The confusion matrix, a fundamental tool for assessing 

classification models, plays a central role in the 

calculation of various performance metrics. These metrics 

encompass the different parameters; recall (also referred 

to as sensitivity), specificity, accuracy , precision and the 

Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC). In addition, confusion matrix helps to 

identify errors, handling imbalance datasets and hyper 

tuning. Among the multitude of evaluation metrics, the 

F1-score is commonly utilized to achieve equilibrium 

between precision and recall. This equilibrium proves 

particularly advantageous in scenarios involving 

imbalanced class distributions. 

In this research study, the confusion matrix is constructed 

and analysed. The confusion matrix is a vital instrument 

for evaluating and enhancing the performance of 

classification models, enabling practitioners to make 

informed decisions regarding model adjustments and 

refinements. This matrix serves as the foundation for 

computing essential evaluation parameters. These 

metrics, when considered collectively, offer a 
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comprehensive evaluation of the model's classification 

performance. The mathematical expressions for the 

metrics mentioned above are in this manner: 

 

Accuracy = TP+TN/TP+FN+TN+FP  

Recall = TP/TP+FN  

Precision = TP/TP+FP  

F-measure = 2*Precision*Recall/Precision+Recall  

For the three separate data sets, we have included the 

confusion matrices for the different hybrid models. For 

the MHEALTH dataset, the parameters  F1 score, 

Precision and Recall  are calculated for various hybrid 

models . The values are shown in Table 1. Table 2 presents 

the performance details for the parameters F1 score, 

Recall and Precision for WISDM . In Figure 6, the loss 

and accuracy plot for the four distinct models is presented 

for the MHEALTH dataset. The confusion matrix 

furnishes a comprehensive breakdown of the model's 

predictions and their correspondence with the actual class 

labels. The confusion matrices are illustrated for the 

various hybrid deep neural models in Figures 7, 8, and 

11.Figure 10 shows the comparison graph for accuracy for 

different models, with the help of three distinct data sets; 

USCHAD, WISDM, and MHEALTH. The activity 

recognition problem responds best to the bidirectional 

learning approach. The accuracy of various classification 

models must be examined and the accuracy is visualised 

in Figure  9. 

6.  Conclusion and Future Scope 

The aim of this study is to present various hybrid DL 

models for identifying complicated human behaviours, 

including CNN-LSTM, CNN-GRU, CNN-BiLSTM, and 

CNN-BiGRU. This study makes use of the MHEALTH 

and WISDM datasets. The original WISDM dataset was 

divided into different datasets for smart watches and smart 

phones. The algorithm is also verified using the 

MHEALTH dataset. The preprocessing of the data 

involved data transformation using the sliding window 

method. This paper also mentions the benefits of deep 

neural learning, which has autonomous feature extraction. 

The train, test, and validation results are used to validate 

the outcomes. Bidirectional models have a sophisticated 

architecture and outperform unidirectional models in 

terms of performance. More complicated models will be 

investigated for our upcoming studies in addition to the 

hybrid models utilising CNN, BiGRU, and BiLSTM. 

Future research endeavors have the potential to delve into 

the utilization of transformers for temporal data 

classification. Transformers, being neural networks based 

on self attention mechanisms, exhibit the ability to 

comprehend relationships in sequential input and sensor 

data with heightened precision and swiftness. 

 

 

Fig 11.  WISDM Smartwatch CNN-BiLSTM Confusion Matrix 
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