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Abstract: Predicting and recognizing plant diseases at an early stage is a critical requirement for expanding agriculture, which contributes 

significantly to the economy and food security of our country. Early detection can help to save crops and prevent further damage. Deep 

learning methods are commonly used for image-based disease classification and prediction. This paper studies sunflower diseases such as 

Alternaria leaf spot and Verticillium wilt, and presents a deep learning segmentation model to classify them. The study enhances the 

YOLOv5 architecture, the scales of the fusion layer, and the multiscale detection layer to make the first-stage prediction more effective at 

detecting small, subtle defects with high similarity on the leaf surface. In addition, a modified version of the Improved Dwarf Mongoose 

Optimization Algorithm (IDMO) is used for hyperparameter tuning. This optimization method makes three minor but significant changes 

to the original algorithm (DMO). First, IDMO's alpha selection is different from DMO's, where calculating the probability value of each 

fitness member is an unnecessary computational burden that adds nothing to the alpha's or the group's overall quality. The Kaggle dataset 

images are pre-processed to improve classification accuracy. The experimental results validate that the proposed model outperforms state-

of-the-art deep learning approaches by a margin of approximately 95%. This research has the potential to revolutionize the way plant 

diseases are detected and classified. By using deep learning, farmers can quickly and accurately identify diseases, which will help them to 

save crops and prevent further damage. This could lead to increased crop yields and improved food security. 

Keywords: Improved Dwarf Mongoose Optimization; Sunflower Leaf Disease; Agriculture; Deep learning techniques; YOLO Network; 

Downy mildew. 

1.Introduction 

The Helianthus sunflower, popularly known as the 

common sunflower, has its origins in Mexico, North 

America, around 2100 BCE. Sunflowers, which may 

reach heights of 3 to 4 meters, are a common crop in 

tropical regions. The Journal of Environmental 

Management reports that nitrogen-based fertilizer has 

varying effects on sunflowers depending on the plant's 

genetic makeup and background [1]. Because sunflowers 

and their seeds are useful in a variety of ways, including 

as sources of nutrients and medications, a drop in output 

due to pests and illnesses might have far-reaching 

consequences. For example, the plant's seed and leaves 

can be eaten because of the nutrients they contain, and the 

plant's roots can be used to absorb radioactive chemicals 

or to create natural colours. Vitamin-rich sunflower is also 

used to cure a wide range of ailments, including tract 

infections. It's effective against bug, snake, and spider 

bites, too [2]. Since sunflower leaves are diuretics, they 

have also been used to treat bladder diseases. Given its 

widespread practical application, protecting sunflowers 

through the use of computer vision for early disease 

detection has become an urgent priority. 

Sunflower, a crop with a long history of scientific 

attention due to its potential as a major industrial crop, is 

native to North America. Rapid progress in the field of 

computer vision has led to its widespread use in areas like 

agricultural engineering and production, giving smart 

agriculture a growing impact on people's everyday lives 

[3]. Due to the many uses of sunflower oil, growing 

sunflowers (Helianthus annuus) is an important 

agricultural activity. The seeds are very nutritious, with a 

moisture content of 5.50%, a protein gratified of 18.72%, 

a fat gratified of 37.47%, a fibre gratified of 28.30%, an 

ash gratified of 3.49%, a carbohydrate content of 6.11% 

[4]. Researchers have identified 90–100 new sunflower 

diseases over the world. Most fungal diseases, including 

rusts, Phoma black stem blight, anthracnose, and leaf spot, 

are rather common. Fungi are responsible for the vast 

majority of sunflower diseases [5]. Leaf blight, produced 

by the fungus Alternaria species, has been documented in 

all of the world's sunflower-growing areas [6]. However, 

it is more common in the tropics and subtropics. 

Optical monitoring of plant leaves has long been used by 

low-resource farmers as a proxy for disease diagnosis [7]. 

Fertilizers might be used, stressing plants and leading to 

nutritional deficits in agricultural settings if an inaccurate 

diagnosis of crop loss is made [8]. The identification for 

maximizing the farmer's return on investment in plant 

development and production. Manually checking for plant 

diseases will not reliably yield correct findings. It's also 
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difficult and expensive for farmers to obtain subject 

matter expertise in plant disease tracking [9]. Deep 

learning is now feasible because of developments in 

computer vision; it has been the subject of many studies 

into its potential for early disease detection in plants [10]. 

Plants are a serious issue in farming because of the 

negative impact they have on crop quality and yield. In 

underdeveloped countries that rely on the sum of crops, 

plant diseases can affect the agricultural economy, 

causing everything from modest symptoms to severe 

damage to entire planted crop regions, incurring 

considerable expenditures and having a big negative 

impact. Several DL models have been utilized to classify 

plant diseases, with the help of well-known DL 

architectures. Furthermore, several researchers have 

tweaked DL algorithms to progress the efficiency of 

disease categorization across a range of plant species [12]. 

K-means clustering is only two examples of the many ML 

methods that have been used for the problem of disease 

classification and identification in plants. However, due to 

the difficulty of picture pre-processing and feature 

extraction, these methods perform less effectively and 

move more slowly in real-time illness identification. 

Diseases affecting sunflower plants may be accurately 

identified and managed by the use of automatic 

identification of symptoms occurring on leaf tissue [13]. 

The study suggested an enhanced YOLO model for 

disease segmentation from sunflower leaf images. In 

addition, the IDMO model optimizes the hyper-parameter 

tuning, which will be briefly covered in the next sections. 

The effectiveness of the suggested model is revealed by 

the validation study. The secondary sources are obtainable 

in Section 2, and a concise summary of the study is 

provided in Section 3. In Section 4, we contemporary the 

findings of the experimental analysis. Section 5 delivers a 

summary and looks ahead to potential follow-up.   

2. Related Works 

In this research, Ghosh, P. et al. [14] combine transfer 

learning (TL) with a conventional (CNN) to develop a 

hybrid model for sunflower illness detection. On a dataset 

with four classes (grey mold, leaf scars, and renewed leaf), 

CNN hybrid perfect surpasses the other eight models. The 

experimental findings demonstrate that the recommended 

model outperforms the competition on the benchmark 

dataset in terms of precision, and accuracy. 

The purpose of the research conducted by Barrio-Conde, 

M. et al. [15] is to determine how effectively deep learning 

(DL) systems can be seeds. An image capture system was 

set up with a Nikon camera and controlled illumination to 

photograph 6,000 seeds from six distinct types of 

sunflower seeds. Image datasets were created for training, 

validating, and testing the system. Classification of 

varieties (between two and six) was accomplished using a 

CNN AlexNet model. The classification model has a 

100% accuracy rate for two classes and an 89.5% 

accuracy rate for the other six classes. These values are 

reasonable since the categorized kinds are so similar that 

they are difficult to tell apart. This result illustrates the 

potential utility of DL algorithms for seeds rich in oleic 

acid. 

In this work, Dawod, R.G., and Dobre, C. [16] discuss the 

findings of categorizing foliar diseases in sunflowers 

using a technique that comprises a perfect that 

mechanically splits the leaf lesions shadowed by the 

scheme. The lesions were segmented using Faster R-CNN 

in addition to Mask R-CNN. Diseases were classified 

according to lesions using the networks ResNet152. 

Results demonstrate that lesions from illnesses with well-

defined lesions, such as Alternaria and rust, can be 

automatically segmented. At least one segmented region 

is corrupted in more than 90% of the photos. Diseases that 

cause the entire leaf to become white, such as powdery 

mildew, make segmentation more difficult to perform. 

Diseased regions could not be successfully separated from 

30% of pictures. Results showed that a system classifies 

illnesses, allowed for the identification of pictures for 

which a precise classification could not be performed, and 

for a higher degree of accuracy in disease classification 

overall. 

Sunflower leaves are susceptible to a variety of diseases, 

and Malik, A., et al. [17] looked into four of them: The 

paper also suggests a hybrid perfect for the detection and 

categorization of various disorders using MobileNet, both 

transfer learning models used for classification, may be 

combined using the technique, or a hybrid model can be 

constructed using the two individual models. The author 

used Google Images to compile data collection of 329 

pictures of sunflowers, which she then sorted into five 

groups. Using the same data set as the initial contrast, the 

suggested model is compared to various pre-existing deep 

learning replicas in terms of accuracy. 

The dataset of sunflower flower and leaf images supplied 

by Sara, U. et al. [18] will help researchers develop 

accurate disease detection algorithms. Sunflowers with 

and without damage, such as leaf scars, downy mildew, 

and grey mold, are included in the dataset. Images were 

captured by hand at the protest farm of the Bangladesh 

Institute (BARI) in Gazipur between November 25 and 

November 29, 2021, in conjunction with one of BARI's 

subject matter experts, when most diseases were present.     

Using a collection of field photos depicting four foliar 

diseases of sunflowers (Helianthus), Dawod RG and 

Dobre C categorized the illnesses using a ResNet neural 

network [19]. Next, CNN visualization techniques were 

used to illustrate the forecast for incorrectly identified 

photos. In certain cases, the interpretation methods have 
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highlighted, incorrect categorization of background items. 

We also saw examples of photos with several leaves 

where the prediction was based on randomly picked 

sections of leaves. The late stage of the illness, when the 

lesions combine, also appears to be a possible 

misclassification risk. Incorrect classifications can also 

result from a lack of symptom representation or from 

images in which the visual indications are the same for 

different diseases due to a lack of a collection of images 

diverse enough to represent how a disease manifests itself. 

By removing many of the confounding variables that 

might contribute to inaccurate classification, segmented 

lesions were shown to increase classification accuracy in 

this study's visualizations. 

In this work, Song, Z et al. [20] use data from the study 

region acquired in 2018 to construct their model, and then 

use data from 2019 to assess the model's efficacy. 

Through testing against other methods, we find that 

PSPNet strikes a fair mix between precision and 

efficiency. To further enhance model performance, this 

work proposes a more appropriate loss function to weigh 

different kinds of misclassification, one that takes into 

consideration the time-series connection between the 

categorization of neighbouring growth phases. According 

to the results, the improved PSPNet using the proposed 

weighted loss function yields the highest identification 

accuracy (89.01%), providing a solution for the 

recognition of the sunflower growth period using single-

phase data. 

3. Proposed Methodology for Segmentation  

3.1. The YOLOv5 Model 

YOLO is a regression-based technique for locating 

targets. By feeding photos or video into a deep network 

and calculating the loss function to anticipate the objects' 

categorization and placement, YOLO converts the target 

detection issue [21]. 

Based on the original YOLO detection construction, 

YOLOv5 [22] makes use of the best algorithm 

optimization method to emerge in recent years, with auto 

backbone, neck, and output as its four pillars. Input 

terminals often house pre-processing operations like 

mosaic data enhancement and adaptive picture filling. 

YOLOv5 is adaptable to datasets including photos of 

sunflower leaves because of its smart initial anchor frame 

sizing. The primary structure of the backbone network is 

a (CSP), which is used to extract feature maps of varied 

sizes from images. [23] and spatial pyramid pooling (SPP) 

[24]. SPP structure realizes the feature extraction from 

several scales can build three-scale feature maps, which 

helps enhance the detection accuracy; bottleneck CSP is 

used to decrease the amount of calculation and raise the 

speed of inference. The neck network makes use of the 

FPN and PAN feature pyramid architectures. Strong is 

transmitted from the top feature maps to the bottom 

feature maps via the FPN [25] construction. While doing 

so, the PAN [26] architecture passes on robust localization 

features from lower to maps. Together, the features 

gathered from various levels of the network are 

strengthened in Backbone fusion, enhancing the detection 

capacity even more. The data from the head is mostly 

utilized to make size predictions for targets on feature 

maps during the final stage of detection. Four distinct 

designs make up YOLOv5; they are the YOLOv5s and 

YOLOv5x. In particular, the amount of feature extraction 

components kernels at various nodes of the network 

distinguishes one from the other.  

Defects on the sunflower photographs tend to be 

numerous, tiny, and of varying sizes, and they tend to be 

scattered randomly around the picture. The original 

YOLOv5 model is inadequate under these conditions, and 

problems like low finding accuracy and misused detection 

occur. Therefore, the purpose of this article is to enhance 

the current YOLOv5 network model. To improve the 

extraction capacity of the perfect and the precision of 

illness diagnosis, we first tweaked the backbone network, 

and incorporated an attention-finding layer based on the 

unique characteristics of small disease targets in leaves, 

allowing the detection model to more effectively adapt to 

the small disease. 

3.2. Improved Backbone 

Focus slice, Bottleneck CSP, and SPP modules collect 

feature maps of varying sizes from the input picture to 

form YOLOv5's backbone network [27]. The model's 

overall detection performance is proportional to the 

strength of the backbone network's feature extraction. 

The overall shape of a deep convolutional neural network 

resembles an inverted pyramid, and the size of the feature 

map is proportional to the depth of the network. 

Therefore, due to the pooling and down sampling 

procedure, the feature information of tiny objects in the 

picture may be absorbed by the feature information 

around the region, leading to their disappearance. Image 

flaws are typically negligible when compared to the 

complete surface. Large-scale downsampling can result in 

the loss of the data's semantic content, which could result 

in undetected events. 
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Fig 1. The backbone system before (a) and after (b) modification. 

By replacing the original YOLOv5's Conv and C3 layer, 

which extracted features at a 1/32 scale (refers to the size 

of feature maps generated is 18 18 pixels), Scale 1 (green 

background, red circle) was formed after the network, 

improving the feature extraction capability of the disease 

defect backbone network. Since already know that 

YOLOv5 produced large, medium, and small-scale 

feature maps, the simply scaled down the size of the large-

scale feature map level, which enhanced detection 

accuracy by decreasing the meddling of large-scale 

worthless information. Figure 1 displays the original and 

updated backbone networks. 

3.3. The Attention Mechanism 

The morphological characteristics recovered by the 

backbone network from multi-scale feature maps 

comprised both foreground and background information. 

The foreground info in the feature map is less dense for 

tiny targets. We included an efficient channel and gave it 

the monitor ECA-C3 to aid YOLOv5 in filtering out 

irrelevant information and concentrating on relevant 

target items. Then, swapped out the C3 module in the 

baseline YOLOv5 infrastructure with the ECA-C3 

module. The efficient dimensionality-preserving method 

of cross-channel interaction at the local level. 

Simultaneously, it may adaptively pick the size. 

Information regarding interactions between channels is 

captured efficiently by the ECA module, leading to a 

notable speed boost.  

ECA-Net takes into account each channel and its K 

neighbours to collect local cross-channel interaction 

information, allowing the neural network to channel in an 

adaptable manner. How many of the channel's neighbours 

are factored into the attention computation is represented 

by the convolutional kernel size K, which in turn indicates 

the coverage of local cross-channel interactions. Since K 

is proportional to C, the kernel size K may be computed 

in an adaptable fashion using the same equation: 

𝐾 = Ψ(𝐶) = |
𝑙𝑜𝑔2(𝐶)

𝛾
+

𝑏

𝛾
|
𝑜𝑑𝑑

 (1) 

where C is the channel dimension, |𝑡|𝑜𝑑𝑑  signifies the 

nearest odd sum of t; γ is set to 2 and b to 1. 

The generated convolution kernel undergoes a 

convolution operation, and the weights for each channel 

are computed using a function. Here is the equation: 

𝜔𝐶 = 𝜎(𝐶1𝐷𝑘(𝑦)) (2) 

where 𝐶1𝐷𝑘 represents a convolution process with a 

kernel of K, s is the function, whose calculation formula 

is 𝜎 =
1

1+𝑒−𝑧 , y signifies the diverse channels, 𝜔𝐶  is the 

weight of each channel created, and its measurement is 1 

× 1 × C. 

Finally, the extracted features are made more directed by 

weighting and summing the created attention weights and 

the input feature maps. Below is the weighing formula: 

𝑋𝑐 = 𝑋𝑐⨂ 𝜔𝐶  (3) 

where ⊗ signifies increasing element by component, and 

𝑋𝑐 is the output result after transitory the ECA unit. 

3.4. Increasing Scale of Model Prediction 

When it comes to diagnosing diseases, it can be tricky 

since the problem region is so little in comparison to the 

whole leaf surface that its characteristics are obscured 

unless the photos are blown up. The following 

enhancements to the architecture of the detection layer 

were implemented to address this issue. 

As was discussed before, shallow features are more suited 

for detecting small-scale objects, whereas deep features 

are better suited for detecting large-scale targets. The 

feature network (FPN) and pixel aggregation network 

(PAN) designs are utilized in the feature fusion layer and 

detection layer network to improve the transferability of 

positioning. Finally, the three output detection layers are 

scaled at 1/8, 1/16, and 1/32 for the detection of small, 

medium, and large targets, respectively. These scales 

correspond to the three sizes of new feature maps 

produced by the three feature fusion layers: 72 72 255, 36 

36 25, and 18 18 255. 

To better capture shallow feature info on the leaf surface, 

this research employed a 1/4-scale detection layer, 

denoted by a green backdrop, to create 144 144 feature 

maps. The yellow backdrop indicates a Scale 4 detecting 

head. The new fusion layer begins reinforcing the second 

layer of the backbone network's features, fixing a problem 

with the previous YOLOv5 model: it was unable to fully 

use the shallow features. This enhancement allows the 

deeper network to take advantage of the properties of the 

shallower network. To enhance tiny item recognition, a 

prediction head was added to the network's tail. This head 
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can now provide low-level and high-resolution feature 

maps. 

.3.5. Hyper-parameter tuning using the IDMO Model 

The natural phenomenon of the dwarf mongoose inspired 

the development of the DMO [29] algorithm. The alpha 

(male and female), scout, and babysitter subgroups are all 

accounted for in the author's model of the dwarf 

mongoose population. In addition, the animal's ability to 

respond to changes in its environment, such as predation 

and food availability, was modeled and included in the 

design. Then, the assigned babysitters can stay in the 

mound while the scouting party goes out to find food. It's 

commonly considered that the process of foraging or 

searching for food illustrates the optimization process's 

exploration phase [30]. In addition, the DMO considers 

the time when a group of dwarf mongooses establishes 

themselves in a mound after discovering a new food 

supply to be the exploitation or intensification stage. 

Additionally, the system modelled the emergence of 

additional mounds as a consequence of the search. The 

diagram also demonstrated the group's preparedness for 

trading babysitters. 

Dwarf mongooses as a whole may be represented using 

Eq. (4), which describes the behaviour of a group of these 

animals. Dwarf mongoose populations typically include 

an alpha group, a juvenile group, and a scout, so we isolate 

the alpha group and then divide the rest of the population 

up accordingly. Meanwhile, Eq. (5) was used to determine 

this subset of alpha females (a) in light of their 

significance to the population. To determine who fits the 

alpha female's ideal profile, it is necessary to first assess 

the group's and individuals' fitness levels (𝑎). 

𝑋 = [

𝑥1,1 𝑥1,2 ⋯ ⋯ 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 𝑥2,2 ⋱ ⋱ 𝑥2,𝑑−1 𝑥2,𝑑

⋮
𝑥𝑛,1

⋱
𝑥𝑛,2

⋱
⋯

⋮
⋯

⋮
𝑥𝑛,𝑑−1

⋮
𝑥𝑛,𝑑

]  (4) 

𝑎 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (5) 

Dwarf mongoose populations are analysed to determine 

and isolate scout groups, which stand in for the 

population's labour force. To accomplish this, they 

derived the corresponding equation (Eq. (6)), which 

accounts for both foraging and the search for new sleeping 

mounds. 

𝑋𝑖+1 =

{
𝑋𝑖 − 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ]   𝑖𝑓 𝜑𝑖+1 > 𝜑𝑖

𝑋𝑖 + 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑀⃗⃗ ]                   𝑒𝑙𝑠𝑒
 (6) 

where rand is a random sum among [0, 1] and 𝐶𝐹 =

(1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2−

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

is the collective-volatile drive 

control limit and 𝑀⃗⃗ = ∑
𝑋𝑖×𝑠𝑚𝑖

𝑋𝑖

𝑛
𝑖=1  controls the drive of the 

mongoose to the novel sleeping mound, and 𝜑 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
. 

Dwarf mongooses on a mound must constantly relocate to 

engage in predatory and foraging behaviors. In many 

cases, this will need the use of some kind of positioning 

update system. To determine a person's present location, 

they use a combination of a randomly generated variable 

(phi) in the range (1,1) and the peep female (a). The 

position update model is defined by the following 

equation: 

𝑋𝑖+1 = 𝑋𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝 (7) 

The finding of a new sleeping mound is a significant event 

that is characterized by predatory and foraging activity. 

During the iterative optimization process, this new hill is 

expected to evolve. The sleeping mound (sm) is calculated 

using Eq. (7) as a model for its finding, and its values may 

be averaged using Eq. (8). 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1−𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1,𝑓𝑖𝑡𝑖|}
 (8) 

This section's application technique for mathematical models is reflected in the table below.: 

𝑎. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑏. 𝑇ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑤𝑎𝑟𝑓 𝑚𝑜𝑛𝑔𝑜𝑜𝑠𝑒 𝑖𝑠 𝑓𝑖𝑟𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 

𝑐. 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑜 𝑎𝑙𝑝ℎ𝑎 (𝑚𝑎𝑙𝑒 𝑎𝑛𝑑 𝑓𝑒𝑚𝑎𝑙𝑒), 𝑠𝑐𝑜𝑢𝑡𝑠, 

 𝑎𝑛𝑑 𝑏𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑒𝑟𝑠 

𝑑. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠 𝑏𝑦 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔  

𝑡ℎ𝑒 𝑏𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑒. 𝑆𝑒𝑡 𝑡ℎ𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑏𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑖𝑛𝑔 𝑡𝑎𝑠𝑘𝑠 𝑎𝑠 𝐿 

𝑓.𝑊ℎ𝑖𝑙𝑒 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑, 𝑑𝑜 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔: 

i.𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑔𝑜𝑜𝑠𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛/ 𝑔𝑟𝑜𝑢𝑝 

ii.𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 

iii.𝐴𝑝𝑝𝑙𝑦 𝐸𝑞. (5) 𝑡𝑜 𝑑𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑓𝑒𝑚𝑎𝑙𝑒 
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iv.𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (7) 

v.𝐼𝑡𝑒𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑋𝑖 

vi.𝐷𝑒𝑟𝑖𝑣𝑒 𝑡ℎ𝑒 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 𝑚𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (8) 

vii.𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑀⃗⃗  

viii.𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑏𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑒𝑟𝑠 

ix.𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑐𝑜𝑢𝑡 𝑔𝑟𝑜𝑢𝑝 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (6) 

x.𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑜 𝑓𝑎𝑟 

𝑔. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

While the DMO does show some degree of originality, it 

is possible to improve the algorithm by taking advantage 

of insights into optimization gleaned from the dwarf 

mongoose's naturally occurring and cooperative social 

structure. Improving efficiency and striking a good 

balance between the discovery and exploitation phases 

need the consideration of such occurrences. The next part 

provides a comprehensive breakdown of the enhanced 

dwarf mongoose optimization algorithm's design and 

analysis. 

3.5.1. The Improved Dwarf Mongoose Optimization 

Algorithm (IDMO) Perfect  

It is proposed that the IDMO will improve DMO 

exploitation and exploration. DMO's inability to deliver 

the ideal solution for problems F9, F15, and F17 is 

evidenced by the solutions it did return. This optimization 

method makes three very minor but significant 

adjustments to the original algorithm (DMO). To begin, 

IDMO's alpha selection is not like DMO's, where 

calculating the probability value of each fitness member 

is only an unnecessary computing burden that adds 

nothing to the alpha's or the group's overall quality. To 

improve the IDMO's capacity for exploration and 

exploitation, we pick the healthiest dwarf mongoose to 

serve as the alpha and incorporate a novel operator to 

regulate the alpha's behavior. Second, to shake up the 

search and check out new places, the scout groups' routes 

are changed randomly. Finally, the babysitter exchange 

criterion is altered so that, instead of initializing the 

babysitters anew as is done in DMO. 

In contrast to DMO, where scouting and foraging are the 

same behaviour, this model demonstrates how the two are 

kept distinct. The search agents, represented by the and 

matrix in Eq. 9, are the individual dwarf mongooses. 

Through the phases depicted in Eq. 12, the modified alpha 

(Eq. 11) guides the team into unfamiliar territory during 

the exploration phase. The IDMO's capacity for 

exploration and exploitation is improved by modelling a 

new operator, in Equation 10. This operator regulates the 

alpha motion. As demonstrated in Eq. 14, randomization 

is used to alter the scout group's movements, bringing 

variety to the search process and allowing them to 

investigate previously uncharted territory. Once the 

criterion for exchanging babysitters has been satisfied, 

exploitation can occur, as indicated in Eq. 15. At this 

stage, the solution is further optimized. 

Population Initialization 

As indicated in Eq. (9), the IDMO population is first 

seeded with a random matrix of potential dwarf 

mongooses. The population vector lies among the 

optimization problem's bounds. 

𝑋 = [

𝑥1,1 𝑥1,2 ⋯ ⋯ 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 𝑥2,2 ⋱ ⋱ 𝑥2,𝑑−1 𝑥2,𝑑

⋮
𝑥𝑛,1

⋱
𝑥𝑛,2

⋱
⋯

𝑥𝑖,𝑗

⋯
⋮

𝑥𝑛,𝑑−1

⋮
𝑥𝑛,𝑑

]  (9) 

where n is the sum of dwarf mongoose in a mound, 𝑥𝑖,𝑗 

denotes the site of the jth dimension of the ith populace 

and each 𝑥𝑖,𝑗 is distinct in Eq. (10). 

𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈 − 𝐿) + 𝐿 (10) 

Alpha Group 

To estimate the size of this community, we take the 

mongooses and divide it by the estimated number of 

babysitters. The most physically capable female dwarf 

mongoose is chosen to be the group's alpha (a) leader, as 

shown in Eq. 11. IDMO's alpha selection is distinct from 

DMO's, in which calculating the probability fitness is only 

an unnecessary computing burden that adds nothing to the 

overall quality of the alpha or any other members. 

𝑎 = 𝑚𝑖𝑛(𝑓𝑖𝑡1, 𝑓𝑖𝑡2, … , 𝑓𝑖𝑡𝑛)(11) 

The group is held together by the alpha female's peep-like 

vocalizations. 

As specified by Eq. 12, the IDMO does a random walk 

over the issue space. Once the healthiest dwarf mongoose 

in the family, it now leads its relatives to a possible meal. 

This scenario differs significantly from the DMO, in 

which the alpha uses just vocalization to manipulate the 

other dwarf mongoose's posture. In IDMO, the alpha's 

position determines the additional mongoose's location, 

and a new worker, defined in Eq. 13, governs the alpha's 

movement, improving the IDMO's capacity for 

exploration and exploitation. 
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. 

𝑋𝑖+1 = 𝑎 + 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑖 − 𝑋𝑘) (12) 

𝜔 = 𝑒−4∗(𝐶𝑖𝑡𝑒𝑟/𝑀𝑎𝑥𝑖𝑡𝑒𝑟)
2
 (13) 

where 𝑝ℎ𝑖 =  ( 
𝑝𝑒𝑒𝑝

2
)  ∗ 𝑟𝑎𝑛𝑑 ∗ 𝜔, 𝑋𝑖 is the preceding 

dwarf location, and the rand is a consistently distributed 

random sum [−1,1]. 𝑋k is an arbitrarily designated dwarf 

mongoose. 

Scout Group 

Since dwarf mongooses are semi-nomadic and never 

return to the same sleeping mound twice, it is up to the 

scouts to find a new one. The IDMO represents the scout 

group as it searches for a new sleeping mound following 

a day of foraging. Since dwarf mongooses like to 

congregate near plentiful food sources, the healthiest 

scout is often chosen as the site of the chosen sleeping 

mound. Modelling the scouts using Eq. 14. 

𝑋𝑖+1 = 𝑎 + 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑘 − 𝑋ℎ)/2 (14) 

where rand is a random sum among [0, 1], and 𝑋𝑘, 𝑋ℎ are 

arbitrarily selected dwarf mongooses. 

The Babysitters 

Eq. 15 provides the exchange criterion that is used by the 

babysitter. Instead of starting again with a new set of 

dwarf mongooses as is done in zero when the criterion has 

been satisfied, allowing the traded babysitters to learn 

about food sources and the location of the next sleeping 

mound, perhaps resulting in better-suited mongooses. Eq. 

16 models this enhancement by showing how the dwarf 

mongooses is chosen at random and their details are 

communicated to the babysitters. If L goes to zero, the 

iteration number and CF are multiplied together to start 

again. 

𝐿 = {
𝑅𝑜𝑢𝑛𝑑𝑢𝑝 (0.6 ∗ 𝑛 ∗ 𝑑𝑖𝑚 ∗ (

1

𝐶𝑖𝑡𝑒𝑟
))

𝐿 ∗ 𝐶𝑖𝑡𝑒𝑟 ∗ 𝐶𝐹  𝑤ℎ𝑒𝑛    𝑙 < 0

 (15) 

𝑋𝑖+1 = (𝑋𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑎 −
𝑋𝑘+𝑋ℎ

2
) ∗ 𝑏𝑟) (16) 

𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2−

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

 controls the shared 

volitive movement of the dwarf mongooses, Xj, Xk, and 

Xh are randomly designated to replace the babysitters, and 

br is the birthrate. 

The IDMO greatly reduces computational complexity by 

minimizing the burden of alpha selection. When the dwarf 

mongooses, led by the dominant female, head out to find 

food, that's when the optimization process begins. Some 

people are left behind to act as babysitters. 

Finding plenty of stuff to eat is like being in the IDMO's 

exploring phase. Since dwarf mongooses are not known 

to deliver food for others, the babysitters switch off about 

lunchtime. When this occurs, the new set of babysitters 

will likely head back to their old haunts in search of food 

before discovering any new hiding places or sleeping 

mounds. This hypothetical situation represents the IDMO 

at its exploitation stage. The end-of-day scouting for a 

sleeping mound is an exploration and exploitation of the 

search space. Similar to the DMO, the IDMO algorithm 

simply has a single tuning knob (the total number of 

nannies). 

Conceptual Advantage of the IDMO 

The theoretical advantage of the suggested IDMO may be 

traced back to the inherent randomness of the IDMO's 

operations. The process begins with creating a new 

population and moving on to upgrading the alpha and 

scout groups. These solutions benefit from improved 

exploration and exploitation of the random Mongooses 

interchange them. The IDMO may be adjusted in only one 

way, and its implementation is straightforward and 

versatile. 

4. Results and Discussion 

As sunflowers have numerous benefits the study proposed 

an improved YOLO model with the help of the IDMO 

model.  

Figure 2 presents the sample images of the data that are 

collected from the Kaggle 

dataset,(https://www.kaggle.com/code/noamaanabdulaze

em/sunflower-disease-recognition/ notebook). 

https://www.kaggle.com/code/noamaanabdulazeem/sunflower-disease-recognition/%20notebook
https://www.kaggle.com/code/noamaanabdulazeem/sunflower-disease-recognition/%20notebook
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Fig 2: Sample images from the Kaggle Dataset 

4.1. Pre-processing of the data 

In the first stage, "Data pre-processing," the photos of size 

224*224*3 are converted into an array, the LabelBinarizer 

function is used to create a list of labels of images, and 

finally, the ImageDataGenerator is used to supplement the 

images. The dataset is split into a training set and a testing 

set using train_test_split (), with the training set 

comprising 80% of the data and the testing set 20%, with 

the random_ split () selecting every 3 photos for the 

splitting. After the dataset has been split up, model 

training (an enhanced YOLO model) may begin using 

model.fit_generator () and 25 epochs. Using the NumPy 

library and the model, compile the predicted values from 

both models into a single array once training is complete. 

The Keras predicted function. Now, using the resulting 

stacked dataset as a training set, create a model and then 

save the predicted values of the stacked perfect with the 

stacked dataset for later use in determining the model 

accuracy on a testing set. 

4.2. Validation Analysis of Proposed Model  

Figure 3 presents the data distribution and the confusion 

matrix is presented in Figure 4. 

 

 

Fig 3: Distribution of the data 
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Fig 4: Confusion Matrix of the Projected model 

Figure 5 provides the AUC curve of the dataset using a projected model. 

 

Figure 5: ROC AUC Curve of the data 

Table 1: Comparative analysis of the Projected segmentation model with existing procedures 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) 
F1-score 

(%) 

CNN 84.27 72.45 76.34 72.45 

RNN 88.67 87.91 78.75 78.35 

LSTM 73.55 74.18 79.79 79.25 

YOLO 70.78 88.27 82.51 89.20 

Proposed Model 95.87 92.26 93.98 94.64 

 

In the above Table, 1 represents the Comparative 

investigation of Projected segmentation perfectly with 

existing techniques. In this analysis, the using different 

classifier models such as CNN, RNN, LSTM, and YOLO 
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with the Proposed Model. In this analysis, the initial 

classifier model as CNN reached an accuracy of 84.27 and 

also a sensitivity value of 72.45 and the specificity value 

of 76.34, and finally an F1-score value of 72.45 

respectively. The RNN model reached an accuracy rate of 

88.67 and also a sensitivity value of 87.91 and the 

specificity value of 78.75 and finally an F1-score value of 

78.35 respectively. LSTM reached an accuracy of 73.55 

and also a sensitivity value of 74.18 and the specificity 

value of 79.79 and finally an F1-score value of 79.25 

respectively. The YOLO model reached an accuracy of 

70.78 and also a sensitivity value of 88.27 and the 

specificity value of 82.51 and finally an F1-score value of 

89.20, respectively. The proposed Model reached an 

accuracy of 95.87 and also a sensitivity value of 92.26 and 

the specificity value of 93.98 and finally an F1-score value 

of 94.64 respectively. In this comparisons analysis, the 

proposed model reaches a better result than other 

compared classifier models. 

 

 

Fig 6: Graphical Comparison of different models 

 

Fig 7: Analysis of various techniques in terms of different metrics 

Table 2: Validation Analysis of Proposed Model on various disease classes 

Classifiers Healthy Leaf Spot Downy Mildew Phoma Blight 
Verticillium 

wilt 

Accuracy 76.25 75.6 72.9 72.5 73 

Sensitivity  78.75 78.4 76.3 77.5 75 

Specificity  79.44 80.13 79.95 80.87 79.44 

F1-score  83.05 82.07 82.95 83.34 81.92 
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In the above Table, 2 represents the Validation Analysis 

of the Proposed Model on various disease classes. The 

different diseases such as Healthy, Leaf Spot, Phoma 

Blight, and Verticillium wilt. In the healthy leaf condition, 

the accuracy value of 76.25 and the sensitivity value was 

78.75 and the Specificity value was 79.44, and finally, the 

F1-score was 83.05 respectively. And the Leaf Spot 

condition has an accuracy value of 75.6 and the sensitivity 

value of 78.4 and the Specificity value of 80.13 and 

finally, an F1-score of 82.07 respectively. And the Downy 

Mildew condition has an accuracy value of 72.9 and the 

sensitivity value of 76.3 and the Specificity value of 79.95 

and finally, an F1-score of 82.95 respectively. And the 

Phoma Blight condition has an accuracy value of 72.5 and 

the sensitivity value of 77.5 and the Specificity value of 

80.87 and finally, an F1-score of 83.34 respectively. And 

finally, the Verticillium wilt conditions an accuracy value 

of 73 and the sensitivity value of 75 and the Specificity 

value of 79.44, and finally, an F1-score of 81.92 

respectively. 

 

Fig 8: Analysis of the Proposed model on various disease types 

5. Conclusion 

In this study, The IDMO to assist us propose a YOLO 

model that is best for segmenting sunflower leaf diseases. 

It utilized this model to divide sunflower leaves into five 

groups: healthy, infected with one of four diseases, and 

infected with all four. The processed photos were 

analysed with the Improved-YOLOv5 model to locate the 

flaws. The modified the YOLOv5 in several ways to boost 

the model's recognition accuracy at each step. The step 

conducted extensive trials and testing to show that our 

model greatly outperformed the competition. The above-

mentioned studies show that there are substantial 

variances across kinds within categories, whereas the gaps 

between disease types are often narrow. It's simple to 

confuse one for the other throughout the identifying 

procedure. So, to further increase the recognition 

accuracy, future studies may be conducted on other sorts 

of flaws using relevant data augmentation and other 

approaches. 
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