

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 631

Propositional Aspects of Big Data Tools: A Comprehensive Guide to

Apache Spark

Jyoti Chaudhary1, Vaibhav Vyas2

Submitted: 27/11/2023 Revised: 30/12/2023 Accepted: 07/01/2024

Abstract: The industry market has been impacted by big data analysis. Large and diverse datasets are significantly impacted, revealing

hidden patterns and other insights. Apache Spark is one of the most admired big data tools to process and execute massive amount. A

consolidated large data analytics engine that offers independent data parallelism is Apache Spark. In this paper, an intensive examination

has been conveyed on big data analytical technique. This examines a technical review on Apache Spark's in-memory computing

capabilities, which make it noticeably faster than other equivalent frameworks for large data analytics. Moreover, Spark has outstanding

batch processing and stream processing capability. Also, it talks about Apache Spark's multithreading and concurrency features. The central

focus is the Apache Spark architecture, its evolution and ecosystem, application cases, Spark features, and need of Apache Spark for

applications with a comparison with Apache Hadoop.

Keywords: Apache Spark, Hadoop, Big data, Hive, Pig.

1. Introduction

The word “Big Data” refers to a variety of unpredictable

and enormous datasets in the modern world, produced

from various sources and quickly changing cutting edge

innovations. In general, Big data refers to the cluster of

huge and sophisticated datasets that are hard to process

through traditional database applications. While the

criteria used to determine whether a particular dataset is

considered as large dataset or not which is well defined

and continues to evolve over time, the majority of

researchers and professionals today allude to data indexes

between 30 to 50 terabytes and various petabytes as

gigantic amount of data.

Conventionally, big data is elucidated to 3Vs and 4Vs.

whereas, 3Vs derive Volume, Velocity and Variety.

Volume is the enormous quantity of data spawns every

day while velocity is the growth rate and data gathering

rate for analysis and the diverse data available is variety

where data can be structured, unstructured or semi-

structured. Further the 4th V refers to veracity that

encompasses availability and accountability. The major

intent of big data analysis is to process huge quantity data

using profuse conventional and computational intelligent

techniques [1].

Because of its enormous size, huge information makes the

preparing and recovery complexities for the conventional

Database the board frameworks and information handling

applications. Therefore, the primary target of Big Data

Analytics is to process the tremendous measure of

information utilizing different conventional and smart

computational techniques. It is to be noticed that all the

enormous datasets accessible as Big Data isn't valuable for

the examination and basic leadership.

Following figure shows the attributes of Big Data:

Fig.1 Characteristics of Big Data

1Research Scholar, Department of Computer Science, Banasthali

Vidyapith, Rajasthan

Jyotichaudhary1410@gmail.com
2Associate Professor, Department of Computer Science, Banasthali

Vidyapith, Rajasthan

vvaibhav@banasthali.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 632

The processing framework has been identified as crucially

significant elements of big data systems. In order to

ascertain what data is present, processing frameworks can

employ non-volatile storage or ingest it into the system.

Processing frameworks are classed according to the type

and status of the data they are intended to work with.

While several systems handle data in batches, others

handle data as it enters the system in an uninterrupted

stream. Certain systems can also manage data in both

ways [1]. The three central categories of big data

processing frameworks are batch-only framework,

stream-only framework, and hybrid framework.

In a batch processing system, the entire data is gathered in

one cluster and later saved and processed. Alternatively,

real-time stream processing systems process the data

immediately it arrives. Workloads in both the batch and

stream modes can steer by hybrid processing systems.

Despite the fact that we can utilize identical traits or APIs

for both data equally, this falls out in a straightforward,

more versatile data processing.

Apache Spark is an authoritative unified analytics engine

for substantial distributed data processing and machine

learning tasks. Programming languages like Python are

now widely used to handle data science and engineering

concerns. Big data workloads are strengthened by Apache

Spark using methods like in-memory processing, stream

processing, and batch processing. In Section III, these

methods will be covered in more detail. In a short period

of time, Apache Spark has been adopted by countless

industries. Not only is it an Apache Software Foundation

active project, but it is also a well-known open-source

project. Big data is the process of collecting, analyzing,

and storing massive volumes of data.

2. Literature Review

In [2], the authors propelled the Apache Spark project,

which put forward a built-in analytic engine for a variety

of distributed data processing. Spark enables

simultaneous cluster programming. Even though it uses

the same programming architecture as MapReduce, it

extends its approach to include a simple data structure

known as Resilient Distributed Datasets (RDDs). For

extensive SQL, graph processing, stream processing and

machine learning, Spark is the leading data processing

technology. Therefore, the Spark model can efficiently

support existing workloads and offer plenty of advantages

to consumers.

The authors of [3] suggested strategies to deal with the

considerable challenges encountered during large data

processing. They exploit the Apache Storm framework

and an illustration of Twitter data in their work. These

difficulties were effectively met by Apache Storm,

demonstrating its capacity to process real-time streams

with extremely low latency.

[4] Describes how the PySpark on a solitary node was

used to build a novel pipeline for functional magnetic

resonance imaging (fMRI). PySpark is a data analysis and

pipeline language that makes the Spark programming

model accessible to python. In this pipeline template

matching and the sum of squared differences (SSD)

approach are used to extract the brain networks from the

FMRI data. This pipeline is 4X faster than the python

based one in terms of processing time. The concurrent in-

memory data processing has been improved, the data has

been transformed into resilient distributed datasets, and

the results have been saved in other forms such data

frames.

Gopalani et al. [5] compared Apache Hadoop's Map

Reduce with Apache Spark framework primarily because

both are used for big data processing. The Apache Spark

framework, which is capable of in-memory processing,

will bring about a significant change in the big data world,

according to a study that also compares the two

frameworks on a number of other factors and analyzes

their performance using the KMeans method.

The authors of [6] placed a comparison between Apache

Spark with Apache Flink. The research brings the facts for

machine learning libraries in variegated frameworks for

batch processing. Further the study embraces vector

machines and linear regression which are the methods in

machine learning. The study demonstrated by actual

findings that spark works better than flink in terms of

efficiency.

In [7] a smart grid is a fully automated system that

integrates a large number of sensors into the existing

electrical infrastructure to monitor and regulate it using

contemporary information technology. These sensors

provide vast amounts of data that meet the criteria for

being referred to as big data. By instantly digesting and

extrapolating new knowledge from this data, the Smart-

grid may become smarter. The work has proffer Apache

Spark as an amalgamate cluster computing platform

which stores and processes data analytics on smart grid

data for applications like real-time pricing and usual

stipulate response.

Distributed solutions for data flow like Apache Hadoop

MapReduce, Apache Spark and Apache flink were

compared concerning the key of usability and ease of use

[8]. Though MapReduce struggles with Scalability and

built in redundancy, the later two concentrates on the

requirement for effective data flow, data caching, and

declarative data processing operators. The major goal is to

highlight a course to pick a pertinent platform and to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 633

improve the understanding for how long data processing

systems runs.

3. Big Data Analysis Tools

The following provides a quick review of few selected big

data analysis tools, an introduction to Apache Spark, and

a comparison to its rivals to justify the use of Apache

Spark.

Apache Hive

A data warehousing infrastructure called Hive is built on

top of Hadoop. To organize, aggregate, and conduct data

queries, it offers a language called Hive QL. Using a

declarative programming model; Hive QL is comparable

to SQL [7]. This follows procedural approach, which

distinguishes it from Pig Latin. The conscious outcomes

are described in simple query in HiveQL that is way

similar to SQL. Alternatively, Pig Latin structures a query

in sequence of assignment operations. Apache Hive

allows the developers significantly SQL developers to

design queries in HQL (Hive Query Language). Similarly,

Hive can segment queries in HQL to make them allow

interacting with several jobs running on MapReduce.

Fig.2 Hive Architecture

The internal working of Hive [18] can be summarized

with few keywords that are

1. UI: as the name UI stands for user interface which

allows users to submit the query for further

processing.

2. Driver: this fundamental receives the query from the

user and fetch the API modeled on JDBC/ODBC

interfaces to execute the query.

3. Compiler: complier is used to parse the query by

semantic analysis of each module of query and

ultimately finds the execution plan through the parse

table.

4. Meta store: this component works on storing the

information about all the parse tables along with the

column information. And the information of

serializer and de-serailizer with requires to perform

all read and write operations.

Execution engine: it is the last phase for any query where

it is executed according to the complier plan. This

manages the dependency of one operation on another and

same for every stage included in the execution.

Apache Pig

Pig is a tool or, more precisely, a platform for scrutinize

bulk size of large data. Pig program’s ability to handle

large data sets is made possible by the substantial

parallelization of tasks [19]. Although Pig and Hive are

intended to carry out comparable jobs. Pig founds to be

reliably suitable for the data devising stage of data

processing, while Hive is additionally suitable for the data

warehousing and display scenario.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 634

Fig.3 Pig Latin Workflow

The plan is for data to be cleaned up using the tools given

by Pig before being saved as it is gradually gathered. After

then, Hive avails of executing ad-hoc searches and probe

the data. The data warehouse render inoperative

throughout the task of gradual and progressive

construction, whereas, Pig carries out both data

preparation and querying effectively. Testing has to be

done to see whether utilizing Pig and Hive together is

practical [20].

Apache Hadoop

A well-known framework for batch processing is Hadoop.

The Hadoop distributed file system and MapReduce are

the primary components of Hadoop. This framework is

developed by apache Hadoop based on MapReduce.

Nodes are the individual computers that makeup the

cluster. Performance and node count are directly inversely

correlated; the more nodes, the higher performance.

Hadoop operates on the distributed and parallel computing

model, processing data concurrently across a number of

devices.

The Map phase and Reduce phase are the two steps that

comprise Mapreduce. The input data is processed using a

map task and is stored in HDFS as files. The input records

are transformed into intermediate records using the map.

A single call to the setup method precedes the map

method, which is then followed by a single call to the

cleanup function for each key/value combination.

Fig.4 How Map-Reduce Works

MapReduce by default accepts the text input format,

which accepts key as byte offset and value as text. In the

word count task, the mapper and reducer can

communicate with the rest of Hadoop system since the key

will be long variable, the value will be the text, and

context. And processing of the data occurs at reduce stage.

It creates the output, which will be stored in the HDFS,

using the intermediate key value pair from the mapper.

Basically, this summarizes the data [21].

Evolution of Apache Spark

The Hadoop computational computing software process

has been expedited by the Apache software foundation

[9]. Though spark has its own cluster therefore, it is not

reliant on Hadoop and hence not amend on Hadoop, it is

solely a method to implement spark. Hadoop is used by

Spark for processing and storage, respectively. Having the

capability of its own cluster computation, Hadoop is just

used by it for storage. The core component of Spark is its

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 635

in-memory cluster computing, which accelerated

application processing. It is purposive to handle a variety

of workloads, like batch applications, iterative queries and

streaming. Along with handling each workload, it relieves

the management strain of keeping distinct tools up to date.

At UC Berkeley’s AMPLab, Matei Zaharia created Spark,

one of Hadoop’s side projects in 2009. It was made

available as open source under a BSD license in 2010.

After being given to the Apache Software Foundation in

2013, Apache Spark has become a top-level Apache

project as of February 2014 [10].

Apache Spark, a potent framework that expedites

distributed computing on massive data, has now

integrated into the Hadoop environment [11]. It achieves

this by utilizing in-memory elementary, which enables it

to run applications 100 times quicker than Hadoop. This

technology is especially proficiently suitable for online

and iterative processing, as it permits client programs to

load information into memory and execute repeated

queries. Spark is also adaptable in that it enables the

implementation of a number of distributed programming

models, including Pregel and MapReduce [12].

As Spark employs “in-memory computing” as averse to

MapReduce’s more traditional read from and write to the

disc method, it can be expeditious than MapReduce for

identical batch processing operation. Spark can work

unrestrained or in tandem with Hadoop to re-implement

the MapReduce engine [13].

Ecosystem of Apache Spark:

Fig.5 Apache Spark Ecosystem

Now, to know Apache spark in a better way, let us

consider its components that take part in the Apache Spark

model. Apache Spark consists of four major components

which are Streaming, MLib, Spark SQL, and GraphX.

Spark Streaming is beneficial to the API for center Spark

which avails the process of continuous streaming data.

The design of Spark streaming depends on the series of

RDD to process the real-time data. This is helpful in fault

tolerance and increases the throughput for stream

processing of any live real data [14][13]. For example, to

implement the streaming over Spark, the data is split into

small batches which will be used to generate new results

by combining the current state with the state that is already

stored in RDD. Spark streaming is beneficial to the Spark

API, which is used to process continuously streaming data

and a Spark component. Concerning that working with the

Spark SQL package's sorted-out data is the real goal. The

Apache Hive or SQL-based HQL (Hive Query Language)

is a variant of Spark SQL that makes it possible to address

data [14]. Spark SQL connects the Hive table, Parquet,

and JSON by highlighting the significant differences

between the various data sources.

In addition to providing Spark with a standard SQL

interface, Spark SQL also enables planners to support

various SQL requests using programmed data controls

that is re-enforced by RDDs in Scala, Python, and Java.

Since everything falls in a solitary application, it

amalgamates SQL with in-depth analysis. This aspect of

firmly consolidating the environment with the affluent and

drive handling condition raised by Spark makes it superior

to additional open-source information stockroom devices

now in use [15]. According to benchmarks, MLib been

tested against Alternating Least Squares (ALS)

implementations by the MLlib developers. Spark MLlib is

nine times faster than Apache Mahout's Hadoop disk-

based variant (before Mahout procures a Spark interface)

[16]. Machine Learning Library points for MLlib. Apache

Spark MILib is used for performing machine learning.

Python and R, are two more languages that may be used

to implement machine learning, both of which offer

improved visibility and graphical representation [13]. The

Apache Spark includes several APIs, one of which is

GraphX, which is used for graphs and parallel graphs for

computing. This is the reason for extending the Spark

RDD feature of graph. Graphs have the ability to have

many edges running concurrently, each edge and vertex

having a user-defined characteristic, and the parallel edges

having numerous relationships between the same vertices.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 636

This property is also referred to as a multi-graph. The

Spark component GraphX greatly expands the Spark RDD

abstraction by attaching the directed multigraph attributes

to each and every vertex and edge utilizing the Resilient

Distribution property of Graph. With the purpose of

streamlining graph analytics activities, it incorporates an

emergent collection of builders and graph algorithms. It

also optimizes a number of Pregel APIs and displays a

range of operators such as map-reduce triplets, sub-

graphs, and join vertices [14].

Architecture of Apache Spark:

Fig. 3 illustrates the architecture of Apache Spark, which

include a master node and a driver program that is

conscientious for calling an application’s primary

program. If an interactive shell is used, the driver program

is moreover user written code. This driver program creates

the spark context. A doorway to all of Spark’s

functionality is provided by the spark context. It works

together with the cluster manager, who is accountable of

managing a number of tasks [17]. The driver software

collaborates with the spark context to run the job within

the cluster.

Fig.3 Apache Spark Architecture

The cluster manager first handles the task of assigning

resources. Dividing the jobs into several tasks is then

carried and forward to the slave or worker nodes. As soon

as an RDD is formed in the Spark context, it may be

distributed to the various slave nodes and cached there as

well. The slave nodes participate in carrying out the duties

that the cluster management gave them. These tasks are

then reinstating to the spark context. The tasks are

accomplished by the executor. The executors have the

equal duration as Spark.

To ameliorate the system performance, expanding the

number of worker nodes must be inflated to further

separate the jobs into more rational chunks [17].

Why Apache Spark?

Spark utilizes the conviction of the RDD concept, which

enables to persist the data as needed and store it in

memory. As a result, batch processing task performance

can be significantly increased (ten to one hundred times

greater than that of traditional Map Reduce).

Furthermore, spark gives us the ability to cache data in

memory, which is advantageous for iterative algorithms

like those employed in machine learning. Conventional

MapReduce and DAG engines don’t work well for such

utilization since they are built on acyclic data flow. An

alternative is to start an application as a sequence of

independent tasks, data reading will be taken from steady

storage (like a distributed file system) and writes final

transaction back to this steady storage. They acquire large

expenses each time they load the data and write it back to

persistent storage.

Spark enables stream processing with enormous input data

and on-the-fly handling of just a small portion of the data.

Online machine leaning can utilize this and is ideal for

instance requiring real-time analysis, which is actually a

nearly universal requirement in the sector.

In particular, multi-pass applications that demand low-

latency data sharing across numerous concurrent

operations are inefficient for MapReduce. These

applications, which are extremely widespread in analytics,

include: Iterative algorithms, which include a variety of

machine learning algorithms and graph algorithms like

PageRank.

Interactive data mining, which allows users to repeatedly

query data that, has been loaded into RAM across a

cluster. And, streaming program that continuously save

aggregate state [5].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 637

Comparison between Apache Spark and Apache Hadoop

The above table explains the various features of spark and

Hadoop [21]. Therefore, quantification of qualitative

outcomes is accomplished using likert scale. This will

easy the evaluation of performances among Apache

Hadoop and Apache Spark considering various

parameters and identify the best suitable big data

technology to meet an individual’s requirements. Since

various researchers have contrasted these big data tools by

measuring different factors, but the objective of this study

is to identify best performing big data tool for massive

amount of data in terms of usage, latency, data, usability,

and processing time. This study has gone through various

research papers like [5][8][19][21][23] to find the

mentioned values.

Table 1. Feature comparison of two popular big data Platforms

Tools/Features Usage Latency Data Ease of Use Processing time

Apache Hadoop Variable High High Moderate Moderate

Apache Spark High Moderate High High Very low

Comparative

Parameters

Hadoop Spark

Category Hadoop is the essential information

preparing motor.

Spark is the information examination

motor.

Usage Hadoop chips away at Batch preparing with

a tremendous volume of information.

Flash chips away at continuous

information from ongoing occasions like

Twitter, Facebook.

Latency Processing inertness of Hadoop is extremely

high.

On account of Spark, figuring idleness of

Spark is low.

Data Hadoop process the information as cluster

mode.

Flash can process intelligently.

Ease of Use Hadoop is likewise MapReduce model and

that is perplexing, it is have to deal with low

level APIs.

Sparkle is exceptionally simpler to utilize,

reflection empowers a client to process

information utilizing significant level

administrators.

Scheduler In Hadoop outside occupation scheduler is

required.

In memory calculation of Spark, no outer

scheduler required.

Security Hadoop is profoundly secure. Flash is less secure as contrast with

Hadoop.

Cost Hadoop is less exorbitant since MapReduce

model give a less expensive technique.

Sparkle is costlier that Hadoop since it has

an in-memory arrangement.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 638

Table 2. Quantification of the qualitative standards

Criterion values with quantifiable

range

Criteria covered Explanation

High-5, Variable- 4, Moderate-3,

Low-2, Very low-1

usage, latency, data, ease of use,

and processing time

From Table-3, move from the greatest

to the lowest degree of assistance with 5

grades 5-1.

Table 3. Summary overview based on features

Features
Usage Latency Data Ease of Use Processing time

Tools

Apache Hadoop 4 5 4 3 3

Apache Spark 5 3 5 4 1

Fig. 2. Graphical analysis of features in Big data tools

4. Conclusion

For the future generation of computer applications,

scalable data processing will be crucial, but it often entails

a challenging workflow of operations using several

computing platforms. With the introduction of a unified

programming paradigm and engine for large data

applications, the spark project made this process easier.

Our research demonstrates that a model like this may

effectively handle the demands of today while also

providing users significant advantages. We believe that

Apache Spark emphasizes the significance of compos-

ability in large data programming libraries and stimulates

the creation of more readily interoperable libraries. The

qualitative approach has explained the suitability of

Apache Spark for massive data and can be used with

Databases like NoSQL as well to outperform the

operations on large scale as these databases have efficient

performance [22].

References:

[1] Acharjya, D. P., & Ahmed, K. (2016). A survey on

big data analytics: challenges, open research issues

and tools. International Journal of Advanced

Computer Science and Applications, 7(2), 511-518.

[2] Zaharia, M., Xin, R. S., Wendell, P., Das, T.,

Armbrust, M., Dave, A., ... & Stoica, I. (2016).

Apache spark: a unified engine for big data

processing. Communications of the ACM, 59(11),

56-65.

[3] Iqbal, M. H., & Soomro, T. R. (2015). Big data

analysis: Apache storm perspective. International

journal of computer trends and technology, 19(1), 9-

14.

[4] S. Sarraf and M. Ostadhashem, “Big data application

in functional magnetic resonance imaging using

apache spark,” in 2016 Future Technologies

Conference (FTC), Dec 2016, pp. 281–284.

0

1

2

3

4

5

6

7

8

9

10

Usage Latency Data Ease of Use Processing time

Apache Hadoop Apache Spark

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(12s), 631–639 | 639

[5] Gopalani, S., & Arora, R. (2015). Comparing apache

spark and map reduce with performance analysis

using k-means. International journal of computer

applications, 113(1).

[6] García-Gil, D., Ramírez-Gallego, S., García, S., &

Herrera, F. (2017). A comparison on scalability for

batch big data processing on Apache Spark and

Apache Flink. Big Data Analytics, 2(1), 1-11.

[7] Shyam, R., HB, B. G., Kumar, S., Poornachandran,

P., & Soman, K. P. (2015). Apache spark a big data

analytics platform for smart grid. Procedia

Technology, 21, 171-178.

[8] Akil, B., Zhou, Y., &Röhm, U. (2017, December).

On the usability of Hadoop MapReduce, Apache

Spark & Apache flink for data science. In 2017 IEEE

International Conference on Big Data (Big

Data) (pp. 303-310). IEEE.

[9] http://spark.apache.org/

[10] Jonnalagadda, V. S., Srikanth, P., Thumati, K.,

Nallamala, S. H., &Dist, K. (2016). A review study

of apache spark in big data processing. International

Journal of Computer Science Trends and

Technology (IJCST), 4(3), 93-98.

[11] Karau, H., Konwinski, A., Wendell, P., & Zaharia,

M. (2015). Learning spark: lightning-fast big data

analysis. " O'Reilly Media, Inc."

[12] Ramírez-Gallego, S., Mouriño-Talín, H., Martinez-

Rego, D., Bolón-Canedo, V., Benítez, J. M., Alonso-

Betanzos, A., & Herrera, F. (2017). An information

theory-based feature selection framework for big

data under apache spark. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 48(9),

1441-1453.

[13] Shaikh, E., Mohiuddin, I., Alufaisan, Y., &Nahvi, I.

(2019, November). Apache spark: A big data

processing engine. In 2019 2nd IEEE Middle East

and North Africa COMMunications Conference

(MENACOMM) (pp. 1-6). IEEE.

[14] Ahmed, D. N., Aftab, A., &Nezami, M. M. (2020).

A technological survey on apache spark and hadoop

technologies. IJSTR, 9(01), 3100-3109.

[15] Han, Z., & Zhang, Y. (2015, December). Spark: A

big data processing platform based on memory

computing. In 2015 Seventh International

Symposium on Parallel Architectures, Algorithms

and Programming (PAAP) (pp. 172-176). IEEE.

[16] Jonnalagadda, V. S., Srikanth, P., Thumati, K.,

Nallamala, S. H., &Dist, K. (2016). A review study

of apache spark in big data processing. International

Journal of Computer Science Trends and

Technology (IJCST), 4(3), 93-98.

[17] Anuraag Garg, “Apache spark architecture,”

Website, 2023. [Online]. Available:

https://intellipaat.com/blog/tutorial/spark-

tutorial/spark-architecture/.

[18] Puspalatha, N., & Sudheer, P. (2015). Data

processing in big data by using Hive

interface. International Journal of advance research

in computer science and management studies, 3(4).

[19] Hussain, T., Sanga, A., & Mongia, S. (2019,

October). Big data hadoop tools and technologies: A

review. In Proceedings of International Conference

on Advancements in Computing & Management

(ICACM).

[20] Shoro, A. G., & Soomro, T. R. (2015). Big data

analysis: Apache spark perspective. Global Journal

of Computer Science and Technology, 15(C1), 7-14.

[21] Singh, A., Khamparia, A., & Luhach, A. K. (2019,

June). Performance comparison of apachehadoop

and apache spark. In Proceedings of the Third

International Conference on Advanced Informatics

for Computing Research (pp. 1-5).

[22] Chaudhary, J., Vyas, V., & Jha, C. K. (2022).

Qualitative Analysis of SQL and NoSQL Database

with an Emphasis on Performance. In IOT with

Smart Systems: Proceedings of ICTIS 2022, Volume

2 (pp. 155-165). Singapore: Springer Nature

Singapore.

[23] KE, K., Balaji, A., & Sajith, A. (2018). Performance

comparison of apache spark and Hadoop based large

scale content-based recommender system.

In Intelligent Systems Technologies and

Applications (pp. 66-73). Springer International

Publishing.

