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Abstract: The industry market has been impacted by big data analysis. Large and diverse datasets are significantly impacted, revealing 

hidden patterns and other insights. Apache Spark is one of the most admired big data tools to process and execute massive amount. A 

consolidated large data analytics engine that offers independent data parallelism is Apache Spark. In this paper, an intensive examination 

has been conveyed on big data analytical technique. This examines a technical review on Apache Spark's in-memory computing 

capabilities, which make it noticeably faster than other equivalent frameworks for large data analytics. Moreover, Spark has outstanding 

batch processing and stream processing capability. Also, it talks about Apache Spark's multithreading and concurrency features. The central 

focus is the Apache Spark architecture, its evolution and ecosystem, application cases, Spark features, and need of Apache Spark for 

applications with a comparison with Apache Hadoop. 
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1. Introduction 

The word “Big Data” refers to a variety of unpredictable 

and enormous datasets in the modern world, produced 

from various sources and quickly changing cutting edge 

innovations. In general, Big data refers to the cluster of 

huge and sophisticated datasets that are hard to process 

through traditional database applications. While the 

criteria used to determine whether a particular dataset is 

considered as large dataset or not which is well defined 

and continues to evolve over time, the majority of 

researchers and professionals today allude to data indexes 

between 30 to 50 terabytes and various petabytes as 

gigantic amount of data.  

Conventionally, big data is elucidated to 3Vs and 4Vs. 

whereas, 3Vs derive Volume, Velocity and Variety. 

Volume is the enormous quantity of data spawns every 

day while velocity is the growth rate and data gathering 

rate for analysis and the diverse data available is variety 

where data can be structured, unstructured or semi-

structured. Further the 4th V refers to veracity that 

encompasses availability and accountability. The major 

intent of big data analysis is to process huge quantity data 

using profuse conventional and computational intelligent 

techniques [1]. 

Because of its enormous size, huge information makes the 

preparing and recovery complexities for the conventional 

Database the board frameworks and information handling 

applications. Therefore, the primary target of Big Data 

Analytics is to process the tremendous measure of 

information utilizing different conventional and smart 

computational techniques. It is to be noticed that all the 

enormous datasets accessible as Big Data isn't valuable for 

the examination and basic leadership.  

Following figure shows the attributes of Big Data: 

 

Fig.1 Characteristics of Big Data 
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The processing framework has been identified as crucially 

significant elements of big data systems. In order to 

ascertain what data is present, processing frameworks can 

employ non-volatile storage or ingest it into the system. 

Processing frameworks are classed according to the type 

and status of the data they are intended to work with. 

While several systems handle data in batches, others 

handle data as it enters the system in an uninterrupted 

stream. Certain systems can also manage data in both 

ways [1]. The three central categories of big data 

processing frameworks are batch-only framework, 

stream-only framework, and hybrid framework. 

In a batch processing system, the entire data is gathered in 

one cluster and later saved and processed. Alternatively, 

real-time stream processing systems process the data 

immediately it arrives. Workloads in both the batch and 

stream modes can steer by hybrid processing systems. 

Despite the fact that we can utilize identical traits or APIs 

for both data equally, this falls out in a straightforward, 

more versatile data processing. 

Apache Spark is an authoritative unified analytics engine 

for substantial distributed data processing and machine 

learning tasks. Programming languages like Python are 

now widely used to handle data science and engineering 

concerns. Big data workloads are strengthened by Apache 

Spark using methods like in-memory processing, stream 

processing, and batch processing. In Section III, these 

methods will be covered in more detail. In a short period 

of time, Apache Spark has been adopted by countless 

industries. Not only is it an Apache Software Foundation 

active project, but it is also a well-known open-source 

project. Big data is the process of collecting, analyzing, 

and storing massive volumes of data. 

2. Literature Review 

In [2], the authors propelled the Apache Spark project, 

which put forward a built-in analytic engine for a variety 

of distributed data processing. Spark enables 

simultaneous cluster programming. Even though it uses 

the same programming architecture as MapReduce, it 

extends its approach to include a simple data structure 

known as Resilient Distributed Datasets (RDDs). For 

extensive SQL, graph processing, stream processing and 

machine learning, Spark is the leading data processing 

technology. Therefore, the Spark model can efficiently 

support existing workloads and offer plenty of advantages 

to consumers. 

The authors of [3] suggested strategies to deal with the 

considerable challenges encountered during large data 

processing. They exploit the Apache Storm framework 

and an illustration of Twitter data in their work. These 

difficulties were effectively met by Apache Storm, 

demonstrating its capacity to process real-time streams 

with extremely low latency. 

[4] Describes how the PySpark on a solitary node was 

used to build a novel pipeline for functional magnetic 

resonance imaging (fMRI). PySpark is a data analysis and 

pipeline language that makes the Spark programming 

model accessible to python. In this pipeline template 

matching and the sum of squared differences (SSD) 

approach are used to extract the brain networks from the 

FMRI data. This pipeline is 4X faster than the python 

based one in terms of processing time. The concurrent in-

memory data processing has been improved, the data has 

been transformed into resilient distributed datasets, and 

the results have been saved in other forms such data 

frames. 

Gopalani et al. [5] compared Apache Hadoop's Map 

Reduce with Apache Spark framework primarily because 

both are used for big data processing. The Apache Spark 

framework, which is capable of in-memory processing, 

will bring about a significant change in the big data world, 

according to a study that also compares the two 

frameworks on a number of other factors and analyzes 

their performance using the KMeans method. 

The authors of [6] placed a comparison between Apache 

Spark with Apache Flink. The research brings the facts for 

machine learning libraries in variegated frameworks for 

batch processing. Further the study embraces vector 

machines and linear regression which are the methods in 

machine learning. The study demonstrated by actual 

findings that spark works better than flink in terms of 

efficiency. 

In [7] a smart grid is a fully automated system that 

integrates a large number of sensors into the existing 

electrical infrastructure to monitor and regulate it using 

contemporary information technology. These sensors 

provide vast amounts of data that meet the criteria for 

being referred to as big data. By instantly digesting and 

extrapolating new knowledge from this data, the Smart-

grid may become smarter. The work has proffer Apache 

Spark as an amalgamate cluster computing platform 

which stores and processes data analytics on smart grid 

data for applications like real-time pricing and usual 

stipulate response. 

Distributed solutions for data flow like Apache Hadoop 

MapReduce, Apache Spark and Apache flink were 

compared concerning the key of usability and ease of use 

[8]. Though MapReduce struggles with Scalability and 

built in redundancy, the later two concentrates on the 

requirement for effective data flow, data caching, and 

declarative data processing operators. The major goal is to 

highlight a course to pick a pertinent platform and to 
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improve the understanding for how long data processing 

systems runs. 

3. Big Data Analysis Tools 

The following provides a quick review of few selected big 

data analysis tools, an introduction to Apache Spark, and 

a comparison to its rivals to justify the use of Apache 

Spark. 

Apache Hive 

A data warehousing infrastructure called Hive is built on 

top of Hadoop. To organize, aggregate, and conduct data 

queries, it offers a language called Hive QL. Using a 

declarative programming model; Hive QL is comparable 

to SQL [7]. This follows procedural approach, which 

distinguishes it from Pig Latin. The conscious outcomes 

are described in simple query in HiveQL that is way 

similar to SQL. Alternatively, Pig Latin structures a query 

in sequence of assignment operations. Apache Hive 

allows the developers significantly SQL developers to 

design queries in HQL (Hive Query Language). Similarly, 

Hive can segment queries in HQL to make them allow 

interacting with several jobs running on MapReduce.

 

Fig.2 Hive Architecture 

The internal working of Hive [18] can be summarized 

with few keywords that are 

1. UI: as the name UI stands for user interface which 

allows users to submit the query for further 

processing.  

2. Driver: this fundamental receives the query from the 

user and fetch the API modeled on JDBC/ODBC 

interfaces to execute the query.  

3. Compiler: complier is used to parse the query by 

semantic analysis of each module of query and 

ultimately finds the execution plan through the parse 

table.  

4. Meta store: this component works on storing the 

information about all the parse tables along with the 

column information. And the information of 

serializer and de-serailizer with requires to perform 

all read and write operations.  

Execution engine: it is the last phase for any query where 

it is executed according to the complier plan. This 

manages the dependency of one operation on another and 

same for every stage included in the execution. 

Apache Pig 

Pig is a tool or, more precisely, a platform for scrutinize 

bulk size of large data. Pig program’s ability to handle 

large data sets is made possible by the substantial 

parallelization of tasks [19]. Although Pig and Hive are 

intended to carry out comparable jobs. Pig founds to be 

reliably suitable for the data devising stage of data 

processing, while Hive is additionally suitable for the data 

warehousing and display scenario. 
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Fig.3 Pig Latin Workflow 

The plan is for data to be cleaned up using the tools given 

by Pig before being saved as it is gradually gathered. After 

then, Hive avails of executing ad-hoc searches and probe 

the data. The data warehouse render inoperative 

throughout the task of gradual and progressive 

construction, whereas, Pig carries out both data 

preparation and querying effectively. Testing has to be 

done to see whether utilizing Pig and Hive together is 

practical [20]. 

Apache Hadoop 

A well-known framework for batch processing is Hadoop. 

The Hadoop distributed file system and MapReduce are 

the primary components of Hadoop. This framework is 

developed by apache Hadoop based on MapReduce. 

Nodes are the individual computers that makeup the 

cluster. Performance and node count are directly inversely 

correlated; the more nodes, the higher performance. 

Hadoop operates on the distributed and parallel computing 

model, processing data concurrently across a number of 

devices.  

The Map phase and Reduce phase are the two steps that 

comprise Mapreduce. The input data is processed using a 

map task and is stored in HDFS as files. The input records 

are transformed into intermediate records using the map. 

A single call to the setup method precedes the map 

method, which is then followed by a single call to the 

cleanup function for each key/value combination.

 

Fig.4 How Map-Reduce Works 

MapReduce by default accepts the text input format, 

which accepts key as byte offset and value as text. In the 

word count task, the mapper and reducer can 

communicate with the rest of Hadoop system since the key 

will be long variable, the value will be the text, and 

context. And processing of the data occurs at reduce stage. 

It creates the output, which will be stored in the HDFS, 

using the intermediate key value pair from the mapper. 

Basically, this summarizes the data [21]. 

Evolution of Apache Spark 

The Hadoop computational computing software process 

has been expedited by the Apache software foundation 

[9]. Though spark has its own cluster therefore, it is not 

reliant on Hadoop and hence not amend on Hadoop, it is 

solely a method to implement spark. Hadoop is used by 

Spark for processing and storage, respectively. Having the 

capability of its own cluster computation, Hadoop is just 

used by it for storage.  The core component of Spark is its 
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in-memory cluster computing, which accelerated 

application processing. It is purposive to handle a variety 

of workloads, like batch applications, iterative queries and 

streaming. Along with handling each workload, it relieves 

the management strain of keeping distinct tools up to date. 

At UC Berkeley’s AMPLab, Matei Zaharia created Spark, 

one of Hadoop’s side projects in 2009. It was made 

available as open source under a BSD license in 2010. 

After being given to the Apache Software Foundation in 

2013, Apache Spark has become a top-level Apache 

project as of February 2014 [10]. 

Apache Spark, a potent framework that expedites 

distributed computing on massive data, has now 

integrated into the Hadoop environment [11].  It achieves 

this by utilizing in-memory elementary, which enables it 

to run applications 100 times quicker than Hadoop. This 

technology is especially proficiently suitable for online 

and iterative processing, as it permits client programs to 

load information into memory and execute repeated 

queries. Spark is also adaptable in that it enables the 

implementation of a number of distributed programming 

models, including Pregel and MapReduce [12]. 

As Spark employs “in-memory computing” as averse to 

MapReduce’s more traditional read from and write to the 

disc method, it can be expeditious than MapReduce for 

identical batch processing operation. Spark can work 

unrestrained or in tandem with Hadoop to re-implement 

the MapReduce engine [13].  

Ecosystem of Apache Spark: 

 

Fig.5 Apache Spark Ecosystem 

Now, to know Apache spark in a better way, let us 

consider its components that take part in the Apache Spark 

model. Apache Spark consists of four major components 

which are Streaming, MLib, Spark SQL, and GraphX. 

Spark Streaming is beneficial to the API for center Spark 

which avails the process of continuous streaming data. 

The design of Spark streaming depends on the series of 

RDD to process the real-time data. This is helpful in fault 

tolerance and increases the throughput for stream 

processing of any live real data [14][13]. For example, to 

implement the streaming over Spark, the data is split into 

small batches which will be used to generate new results 

by combining the current state with the state that is already 

stored in RDD. Spark streaming is beneficial to the Spark 

API, which is used to process continuously streaming data 

and a Spark component. Concerning that working with the 

Spark SQL package's sorted-out data is the real goal. The 

Apache Hive or SQL-based HQL (Hive Query Language) 

is a variant of Spark SQL that makes it possible to address 

data [14]. Spark SQL connects the Hive table, Parquet, 

and JSON by highlighting the significant differences 

between the various data sources. 

In addition to providing Spark with a standard SQL 

interface, Spark SQL also enables planners to support 

various SQL requests using programmed data controls 

that is re-enforced by RDDs in Scala, Python, and Java. 

Since everything falls in a solitary application, it 

amalgamates SQL with in-depth analysis. This aspect of 

firmly consolidating the environment with the affluent and 

drive handling condition raised by Spark makes it superior 

to additional open-source information stockroom devices 

now in use [15]. According to benchmarks, MLib been 

tested against Alternating Least Squares (ALS) 

implementations by the MLlib developers. Spark MLlib is 

nine times faster than Apache Mahout's Hadoop disk-

based variant (before Mahout procures a Spark interface) 

[16]. Machine Learning Library points for MLlib. Apache 

Spark MILib is used for performing machine learning. 

Python and R, are two more languages that may be used 

to implement machine learning, both of which offer 

improved visibility and graphical representation [13]. The 

Apache Spark includes several APIs, one of which is 

GraphX, which is used for graphs and parallel graphs for 

computing. This is the reason for extending the Spark 

RDD feature of graph. Graphs have the ability to have 

many edges running concurrently, each edge and vertex 

having a user-defined characteristic, and the parallel edges 

having numerous relationships between the same vertices. 
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This property is also referred to as a multi-graph. The 

Spark component GraphX greatly expands the Spark RDD 

abstraction by attaching the directed multigraph attributes 

to each and every vertex and edge utilizing the Resilient 

Distribution property of Graph. With the purpose of 

streamlining graph analytics activities, it incorporates an 

emergent collection of builders and graph algorithms. It 

also optimizes a number of Pregel APIs and displays a 

range of operators such as map-reduce triplets, sub-

graphs, and join vertices [14]. 

Architecture of Apache Spark: 

Fig. 3 illustrates the architecture of Apache Spark, which 

include a master node and a driver program that is 

conscientious for calling an application’s primary 

program. If an interactive shell is used, the driver program 

is moreover user written code. This driver program creates 

the spark context. A doorway to all of Spark’s 

functionality is provided by the spark context. It works 

together with the cluster manager, who is accountable of 

managing a number of tasks [17]. The driver software 

collaborates with the spark context to run the job within 

the cluster. 

 

Fig.3 Apache Spark Architecture 

The cluster manager first handles the task of assigning 

resources. Dividing the jobs into several tasks is then 

carried and forward to the slave or worker nodes. As soon 

as an RDD is formed in the Spark context, it may be 

distributed to the various slave nodes and cached there as 

well. The slave nodes participate in carrying out the duties 

that the cluster management gave them. These tasks are 

then reinstating to the spark context. The tasks are 

accomplished by the executor. The executors have the 

equal duration as Spark. 

To ameliorate the system performance, expanding the 

number of worker nodes must be inflated to further 

separate the jobs into more rational chunks [17]. 

Why Apache Spark? 

Spark utilizes the conviction of the RDD concept, which 

enables to persist the data as needed and store it in 

memory. As a result, batch processing task performance 

can be significantly increased (ten to one hundred times 

greater than that of traditional Map Reduce). 

Furthermore, spark gives us the ability to cache data in 

memory, which is advantageous for iterative algorithms 

like those employed in machine learning. Conventional 

MapReduce and DAG engines don’t work well for such 

utilization since they are built on acyclic data flow. An 

alternative is to start an application as a sequence of 

independent tasks, data reading will be taken from steady 

storage (like a distributed file system) and writes final 

transaction back to this steady storage. They acquire large 

expenses each time they load the data and write it back to 

persistent storage.  

Spark enables stream processing with enormous input data 

and on-the-fly handling of just a small portion of the data. 

Online machine leaning can utilize this and is ideal for 

instance requiring real-time analysis, which is actually a 

nearly universal requirement in the sector. 

In particular, multi-pass applications that demand low-

latency data sharing across numerous concurrent 

operations are inefficient for MapReduce. These 

applications, which are extremely widespread in analytics, 

include: Iterative algorithms, which include a variety of 

machine learning algorithms and graph algorithms like 

PageRank. 

Interactive data mining, which allows users to repeatedly 

query data that, has been loaded into RAM across a 

cluster. And, streaming program that continuously save 

aggregate state [5]. 
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Comparison between Apache Spark and Apache Hadoop 

 

The above table explains the various features of spark and 

Hadoop [21]. Therefore, quantification of qualitative 

outcomes is accomplished using likert scale. This will 

easy the evaluation of performances among Apache 

Hadoop and Apache Spark considering various 

parameters and identify the best suitable big data 

technology to meet an individual’s requirements. Since 

various researchers have contrasted these big data tools by 

measuring different factors, but the objective of this study 

is to identify best performing big data tool for massive 

amount of data in terms of usage, latency, data, usability, 

and processing time. This study has gone through various 

research papers like [5][8][19][21][23] to find the 

mentioned values. 

Table 1. Feature comparison of two popular big data Platforms 

Tools/Features Usage Latency Data Ease of Use Processing time 

Apache Hadoop Variable High High Moderate Moderate 

Apache Spark High Moderate High High Very low 

 

 

 

Comparative 

Parameters 

Hadoop Spark 

 

Category Hadoop is the essential information 

preparing motor. 

Spark is the information examination 

motor. 

Usage Hadoop chips away at Batch preparing with 

a tremendous volume of information. 

Flash chips away at continuous 

information from ongoing occasions like 

Twitter, Facebook. 

Latency Processing inertness of Hadoop is extremely 

high. 

On account of Spark, figuring idleness of 

Spark is low. 

Data Hadoop process the information as cluster 

mode. 

Flash can process intelligently. 

Ease of Use Hadoop is likewise MapReduce model and 

that is perplexing, it is have to deal with low 

level APIs. 

Sparkle is exceptionally simpler to utilize, 

reflection empowers a client to process 

information utilizing significant level 

administrators. 

Scheduler In Hadoop outside occupation scheduler is 

required. 

In memory calculation of Spark, no outer 

scheduler required. 

Security Hadoop is profoundly secure. Flash is less secure as contrast with 

Hadoop. 

Cost Hadoop is less exorbitant since MapReduce 

model give a less expensive technique. 

Sparkle is costlier that Hadoop since it has 

an in-memory arrangement. 
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Table 2. Quantification of the qualitative standards 

Criterion values with quantifiable 

range 

Criteria covered Explanation 

High-5, Variable- 4, Moderate-3, 

Low-2, Very low-1 

usage, latency, data, ease of use, 

and processing time 

From Table-3, move from the greatest 

to the lowest degree of assistance with 5 

grades 5-1. 

 

Table 3. Summary overview based on features 

Features 
Usage Latency Data Ease of Use Processing time 

Tools 

Apache Hadoop 4 5 4 3 3  

Apache Spark 5 3 5 4 1 

 

 

Fig. 2. Graphical analysis of features in Big data tools 

4. Conclusion 

For the future generation of computer applications, 

scalable data processing will be crucial, but it often entails 

a challenging workflow of operations using several 

computing platforms. With the introduction of a unified 

programming paradigm and engine for large data 

applications, the spark project made this process easier. 

Our research demonstrates that a model like this may 

effectively handle the demands of today while also 

providing users significant advantages. We believe that 

Apache Spark emphasizes the significance of compos-

ability in large data programming libraries and stimulates 

the creation of more readily interoperable libraries. The 

qualitative approach has explained the suitability of 

Apache Spark for massive data and can be used with 

Databases like NoSQL as well to outperform the 

operations on large scale as these databases have efficient 

performance [22]. 
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