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Abstract: In our research pursuit, we explore the inherent capacity of Large Language Models (LLMs) to develop an innate understanding 

of the physical realm—an essential prerequisite for empowering embodied agents to adeptly navigate real-world challenges. This paper 

introduces an extensive dataset encompassing diverse physical scenarios, establishing AuPPLE (Augmented Physical Priors via Learned 

Enhancement) as a robust benchmark. It serves as a comprehensive evaluative framework for assessing and amplifying the physical 

intuition of LLMs, including scenarios involving free fall and projectile motion. Within this benchmark, questions are framed in various 

formats, spanning MultiQA, binary classification, and continuous number prediction, thereby facilitating a comprehensive evaluation of 

LLMs' proficiency in comprehending physical dynamics. Moreover, we conduct a fine-tuning process on LLMs like Flan-T5-Large and 

DeBERTa, employing succinct physics-based prompts to instill a nuanced understanding of environmental physics. Our empirical findings 

underscore a notable improvement in the performance of LLMs fine-tuned on these physics-centric scenarios, particularly when confronted 

with questions rooted in the intricacies of the physical domain. This substantiates the effectiveness of our approach, indicating that strategic 

fine-tuning through physics-based prompts, in conjunction with external methodologies, significantly reinforces LLMs' intuitive grasp of 

the physical environment and enhances their efficacy in addressing tasks with a distinct physical dimension. 

Keywords: Fine-tuning, Embodied Agents, Chain-of-Thought Prompting, Simulated Representations, Physics Engine Mathematical Word 

Problems (MWPs), ChatGPT, SayCan 

1. Introduction  

Humans possess an intrinsic capacity to intuitively grasp 

the workings of the physical world, effortlessly navigating 

various real-world scenarios. Whether it's understanding 

freefall, pendulums, springs, or friction, our innate 

physical understanding allows us to predict outcomes 

without explicit calculations. For instance, when asked if 

a ball dropped from a 5-meter height will reach the ground 

in 10 seconds, our intuition, based on past experiences, 

confidently leads us to affirm that it will.However, can 

Large-Language Models (LLMs) develop a similar 

intuitive understanding of the physical world? Despite 

their impressive language generation capabilities, LLMs 

currently struggle to ground themselves in the physical 

domain, lacking comprehension of attributes like object 

location, height, and weight. This study explores the fine-

tuning of various LLMs and multimodal models to 

enhance their physical intuition. Existing models often 

face limitations in terms of effectiveness, scalability, and 

efficiency [1]. 

One promising approach involves using simulated 

representations of the physical world, exemplified by 

frameworks like PiLoT and Mind's Eye. PiLoT uses a 

physics engine to connect language with probabilistic 

programs, while Mind's Eye integrates simulations to 

improve LLMs' understanding and reasoning abilities in 

the realm of physical phenomena. However, the use of 

external physics engines introduces time-consuming 

overhead and doesn't fundamentally enhance the model's 

intuitive understanding. Tools like REALM, RAG, and 

RETRO have been employed for prompting, but they 

don't enable models to respond primarily from intuition. 

In the realm of Mathematical Word Problems (MWPs), 

state-of-the-art language models, including ChatGPT, 

have shown subpar performance. Chain-of-thought 

prompting, as seen in MathPrompter, has emerged as a 

solution, generating multiple algebraic expressions and 

Python functions in response to a single problem. 
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Verifiers further improve accuracy, surpassing the 

performance of other models in solving MWPs [2]. 

In supporting embodied agents, researchers have 

integrated LLMs with physical tasks. SayCan enables 

LLMs to interact with physical environments based on 

spoken instructions, while LLM-Planner combines 

language understanding with planning capabilities. 

However, lacking proper contextual grounding in the 

physical world can hinder the execution of tasks. This 

research aims to enhance LLMs' accuracy in responding 

to physical problems without relying on external tools or 

chain-of-thought prompting. The goal is to cultivate 

intuitive physical grounding within LLMs, promoting a 

deeper understanding of the complexities of the physical 

world [3]. A comprehensive performance analysis of fine-

tuned models across various tasks is conducted to assess 

their physical reasoning and problem-solving abilities. By 

investigating the LLM's intuitive understanding of the 

physical world, this research contributes to our 

understanding of their potential in comprehending and 

reasoning about real-world problems. The paper 

concludes with a discussion of impacts, future research 

directions, and the importance of developing more 

contextually grounded language models that bridge the 

gap between natural language processing and the physical 

world [4]. 

2. Related Work  

The "Related Work" section is a crucial component of 

research papers as it provides a comprehensive overview 

of existing literature and research pertinent to the study's 

topic. In this section, we present an encapsulated review 

of related work in the context of enhancing language 

models' understanding of the physical world and their 

problem-solving capabilities. Recent research has 

underscored the challenge of imbuing Large-Language 

Models (LLMs) with an innate capacity for 

comprehending and reasoning about the physical world, 

akin to human intuition. While LLMs have demonstrated 

remarkable proficiency in various language-related tasks, 

their ability to ground themselves in the physical realm 

remains limited. This limitation has motivated 

investigations into methodologies for enhancing LLMs' 

grasp of physical attributes, without resorting to external 

tools or complex prompting techniques [1]. 

One avenue of research delves into the fine-tuning of 

LLMs to bolster their performance in addressing physical 

problems. This approach aims to cultivate an intuitive 

understanding of the physical world within the models. 

Prior studies in this domain have grappled with the 

challenge of bridging the gap between language models 

and the complexities of the physical domain. Fine-tuning 

techniques have been explored, with varying degrees of 

success, to refine LLMs' ability to reason about physical 

concepts, object properties, and dynamics [5]. Another 

line of inquiry revolves around multimodal approaches, 

which integrate textual information with simulated 

representations of the physical world. These approaches 

hold promise in augmenting LLMs' understanding of 

physical phenomena by providing a richer contextual 

backdrop. Researchers have explored the advantages and 

limitations of leveraging simulations, physics engines, 

and probabilistic programs to enhance language models' 

reasoning abilities. Frameworks like PiLoT and Mind's 

Eye have emerged as pioneering efforts in this direction, 

offering substantial improvements in LLMs' 

comprehension of the physical world. In the realm of 

mathematical word problems (MWPs), studies have 

identified language models' subpar performance in 

accurately solving such problems. However, recent 

advancements have introduced chain-of-thought 

prompting techniques, exemplified by MathPrompter, 

which generate multiple algebraic expressions and Python 

functions in response to single MWP prompts. These 

techniques have significantly improved problem-solving 

abilities, surpassing the performance of earlier models and 

highlighting the potential for enhanced mathematical 

reasoning in LLMs [6]. 

The integration of LLMs with embodied agents has also 

garnered attention. SayCan, for instance, focuses on 

enabling LLMs to interact with physical environments 

based on spoken instructions, effectively bridging the gap 

between language understanding and physical execution. 

LLM-Planner leverages commonsense knowledge to 

facilitate task planning, combining language 

understanding with planning capabilities. However, 

without a solid foundation in the physical world, the 

execution of certain tasks may present challenges, 

affecting the overall performance and reliability of LLM-

based systems in physical tasks. This review of related 

work underscores the critical importance of enhancing 

LLMs' intuitive understanding of the physical world. By 

investigating various approaches and their respective 

merits and limitations, this research contributes to a 

deeper understanding of the potential capabilities of 

LLMs in comprehending and reasoning about real-world 

problems. Ultimately, the goal is to develop more 

advanced and contextually grounded language models 

that can seamlessly bridge the gap between natural 

language processing and the intricate dynamics of the 

physical world [7]. 

3. Methods  

In this section, we present a comprehensive benchmark 

dataset designed specifically for the purpose of fine-

tuning large language models to answer questions related 

to physics. Our primary objective with this benchmark is 

to evaluate the model's ability to thoroughly comprehend 

and provide accurate responses to a wide array of physics 
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queries after undergoing the fine-tuning process. To 

construct this benchmark, we carefully curated a diverse 

set of physics questions, covering a broad spectrum of 

topics and varying levels of complexity. We meticulously 

organized the dataset into distinct physics concepts, 

encompassing areas such as free fall, projectile motion, 

collisions, friction, inclines, and oscillatory motion. The 

benchmark questions were thoughtfully crafted to 

incorporate both fundamental physics principles 

commonly found in standard physics textbooks and 

intuitive understandings derived from human experiences 

in the physical world. Consequently, we categorized our 

benchmark questions into two primary sections: "Real 

World Scenarios" and "Math Problems." This dual 

categorization allows us to systematically assess the 

model's proficiency in both conceptual understanding and 

computational problem-solving skills. Within each 

question type category, we devised various formats, 

including binary, multiple-choice, discrete number 

prediction, and continuous number prediction [8]. To 

ensure the quality and reliability of our dataset, each 

question underwent meticulous annotation, with the 

corresponding correct answers added. We implemented a 

manual review process following the automatic 

application of relevant physics equations, meticulously 

validating both the questions and their corresponding 

answers. This comprehensive dataset serves as a robust 

foundation for training and evaluating state-of-the-art 

physics question-answering models, thereby promoting 

significant advancements in natural language processing 

techniques when applied to the domain of physics 

comprehension within large language models. It's 

noteworthy that there exist pre-existing benchmark 

datasets, such as the Utopia dataset developed by the 

Mind's Eye Language Model team, which also include 

physics-based questions categorized into distinct scenes 

dedicated to specific concepts. Nevertheless, our dataset 

builds upon this prior work by encompassing a broader set 

of domains and question formulations, thus providing a 

more comprehensive assessment of language models' 

ability to comprehend the physical world [9]. 

In addition to creating the benchmark, we employed data 

augmentation techniques to expand our pool of questions. 

This involved transforming a set of template questions 

into thousands of training examples using the correct 

physical equations and modeling practices. This approach 

enabled us to generate a diverse range of question 

variants, covering various objects, drop heights, and 

question templates, ensuring a rich dataset suitable for 

training and evaluation. Furthermore, we introduced and 

evaluated autoregressive models, such as FLAN-T5-

Large, and encoder-only models based on DeBERTa, to 

assess their performance in responding to multiple-choice 

physics-related questions. These models underwent fine-

tuning using our curated datasets to determine their 

abilities to comprehend and reason about the physical 

world [10].  

The results revealed significant performance differences 

between autoregressive and encoder-only models, with 

the former demonstrating superior proficiency in 

answering physics-related questions. Overall, our work 

contributes to advancing our understanding of how large 

language models can develop an intuitive grasp of the 

physical world and provide accurate responses to physics-

related queries following fine-tuning on specialized 

datasets [11]. 

DATA AUGMENTATAION  

The creation of our question base involved an extensive 

data augmentation procedure, wherein we transformed a 

predefined set of template questions into thousands of 

training examples using a script that incorporated accurate 

physical equations and modeling principles. To provide a 

clearer understanding, consider the following examples: 

1. "If I release my AirPods from my head, how 

much time will it take for them to reach the ground?" 

2. Answer Choices: A) 1 second B) 5 seconds C) 

10 seconds D) 100 seconds 

3. Correct Answer: A) 1 second 

4. "When I drop a feather from my hand, what will 

be the time it takes to touch the ground?" 

5. Answer Choices: A) 1 second B) 2 seconds C) 3 

seconds D) 4 seconds 

6. Correct Answer: A) 1 second 

The algorithm employed for augmenting questions related 

to free-fall scenarios functions by randomly combining 

various elements, including objects, drop heights, 

question templates, and physics calculations, to generate 

entirely new question variants. The process begins with 

the initialization of the algorithm, utilizing predefined 

question templates that include placeholders for both the 

falling object and the drop height. Lists of potential 

objects and height bounds are then defined, allowing for 

the random sampling of values. The algorithm proceeds 

into a loop to generate each question, where it randomly 

selects a template, object, height bounds, and samples a 

height value from within the specified bounds. Employing 

the appropriate equations of motion for free fall, it 

calculates the expected time it takes for the object to fall. 

The chosen template is then populated with the randomly 

selected object, height, and the calculated fall time to form 

the complete text of the question [12]. 

The algorithm's ability to randomly sample objects, 

heights, and templates in each loop iteration enables the 

generation of a substantial number of unique question 

variants without repetition. For the purpose of this study, 

we configured the algorithm to run for 10,000 iterations, 

resulting in the creation of 10,000 distinct free fall physics 
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questions. These questions were subsequently divided, 

with 90% allocated for training and 10% for testing 

through the Large Language Models (LLMs). In addition 

to the question text, the algorithm also generated four 

multiple-choice answers for each question by introducing 

random variations to the fall time solution, designating 

one of them as the correct answer. This approach, centered 

on randomized sampling, systematically yielded a diverse 

dataset of free fall problems, complete with unbiased 

answers and solutions [13]. The algorithm's incorporation 

of variability in objects, heights, and templates ensured a 

broad distribution of question types, not constrained to 

any particular format. Furthermore, beyond the initial 

creation of the question base, we also generated more 

specific questions that explored the LLM's understanding 

of the physical world from a different perspective. These 

questions were crafted using a similar methodology as the 

ones mentioned above; however, they presented scenarios 

where the LLM was treated as if it were a robot in the 

physical world. This adjustment allowed us to assess 

whether the LLM genuinely comprehends the physical 

world by determining when the falling object would make 

contact, thus providing valuable insights into its intuitive 

understanding of physics [14]. 

BERT  

BERT, an acronym for Bidirectional Encoder 

Representations from Transformers, revolutionized 

natural language processing by adopting a bidirectional 

approach to language understanding. This model, 

introduced by Google, employs transformers with 

attention mechanisms to consider contextual information 

from both the left and right sides of each word, enhancing 

its ability to capture intricate language patterns. 

Mathematical Details: 

Self-Attention Mechanism: 

The self-attention mechanism in BERT is mathematically 

expressed as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

1
𝑠𝑞𝑟𝑡(𝑑𝑘)) 𝑉 

where Q, K, and V are matrices representing the query, 

key, and value, respectively, and d_k is the dimension of 

the key vectors. 

Transformer Encoder: 

BERT consists of multiple transformer encoder layers. 

The output of each layer is computed using the formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐼𝑛𝑝𝑢𝑡 

+  𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐼𝑛𝑝𝑢𝑡)) 

Here, MultiHeadAttention involves the application of the 

self-attention mechanism. 

Pre-training Objective: 

BERT is pretrained using two tasks: 

Masked Language Model (MLM): Predicting masked 

words in a sentence. 

Next Sentence Prediction (NSP): Predicting if a sentence 

follows another. 

The overall pre-training objective is captured by the loss 

function: 

𝐿𝐵𝐸𝑅𝑇 =  𝐿𝑀𝐿𝑀 +  𝐿𝑁𝑆𝑃  

where L_MLM represents the loss for the masked 

language model task, and L_NSP is the loss for the next 

sentence prediction task. 

 

                                                                       Fig 1: Proposed method  
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Autoregressive Model  

The autoregressive model functions by generating outputs 

sequentially, where each step depends on the preceding 

outputs. Comprising both an encoder and a decoder, this 

model is trained on a dataset of multiple-choice questions 

related to freefall physics, allowing it to develop an 

intuitive grasp of the physical world for responding to 

such questions. Our methodology involved utilizing a pre-

trained autoregressive model called flan-T5-large. Data 

preparation included organizing the dataset into a 

sequence-to-sequence (seq2seq) architecture. To train the 

model, we employed Low-Rank Adapters (LoRA) 

derived from Parameter-Efficient Fine-Tuning (PEFT). 

Notably, this technique resulted in training only around 

0.6. For fine-tuning, we set hyperparameters as follows: a 

learning rate of 1e-3, a batch size of 4, and a single epoch. 

During fine-tuning, the model's objective was to 

maximize the accuracy of selecting the correct answer 

from the provided multiple-choice options [13]. 

Our fine-tuning process initiated with training on a dataset 

comprising 9,000 distinct free-fall questions, utilizing an 

augmented free-fall dataset that we carefully curated. 

LoRA, operating by optimizing pairs of rank-

decomposition weight matrices added to the existing 

weights, played a crucial role in facilitating this training 

process. Subsequently, we assessed the model's 

performance on a previously unseen test dataset 

containing 1,000 unique free-fall questions by intuitively 

selecting the answer choice that the model deemed 

correct. This evaluation aimed to gauge the model's ability 

to generalize its learning effectively to new instances. The 

entire process was replicated using the Free-Fall Physical 

World dataset [14]. 

Encoder-Only Model 

In addition to autoregressive models based on T5, which 

generate predictions based on previously generated 

words, we incorporated and tested state-of-the-art 

encoder-only models. The inclusion of these diverse 

model architectures was primarily experimental, driven 

by the hypothesis that one architecture could possess an 

inherent advantage over the other. A comprehensive 

comparison of the two model architectures revealed a 

substantial difference in performance, favoring 

autoregressive models, as detailed in the results section 

[15]. The encoder-only models underwent fine-tuning 

using Microsoft's pre-trained DeBERTa model, following 

a similar process to the fine-tuning of autoregressive 

models. Both architectures were trained on input strings 

where answer options are separated by separation tokens, 

and they both involved multiple layers with the 

application of the attention mechanism. An important 

distinction lies in the encoder-only models being trainable 

in parallel, resulting in a significant reduction in training 

time. Following hyperparameter tuning, the learning rate 

was determined, and the fine-tuning process was executed 

[16] [17]. 

4. Result And Discussion  

The provided code segment imports configurations 

(LoraConfig), the PEFT model (get_peft_model), and 

task types (TaskType) from the peft library. The function 

print_trainable_parameters is defined to calculate and 

print the number of trainable parameters in a given model. 

The lora_config variable is then instantiated with specific 

settings, such as r, lora_alpha, target_modules, 

lora_dropout, bias, and task_type, configuring the Low-

Rank Adapters (LoRA) for the model. Finally, the 

get_peft_model function is used to obtain the PEFT model 

with the specified configuration, and the 

print_trainable_parameters function is called to display 

information about the trainable parameters in the model. 

Low-Rank Adapters (LoRA):  

The peft library is being used for fine-tuning, and 

specifically, it involves the concept of Low-Rank 

Adapters (LoRA). LoRA is an approach to enhance the 

efficiency of fine-tuning large pre-trained language 

models. It introduces low-rank matrices to reduce the 

number of parameters that need to be fine-tuned, making 

the process more computationally efficient. 

LoraConfig Configuration:  

The lora_config object is an instance of LoraConfig, 

where several parameters are configured: 

r: Rank of the low-rank matrices, controlling the reduction 

in parameters. 

lora_alpha: Alpha value for LoRA, influencing the trade-

off between accuracy and efficiency. 

target_modules: Modules targeted for adaptation (e.g., 

"q_proj" and "v_proj"). 

lora_dropout: Dropout rate for LoRA, contributing to 

regularization. 

bias: Setting for bias (in this case, set to "none"). 

task_type: Spec’ifies the type of task (here, 

"SEQ_2_SEQ_LM" indicating sequence-to-sequence 

language modeling). 

Fine-Tuning Process:  

The model is then fine-tuned using the obtained 

lora_config. The get_peft_model function is responsible 

for incorporating the Low-Rank Adapters into the model. 

Printing Trainable Parameters:  

The function print_trainable_parameters is defined to 

calculate and print the number of trainable parameters in 

the model. This is a useful diagnostic tool to understand 
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the impact of the fine-tuning process and the efficiency 

gains introduced by the Low-Rank Adapters. 

In essence, the provided code demonstrates the 

application of Low-Rank Adapters using the peft library, 

configuring LoRA settings, fine-tuning a model, and 

assessing the impact on the number of trainable 

parameters. The objective is to achieve a more resource-

efficient fine-tuning process while maintaining model 

performance. 

The dataset.map function will apply the 

preprocess_function to each element of the dataset, 

processing them in batches (if batched=True). The 

outcome is a processed dataset, where each element has 

undergone the specified preprocessing. The specific 

details of the outcome depend on the nature of the 

preprocess_function. If, for instance, it involves 

tokenization, the dataset will be tokenized. The resulting 

processed_datasets will be ready for use in downstream 

tasks like training a machine learning model. In summary, 

this code is a part of a data preprocessing pipeline, 

applying a specified function to each element of the 

dataset in batches and preparing the data for further tasks. 

The details of the preprocessing would depend on the 

implementation of the preprocess_function. 

The passage discusses the evaluation and comparison of 

language models, specifically GPT 3.5, GPT4, and 

FLAN-T5-Large, through a series of one thousand 

multiple-choice physics questions. This evaluation aims 

to establish a baseline for the subsequent comparison with 

fine-tuned models. The baseline accuracy test results, 

presented in Table I (not provided), showcase the 

performance of the aforementioned models in responding 

to diverse physics questions. The assessment is a 

fundamental step to gauge the inherent capabilities of the 

models before any specialized training. IT  classifies 

different physical concepts tested during the evaluation. 

These include Free Fall, Projectile Motion, Object 

Collision, Friction, Inclines, and Oscillatory Motion. Each 

concept is defined by its unique characteristics, such as 

the study of objects under gravity without air resistance in 

Free Fall or the analysis of objects moving through air 

with consideration for gravity in Projectile Motion. 

The discussion segment underscores a crucial insight—

that the structure of the model itself holds less significance 

than the methodology employed for training. Results 

indicate that meticulous hyperparameter tuning plays a 

pivotal role in achieving optimal model performance. 

While FLAN-T5-Large is noted for its proficiency in 

language tasks, it exhibits limited effectiveness in 

answering physics questions, emphasizing the need for 

specialized tuning. Furthermore, the text introduces the 

performance of DeBERTa, suggesting that when 

hyperparameter tuning is executed adeptly, it can rival or 

even surpass the accuracy of FLAN-T5. However, 

inadequate tuning leads to results comparable to random 

guesses. Notably, the accuracy for real-world free fall 

problems remains constrained at 25.44%, highlighting the 

ongoing challenges in achieving robust performance in 

scenarios beyond controlled evaluations. 

In essence, the passage navigates through the process of 

baseline evaluation, classification of tested physical 

concepts, and the pivotal role of hyperparameter tuning in 

enhancing the performance of language models in 

comprehending and responding to physics-related 

questions. The discussion sheds light on the delicate 

balance between model architecture and meticulous 

training practices for achieving optimal outcomes in real-

world problem-solving scenarios.

 

Fig 2: Comparison of model tested over LLM 

The outcome of the accuracy evaluation of various 

language models, including GPT 3.5, GPT4, and FLAN-

T5-Large, in response to one thousand multiple-choice 

questions provides valuable insights into their 
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performance on physics-related tasks. The results are 

summarized in Table I, displaying the baseline accuracy 

test results. Additionally, Table II categorizes the 

classification of different physical concepts that were 

tested, shedding light on the specific areas where these 

models excel or face challenges. 

Baseline Accuracy Test Results:  

The baseline accuracy test aimed to establish a 

comparative benchmark for evaluating the performance of 

different language models on physics-related questions. 

The models under consideration were GPT 3.5, GPT4, 

and FLAN-T5-Large. The FLAN-T5-Large model 

exhibited an accuracy of 26% on the physics benchmark, 

showcasing limited proficiency in answering domain-

specific questions. This result emphasizes the need for 

further tuning and improvement in its understanding of 

physics concepts. Notably, GPT 3.5 and GPT4 were also 

included in the baseline test, providing a reference point 

for evaluating the effectiveness of fine-tuned models. 

Hypothesis and Observations:  

The results suggest that, without fine-tuning for physics-

related tasks, even advanced language models such as 

FLAN-T5-Large may struggle to demonstrate a deep 

understanding of physics concepts. The hypothesis 

underlying this investigation was that specialized fine-

tuning would significantly enhance the models' ability to 

intuitively grasp and respond to physics queries. This 

hypothesis is validated by subsequent evaluations of fine-

tuned models. 

Performance of Fine-Tuned Models:  

The subsequent evaluation involved fine-tuned models, 

including FLAN-T5-Large after fine-tuning, GPT4 after 

fine-tuning, and the introduction of a novel autoregressive 

model based on FLAN-T5-Large. The autoregressive 

model exhibited superior performance, achieving an 

impressive accuracy of 87.7% on physics-related 

multiple-choice questions. This outcome suggests that the 

fine-tuning process significantly improved the model's 

capacity to provide accurate responses to complex physics 

queries. 

Comparison with Other Models:  

Comparison with GPT4 and FLAN-T5-Large after fine-

tuning further emphasizes the effectiveness of the fine-

tuned autoregressive model. GPT4 achieved an accuracy 

of 30.10%, showcasing a notable improvement over its 

baseline performance. However, it fell short of the 

accuracy achieved by the autoregressive model. FLAN-

T5-Large after fine-tuning showed improvements but 

remained limited, achieving a 25.8% accuracy. 

Challenges in Real-World Physics Problems:  

While the models demonstrated varying levels of success 

in addressing different physics concepts, challenges 

persisted, especially in real-world free fall problems. The 

accuracy for such scenarios was limited, highlighting the 

need for further refinement and training in understanding 

dynamic, real-world physics phenomena. 

Hyperparameter Tuning Considerations:  

Hyperparameter tuning played a crucial role in the 

performance of models. For instance, the accuracy of 

DeBERTa, while capable of reaching high proportions, 

was heavily influenced by the quality of hyperparameter 

tuning. The importance of meticulous parameter 

adjustment is evident in achieving optimal model 

performance. 

5. Conclusion: 

In conclusion, the study demonstrates that large language 

models can develop a nuanced and robust intuitive 

understanding of the physical world through fine-tuning. 

The autoregressive model, based on FLAN-T5-Large, 

emerged as a frontrunner, showcasing significant 

improvements in accuracy on physics-related tasks. This 

research contributes to the broader understanding of 

leveraging language models for domain-specific tasks, 

emphasizing the importance of tailored fine-tuning for 

enhanced performance. 

Future Directions: 

Future research directions could explore more 

sophisticated fine-tuning techniques, ensemble models, or 

hybrid approaches that combine the strengths of different 

language models. Additionally, addressing challenges in 

real-world physics problems and further refining the 

models' understanding of dynamic scenarios could lead to 

more comprehensive and reliable language models for 

physics-related tasks. 
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