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Abstract: The Brain-Computer Interface (BCI) finds application in various fields such as robotics and environmental control, particularly 

benefiting individuals with disabilities. Electroencephalography (EEG) signals serve as a prevalent choice for a typical BCI system due to 

the non-invasive, cost-effective, and portable nature of electrodes. EEG data is often collected from a large number of channels across the 

brain, so effective channel selection techniques play a vital role in identifying the best channels for a given application. Channel selection 

helps to decrease setup time and computational complexity while analyzing EEG signals. By eliminating noisy channels, channel selection 

can improve system performance. The Filer Bank Common Spatial Pattern (FBCSP) based Convolutional Network (CNN) is used to 

distinguish between four motor imagery (MI) tasks. A sliding window technique is utilized to generate time-varying data on EEG signals. 

The results obtained from the experimentation of the proposed method on BCI competition IV dataset 2a demonstrate a noteworthy average 

accuracy of 92.66% across 22 channels. This performance surpasses that of numerous existing systems. Additionally, when employing the 

mutual information technique for channel selection, extended experimental results revealed a commendable classification accuracy of 

89.1% with five channels and 90.66% with three channels. Notably, the use of three channels exhibited an average kappa value of 0.86. 

These outcomes underscore the efficacy of our proposed system for real-time BCI development. The robustness of the model is further 

validated by its ability to achieve an accuracy of 89.3% on BCI competition IV dataset 2b. Thus, our proposed model demonstrates 

consistent and commendable results across both datasets, affirming its potential for practical and reliable application in brain-computer 

interface systems. 
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1. Introduction  

By circumventing the customary neuronal and muscular 

processes of the brain, as observed noninvasively through 

scalp recordings, Electroencephalography (EEG) based 

Brain-Computer Interfaces (BCI) enable the conversion of 

neural signals associated with cognitive tasks into actionable 

commands. These neural signals, harnessed from the scalp, 

are captured at specific locations referred to as channels. This 

innovative approach leverages the unique capability of EEG 

to detect and interpret electrical patterns on the scalp, 

facilitating the seamless translation of mental activities into 

tangible commands for controlling external devices or 

applications. The channels, strategically placed across the 

scalp, serve as conduits for capturing the intricate interplay 

of neural signals, paving the way for advancements in 

neurotechnology and enhancing the potential for direct 

communication between the human brain and external 

technologies. Dense EEG electrodes provide deeper insight 

into the underlying neural activity, but they also produce 

high-dimensional data and increase noise redundancy. 

Additionally, a practical BCI system require less preparation 

time which demands an optimum number of relevant 

channels [1]. 

The human brain is divided into various parts, each of which 

is linked to a particular task. For example, the motor cortex 

is linked to movement functions, The occipital cortex plays a 

crucial role in visual processing within the human brain. 

Located at the back of the brain, the occipital cortex is 

primarily responsible for receiving and interpreting visual 

information from the eyes. It processes visual stimuli such as 

shapes, colors, and motion, allowing individuals to perceive 

and make sense of the visual world. 

On the other hand, the frontoparietal regions are integral to 

decision-making processes. These areas, situated towards the 

front and top of the brain, are involved in higher-order 

cognitive functions, including decision-making, problem-

solving, and cognitive control. The frontoparietal network 

collaborates with other brain regions to integrate sensory 

information, assess potential outcomes, and execute 

appropriate responses. 

Together, the specialized functions of the occipital cortex and 

the frontoparietal regions demonstrate the complexity and 

specialization of different brain regions, highlighting the 

intricate network of neural processes that contribute to 

fundamental cognitive functions such as visual perception 

and decision-making. Therefore, choosing task-related signal 

electrodes can speed up setup and increase comfort in non-

clinical BCI applications. In this study, motor imagery (MI) 

multichannel EEG signal processing is seen as a 

multidimensional classification challenge. The curse of 

dimensionality associated with multichannel signal 

1Department of Electrical and Electronics Engineering Mandsaur 

University, Mandsaur,(M.P), India 

 bhambare.rajesh@gmail.com      ORCID ID: 0000-0003-4571-726X 
2Department of Electrical and Electronics Engineering  Mandsaur 

University,Mandsaur,(M.P), India 

 manish.jain@meu.edu.in         ORCID ID: 0009-0003-3335-5342 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 67–78 |  68 

information and related time-varying features can be 

alleviated by a channel selection technique. Even if prior 

knowledge of the neurological correlate aids in choosing the 

appropriate channels, this may not be the case for all people 

[2]. For a certain BCI experiment, there is intersubject 

variability; therefore, the most prominent channels for one 

user might not be the same for another individual. So, 

selecting sensors manually might not be the best approach to 

boost performance. 

The issue of selecting a channel has been studied, 

focusing on trials including movement and mental tasks. In 

[3] D. Feess et al. provides a study of channel selection 

techniques for event-related potentials. It talks about channel 

transfer inside and across sessions to see how different 

subjects perform. Similar to this, in [4] Y. Li et al. clarifies 

the importance of channel characteristics. Several strategies 

have been put forth in the context of MI, concentrating on the 

appropriate sensor space. The Common Spatial Pattern 

(CSP) stands out as one of the most widely adopted feature 

extraction methods, and its efficacy is exemplified in the 

work of Y. Wang et al., as presented in [5]. This method 

serves a dual purpose, not only as a feature extraction 

technique but also as a channel selection algorithm. Wang 

and colleagues incorporate a sophisticated approach by 

considering the coefficients of the projection matrix when 

ranking the channels. 

The essence of the CSP lies in its ability to identify spatial 

filters that maximize the variance of one class while 

minimizing the variance of another. By leveraging the 

coefficients of the projection matrix, Wang et al. enhance the 

channel selection process, ensuring that the chosen channels 

contribute optimally to the discrimination between different 

classes of signals. This meticulous consideration of the 

projection matrix coefficients adds a layer of refinement to 

the CSP algorithm, making it a robust and sophisticated tool 

for extracting discriminative features from multichannel 

data, particularly in the context of applications such as brain-

computer interfaces and neurotechnology. CSP has the 

ability to differentiate between two classes, artifacts in the 

EEG signal frequently interfere with it [6]. Other channel 

selection techniques, including the genetic algorithm (GA) 

for artificial neural networks [7] and sparse CSP [8], need a 

lot of processing and are not appropriate for online 

experimentation. Choosing electrodes may be essential for 

resolving problems with complex and intrusive equipment. It 

is difficult because experts dispute on the exact number and 

placement of EEG electrodes. EEG signals are gathered from 

various areas of the brain and typically use 32 or 64 

electrodes. The analysis of EEG data is more 

computationally complex when there are many electrodes. 

Additionally, it increases the possibility of signal 

overlapping and causes interaction problems [9]. 

 Automated feature extraction and categorization utilizing 

deep learning techniques has recently been the subject of 

numerous studies. Such approaches' outcomes have 

demonstrated that they increase accuracy while reducing the 

need for laborious preprocessing [10,11]. To improve 

accuracy for motor imagery categorization, an RBM with a 

four-layer neural network was used in [10] by Lu, N. et al. In 

order to capture and learn the spatial and temporal aspects of 

the MI problem, Zhang et al. presented a hybrid deep neural 

network approach based on CNN and LSTM [11]. In [12], 

CNN and short-time Fourier transform (STFT) have been 

employed by Shovon et al. to classify MI into two categories. 

A further study by, Wang. P. et al.  [13] suggests extracting 

EEG features using LSTM with the dimension-aggregate 

approximation (1d-AX) channel weighting method to 

improve classification accuracy. Using an image-based 

methodology, a CNN was built in [14] by Yang T. et al. to 

classify EEG data. The authors from [15] Blankertz B. et al. 

demonstrated how sliding windows from various time 

segments of a continuous stream of EEG can extract more 

distinguishable characteristics. To encourage the learning of 

effective spatial filters, regularized CSP techniques were 

suggested in [16] by Lotte F. et al. involving the extraction 

of features from a set time segment of 2s. The incorporation 

of time segments, as recommended by various studies [15-

18], based on the Filter Bank Common Spatial Pattern 

(FBCSP) has been a subject of investigation. However, 

despite these efforts, the observed improvements in accuracy 

have not been substantial. This suggests that simply adding 

time segments may not be sufficient to enhance performance 

significantly. 

Addressing the challenge of nonstationary EEG signals, Gaur 

P. et al. proposed sliding window-based CSP approaches in 

[19]. By adopting this methodology, the approach takes into 

consideration both session-to-session and trial-to-trial 

variability. This adaptive strategy is designed to capture and 

adapt to the dynamic nature of EEG signals, which can 

exhibit changes over different sessions and trials. 

In addition, recurrent neural networks (RNNs) emerge as a 

pertinent architecture for training sequential processing 

models tailored for time-series signal analysis, given the 

inherently sequential nature of EEG signals. RNNs are well-

suited for capturing temporal dependencies in data, allowing 

them to model the sequential aspects of EEG signals 

effectively. This utilization of RNNs reflects a broader trend 

in leveraging advanced neural network architectures to 

unravel the temporal intricacies inherent in sequential data, 

with promising applications in EEG signal analysis and other 

domains involving time-series data. The LSTM network is 

the most common kind of RNN [20].   

We use an overlapping sliding window technique to collect 

EEG signal time series data in addition to enhancing training 

data sets. In our research, we introduced a novel channel 

selection strategy based on mutual information. This 

approach involves assessing the information content of each 

channel with respect to the task at hand, allowing us to 
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identify and prioritize the most informative channels. Our 

proposed strategy stands as a unique contribution to the field, 

aiming to enhance the efficiency and effectiveness of channel 

selection in our particular context. 

To objectively evaluate the performance of our method, we 

conducted a thorough quantitative comparison with 

alternative channel selection approaches. This comparative 

analysis serves to highlight the strengths and advantages of 

our proposed strategy over existing methods. By employing 

rigorous metrics and benchmarks, we sought to demonstrate 

the superior capabilities of our mutual information-based 

channel selection in terms of accuracy, robustness, or other 

relevant performance criteria. 

Through this research, we aim to not only present a novel 

approach to channel selection but also to contribute valuable 

insights into the comparative landscape of existing 

methodologies. Our findings provide a foundation for 

informed decisions in selecting the most appropriate channel 

selection strategy for specific applications, fostering 

advancements in the broader field of signal processing and 

analysis. The subsequent sections of this paper are organized 

as follows to provide a comprehensive overview of the 

research methodology, results, and conclusions: 

Section II: Literature Review 

In this section, we offer a comprehensive review of relevant 

prior work in the field. This includes an examination of 

existing techniques, methodologies, and advancements 

related to four-class Motor Imagery (MI) EEG classification. 

Section III: FBCSP-Based Technique Using CNN 

This section details the proposed technique, which is 

grounded in Filter Bank Common Spatial Pattern (FBCSP) 

and employs Convolutional Neural Networks (CNN) for 

four-class MI EEG classification. The technique is 

elaborated, discussing the incorporation of channel selection 

and the variations in CNN architecture. 

Section IV: Comparative Analysis 

The results obtained from the proposed method are 

meticulously compared with those of other state-of-the-art 

research techniques. This comparative analysis aims to 

highlight the strengths, weaknesses, and distinctive features 

of the proposed approach in relation to existing 

methodologies. 

Section V: Experimental Findings and Analysis 

This section delves into the experimental outcomes, 

presenting a thorough analysis of the results. Performance 

metrics, statistical analyses, and other relevant findings are 

discussed in detail to provide a comprehensive understanding 

of the experimental results. 

Section VI: Conclusion 

The paper concludes in Section VI, summarizing the key 

findings, implications of the research, and potential avenues 

for future exploration. This section serves as a culmination of 

the study, encapsulating the contributions, limitations, and 

overall significance of the proposed FBCSP-based technique 

with CNN for four-class MI EEG classification. 

2. Related Work 

The derivation of features plays a pivotal role in determining 

the performance of a Brain-Computer Interface (BCI) system 

that utilizes motor imagery, as highlighted in prior research 

[21]. The effectiveness of a BCI system is closely tied to the 

quality and relevance of the features extracted from 

electroencephalogram (EEG) signals. However, the 

practicality of manually extracting features for real-time 

classification is significantly hindered by the non-stationary 

nature of EEG signals and the sheer volume of data 

generated, particularly when working with a limited number 

of electrodes [22]. 

The non-stationary nature of EEG signals means that their 

characteristics can change over time, necessitating adaptive 

and efficient feature extraction methods. Furthermore, 

handling large volumes of data manually is time-consuming 

and impractical for real-time applications. In light of these 

challenges, traditional machine learning-based BCI systems 

face limitations, prompting the need for a different strategy 

in the development of EEG-driven BCI systems. 

In response to these challenges, there is a growing 

recognition of the importance of leveraging advanced signal 

processing techniques, such as deep learning and automated 

feature extraction, to enhance the efficiency and accuracy of 

BCI systems. By automating the feature extraction process 

and harnessing the capabilities of advanced algorithms, 

researchers aim to overcome the constraints imposed by 

manual methods and address the dynamic and non-stationary 

characteristics of EEG signals, paving the way for more 

effective and practical real-time BCI implementations. Some 

writers have investigated the use of neural networks to 

automatically learn features from data in order to overcome 

these limitations. 

However, the classic neural network's weight initialization is 

a challenging operation because tiny initial weights cause 

weight diffusion and big initial weights result in subpar local 

minima [23]. Recent strides in deep learning have ushered in 

a viable solution for the automatic extraction of features from 

data through the utilization of dense layers comprising 

numerous hidden units. This development marks a 

substantial breakthrough, effectively addressing the 

limitations inherent in traditional machine learning 

approaches. 

In deep learning architectures, particularly neural networks 

with multiple layers, the thick layer of hidden units enables 

the model to automatically learn and extract intricate 
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hierarchical representations from the input data. This 

automated feature extraction process is characterized by the 

capacity to discern complex patterns and relationships within 

the data, overcoming the need for manual feature 

engineering. As a result, deep learning methods have 

demonstrated significant prowess in handling intricate tasks, 

especially in domains like image recognition, natural 

language processing, and, pertinent to BCI systems, the 

analysis of EEG signals. 

By leveraging deep learning's ability to automatically extract 

relevant features, BCI systems can more adeptly navigate the 

challenges posed by the non-stationary nature of EEG signals 

and the impracticality of manual feature extraction in real-

time applications. The use of deep learning architectures 

represents a paradigm shift, offering a more flexible and 

adaptive approach to feature extraction, ultimately enhancing 

the efficiency and performance of BCI systems. Without 

manually constructing features, deep learning algorithms 

may identify spatial structure features in any particular 

dataset. Deep learning is proving to be an effective method 

for classifying biological data, including EEG signals, which 

often have a lot of interference because it has been shown to 

be capable of detecting essential properties despite 

interference from undesired or external signals [24]. A deep 

learning model's training process affords the opportunity to 

select important EEG channels for channel reduction since 

critical features are given higher weights. Using deep 

learning, Hurbert Cecotti et al. [25] were able to identify 

p300 in time-domain EEG recordings. Francesco C.M. et al. 

[26] employed deep learning to separate prodromal forms of 

dementia from Alzheimer's disease utilizing raw EEG signals 

in the healthcare domain. Recurrent convolutional neural 

networks were utilized by Thodorof et al. In reference to [27], 

a noteworthy application of deep learning involves the 

automatic detection of seizures by harnessing spatial, 

spectral, and temporal information derived from 

electroencephalogram (EEG) signals. This innovative 

approach signifies a crucial advancement in the field of 

medical diagnostics, where deep learning techniques 

demonstrate their effectiveness in discerning complex 

patterns indicative of seizure activity within EEG data. 

Moreover, the application of deep learning-based EEG 

analysis extends beyond medical contexts and finds utility in 

biometrics. The inherent capacity of deep learning models to 

extract intricate features from EEG signals enables their 

utilization in the field of biometric authentication. By 

leveraging the unique patterns present in individual EEG 

signals, deep learning algorithms can facilitate robust and 

secure biometric identification methods. 

These applications underscore the versatility and efficacy of 

deep learning in unlocking valuable insights from EEG data, 

whether for medical diagnoses such as seizure detection or 

for innovative biometric authentication systems. The 

adaptability of deep learning models to various domains 

highlights their potential to revolutionize the analysis and 

interpretation of complex data, contributing to advancements 

in both healthcare and security. where Mao et al. [28] were 

able to correctly identify biometrics from EEG signals. 

3. Materials and Method 

A. Dataset Description   

The Brain-Computer Interface Competition IV (BCI-IV) 

dataset 2a was used as the source of the study's data [29]. 

Nine volunteers that performed MI tasks requiring 

movement of the left hand (class 1), right hand (class II), foot 

(class III), and tongue (class IV) provided the data for the 

dataset. The 10-20 system was used to capture the EEG using 

22 electrodes at a sampling rate of 250 Hz. Every subject was 

recorded twice, once for training purposes and once for 

evaluation purposes, on separate days. There is total 288 

trials in each session, or 72 trials in each class.  

B. Proposed FBCSP-CNN Method 

A Convolutional Neural Network (CNN) based on Filter 

Bank Common Spatial Pattern (FBCSP) represents an 

integration of two powerful techniques in the domain of 

signal processing and machine learning features is proposed 

for optimum channel selection. A model must be trained 

using all of the known channels, which slows down learning 

because it must learn from many different channels, some of 

which are unrelated to brain motor activity. The design and 

production of smaller, more portable, and less expensive 

EEG devices with fewer channels will benefit from the 

identification of the required channels. We will require the 

exact positioning of the channels on the scalp in order to use 

these portable EEG devices with fewer channels [30]. 

C. Experimental Setup 

   CSP features are extracted for the current frequency band 

after scanning over a required list of frequency bands. It 

passes the target labels, the feature matrix, and the time 

window of size 20. Calculations are made to create a feature 

matrix and labels relevant to the current band. It is stored in 

a dictionary after features for the current band have been 

extracted. In order to make it simpler to assess or train 

machine learning models on these band-specific features, 

CSP features were collected from 8 frequency bands. You 

can access the properties of each band later for additional 

processing or modeling because they are linked to the 

appropriate frequency ranges. The Process of Feature 

Extraction and Classification using FBCSP is shown in  
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Fig. 1 Process of Feature Extraction and Classification using FBCSP based CNN with Channel Selection 

Figure 1. The feature extraction process was carried out after 

choosing the window for feature extraction. In this 

investigation, we have proposed the FBCSP based CNN 

algorithm. Similar to the traditional FBCSP, this algorithm 

involved four steps. The general framework for the suggested 

strategy is depicted in Figure 1. In the first phase, a filter bank 

was used to divide the EEG into 8 frequency passbands, 

commencing from 4 to 36 Hz with a bandwidth of 4Hz. The 

mutual information (MI) indicates how much information an 

attribute under a presumption of independence provides 

about the class membership. The text describes mutual 

information as an indicator of association or correlation 

between variables in both rows and columns. Mutual 

information provides insights into the relationships between 

variables X and Y. The formula (1) is provided for 

calculating mutual information, where p(x, y) is the joint 

probability distribution function of X and Y, and p(x) and 

p(y) denote the marginal probability distribution functions of 

X and Y, respectively. 

The interpretation of mutual information is highlighted, 

noting that a higher mutual information value suggests that 

the related attribute is more effective in estimating class 

membership. In other words, variables with higher mutual 

information values are considered to have a stronger 

association with the target class, making them more 

informative for classification tasks. 

This concept is particularly relevant in feature selection or 

attribute ranking, where selecting attributes with higher 

mutual information can improve the performance of machine 

learning models by focusing on the most relevant and 

discriminative features. 

It is also possible to calculate the mutual information 

using equation (2The text introduces additional information 

related to the calculation of mutual information using entropy 

terms. The formula for mutual information (I(X;Y)) can be 

expressed in terms of entropy as follows: 

[ I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X|Y) ] 

Where: 

- ( H(Y) ) is the marginal entropy of variable Y. 

- ( H(X|Y) ) is the conditional entropy of variable X 

given Y. 

- ( H(X) ) is the marginal entropy of variable X. 

- ( H(Y|X) ) is the conditional entropy of variable Y 

given X. 

Additionally, the joint entropy ( H(X,Y) ) can be related 

to these terms: 

[ H(X,Y) = H(X) + H(Y) - I(X;Y) ] 

These relationships highlight the fundamental connection 

between mutual information and entropy. Mutual 

information quantifies the reduction in uncertainty about one 

variable gained by knowing the other variable, and entropy 

terms characterize the uncertainty or disorder associated with 

random variables. In essence, mutual information reflects the 

information shared between X and Y, considering both 

marginal and conditional entropies. The feature vector

1 2[ ..... ]i i i i

V B B BnA a a a=
is created by concatenating the 

features received from each band. Here 

i

VA
 represents 

feature vector of i-th trial, 

i

Bja
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from j-th band of i-th trial, and n gives the total number of 

bands. The train data's feature vectors for each trial are used 

to create the feature matrix 
1 2[ ; ;.... ]n

M V V VA A A A
is  

(X,Y)=∑_(y∈Y)∑_(x∈X)〖p(x,y)log((p(x,y))/(p(x)p(y))

〗)    (1) 

( , ) ( ) ( | )I X Y H Y H Y X= −                                        (2) 

( , ) ( | ) ( | )H X Y H X Y H Y X= − −                          (3)             

TABLE I Proposed CNN Model 

Layer (type) Output Shape Parameters 

conv2d (Conv2D)                  (None, 999, 4, 

128)        

640 

max_pooling2d 

(MaxPooling2D)                                                          

(None, 499, 2, 

128)       

0          

dropout (Dropout)            (None, 499, 2, 

128)                  

0 

 conv2d_1 (Conv2D)                                                          (None, 499, 2, 

128)        

16512 

dropout_1 (Dropout)          (None, 499, 2, 

128)          

0    

 conv2d_2 (Conv2D)                                                          (None, 499, 2, 

256)         

33024  

dropout_2 (Dropout)          (None, 499, 2, 

256)          

0      

flatten (Flatten)                (None, 255488)                0        

dense  (Dense)                  (None, 512)                130810368    

dropout_3 (Dropout)          (None, 512)                0 

dense_1 (Dense) (None, 256)                  131328 

dropout_4 (Dropout)          (None, 256)                0 

dense_2 (Dense)                  (None, 128)                32896 

dropout_5 (Dropout)             (None, 128)                0 

dense_3 (Dense)                  (None, 4)                516 

Total Parameters: 

131025284  

Trainable Parameters: 

131025284 

Non-trainable 

Parameters: 0 

    

The mutual information (MI) is computed by employing 

equation (3), using the feature matrix. The resulting MI 

values are denoted as MI = [J1, J2...JL], where JL signifies 

the mutual information value corresponding to the l-th 

feature. Each value in the MI array represents the extent to 

which the associated feature contributes relevant 

information. 

In the context of MI-based Brain-Computer Interface (BCI) 

systems, three specific EEG electrodes, namely C3, C4, and 

Cz, are commonly selected as candidate channels. These 

electrodes play a crucial role in capturing essential 

characteristics of motor imagery (MI)-specific electrical 

activity. The choice of C3, C4, and Cz is grounded in the 

neurophysiological foundation of the human brain. 

The rationale behind selecting these three electrodes is rooted 

in the understanding of the human brain's motor cortex, 

which serves as the driving force for voluntary muscle 

movement. The motor cortex is predominantly located in the 

frontal lobe of the brain and is symmetrically distributed 

between the left and right hemispheres. By focusing on the 

EEG signals from electrodes C3, C4, and Cz, MI-based BCI 

systems strategically target regions associated with motor 

activity, aiming to capture relevant neural information linked 

to the intention of movement. This targeted electrode 

selection aligns with the neuroanatomical considerations of 

the motor cortex, enhancing the specificity and efficacy of 

the BCI system for decoding motor-related signals. 

4. Evaluation of the Suggested Method in 

Comparison to Other Methods  

Jeong hee Hwang et al. presented a classification framework 

in [33] based on Long Short-Term Memory (LSTM) 

networks, aiming to enhance the accuracy of categorizing 

four-class Motor Imagery (MI) signals. The methodology 

involves the application of a sliding window technique to 

generate time-varying EEG signal data. Concurrently, an 

overlapping-band-based Filter Bank Common Spatial 

Pattern (FBCSP) is employed to extract spatial features that 

are unique to each individual. 

In terms of performance, the experimental results on BCI 

competition IV dataset 2a demonstrated an average accuracy 

of 93.9%. This underscores the effectiveness of the proposed 

LSTM-based framework in achieving high accuracy in the 

classification of MI signals. However, it's acknowledged that 

LSTMs can demand substantial processing power, 

particularly when dealing with extended or sizable datasets. 

The use of a sliding window approach, although beneficial 

for capturing temporal dependencies, further intensifies the 

computational burden. This heightened demand may pose 

challenges, especially in real-time applications where timely 

processing is critical. The trade-off between accuracy and 

computational efficiency is highlighted here, acknowledging 

the potential limitations associated with the computational 

demands of LSTM-based frameworks. Balancing these 

factors is crucial for determining the suitability of such 

approaches in various applications, with considerations for 

real-time processing constraints and the available computing 

resources. Using the Dynamic Channel Relevance (DCR) 

score, Anurag Tiwari and Amrita Chaturvedi propose [34] a 
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unique approach to channel selection that finds efficient EEG 

channels with 85.38% classification accuracy. EEG signals 

are prone to artifacts and noise. Channel selection quality 

may suffer if DCR scores unintentionally favor channels that 

record noise or irrelevant artifacts.  

In [35], Q. Ai et al. suggested two other feature extraction 

algorithms, local characteristic-scale decomposition (LCD) 

and   CSP are combined with the features of functional brain 

networks to extract discriminative features.   The suggested 

approach achieves an average classification accuracy of 

79.67%. A high-dimensional feature space could result from 

the combination of LCD, CSP, and functional brain network 

characteristics. Issues with high dimensionality can include 

higher processing expenses, a higher chance of overfitting, 

and trouble determining the significance of particular 

characteristics. 

In their work described in [36], Hongtao Wang et al. 

proposed a classification framework for distinguishing 

between three distinct motor imagery movements: left-hand, 

right-hand, and foot movements. The approach 

recommended by the authors involves the implementation of 

a cascade structure that combines the one-versus-the-rest 

filtered-bank common spatial pattern (OVR-FBCSP) method 

with a multi-kernel relevance vector machine (MK-RVM). 

The goal of this methodology is to effectively discriminate 

between the different motor imagery classes. 

The OVR-FBCSP approach is commonly used in Brain-

Computer Interface (BCI) systems for multiclass 

classification tasks. It employs a one-versus-the-rest strategy, 

creating binary classifiers for each class, which are then 

combined to make multiclass predictions. The filtered-bank 

common spatial pattern (FBCSP) is utilized to extract 

discriminative spatial features from EEG signals. 

The MK-RVM is employed as the classifier, leveraging the 

advantages of relevance vector machines in handling high-

dimensional data. The multi-kernel aspect suggests the 

utilization of multiple kernel functions, allowing the model 

to capture diverse types of information from the input data. 

The outcome of this cascade structure, as reported by the 

authors, is an average classification accuracy of 83.21%. This 

metric reflects the model's ability to correctly classify motor 

imagery movements across the three specified classes. The 

cascade structure, combining feature extraction with FBCSP 

and classification with MK-RVM, showcases a promising 

approach for improving accuracy in multiclass motor 

imagery classification tasks.  

It may be difficult to interpret these complex models, making 

it difficult to comprehend how particular traits or kernels 

affect the final categorization choice. Reduced generalization 

performance on untested data could result from overfitting. 

 The study conducted by Arvaneh M. et al. [37] introduces a 

novel technique called Sparse Common Spatial Pattern 

(SCSP) for EEG channel selection. The primary objective of 

this technique is to sparsify common spatial filters in a way 

that reduces the number of channels while maintaining a 

predefined classification accuracy limit. The reported 

classification accuracy achieved by this method is 78.93%. 

The SCSP technique operates on the premise of common 

spatial patterns, which are commonly used in Brain-

Computer Interface (BCI) systems for extracting 

discriminative features from EEG signals. However, the 

innovation in this study lies in the sparsification of these 

spatial filters. By introducing sparsity constraints, the SCSP 

technique aims to identify and retain only the most relevant 

channels for maintaining a balance between classification 

accuracy and channel reduction. 

This approach is particularly relevant in scenarios where 

reducing the number of EEG channels is desirable due to 

practical constraints, such as limited available electrodes or 

to minimize computational complexity. The reported 

classification accuracy of 78.93% suggests that the SCSP 

technique effectively achieves this channel reduction without 

compromising classification performance beyond the 

specified limit. 

In summary, the study by Arvaneh M. et al. [37] presents a 

valuable contribution to the field of EEG-based classification 

by introducing the SCSP technique, a method that 

strategically sparsifies common spatial patterns to optimize 

the balance between classification accuracy and the number 

of channels used. Even if SCSP is good at choosing a subset 

of channels, it may be difficult to comprehend the 

neurophysiological significance of the channels that are 

chosen. It might not be directly interpretable in terms of the 

fundamental functions of the brain. 

The proposed method gives a cross validation accuracy of 

90.66% for 3 channels and 89.10 % for 5 channels which is 

close to that of 92.66% for 22 channels.  The cross-validation 

accuracy assesses a model's performance across various 

subjects or datasets. It evaluates robustness, minimizes 

subject-specific pattern bias, evaluates generalizability, and 

simulates unknown data scenarios to get a more accurate 

assessment of real-world performance.  It  provides a more 

comprehensive knowledge of a model's performance in a 

variety of scenarios [38]. Spatial filters over a range of 

frequency bands are used by FBCSP to effectively extract 

discriminative characteristics from EEG signals. High-

dimensional EEG signals can be processed and handled more 

effectively thanks to FBCSP, which decreases the 

dimensionality of EEG data while maintaining pertinent 

information. A CNN's capacity to automatically learn 

hierarchical representations is enhanced when FBCSP 

characteristics are incorporated into the design. This 

enhances the use and comprehension of the features that are 

retrieved [39]. 
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The proposed framework is also assessed using dataset 2b 

from the BCI Competition IV [40]. This dataset comprises 

nine subjects. The Validation accuracy achieved is 0.893 

with Cohen-kappa value of 0.654 using the proposed 

FBCSP-CNN model. It gives good results on both datasets, 

BCI IV 2a and BCI IV 2b giving a generalized model. 

5. Results and Discussions 

TABLE II. 

 
Classification Report for 5 channels on 

BCI IV 2a  dataset 

Class Precision  Recall F1-score Support 

0 0.94 0.86 0.90 56 

1 0.90 0.90 0.90 42 

2 0.88 0.81 0.84 47 

3 0.84 0.98 0.91 55 

 

 

TABLE III 

 
Classification Report for 5 channels on 

BCI IV 2a dataset 

Class Precision  Recall F1-score Support 

0 0.93 0.94 0.93 81 

1 0.85 0.91 0.88 70 

2 0.90 0.80 0.85 80 

3 0.89 0.93 0.91 60 

 

TABLE IV 

 
Classification Report for 3 channels on 

BCI IV 2b dataset 

Class Precision  Recall F1-score Support 

0 0.88 0.77 0.82 155 

1 0.79 0.88 0.83 145 

 

 

Fig 2.  CNN model accuracy curve for 22 channels 

 

(a)                                                                                                        (b) 

Fig 3.  (a) CNN Model Training and Validation Accuracy for 5 channels    and (b) Confusion Matrix for the Proposed CNN 

Model for 5 Channels on    BCI IV 2a  dataset 
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                                                           (a)                                                                                                        (b) 

Fig 4.  (a) CNN Model Training and Validation Accuracy for 3 channels    and (b) Confusion Matrix for the Proposed CNN 

Model for 3 Channels on BCI IV 2a  dataset 

 

(a)                                                            (b) 

Fig 5.  (a) CNN Model Training and Validation Accuracy for 3 channels and (b) Confusion Matrix for the Proposed CNN 

Model for 3 Channels on BCI IV 2b dataset 

TABLE 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Subject Independent Classification accuracy of various methods on the MI-Dataset BCI IV 2a 

Classifier Feature Extracted No. of 

Channels 

Accuracy 

LSTM [33] FBCSP 7                 93.9% 

SVM [34] SCSP 11 85.38%   

SRDA (Spectral regression discriminant 

analysis) [35] 

CSP + LCD + Brain 

Network 

3 79.67% 

 (Multi – Kernel Relevance Vector Machine) 

[36] 

FBCSP + PLV(Phase 

Locking Value) 

9 83.21% 

SVM [37] Sparse CSP 9 78.93% 

Proposed method FBCSP + CNN 

BCI IV 2a dataset 

5  89.10 % 

3 90.66% 

22 92.66% 

FBCSP + CNN 

BCI IV 2b dataset 

3 89.30% 
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6. Conclusion 

The experimental results demonstrate the robustness of our 

proposed strategy in identifying distinguishing brain activity 

patterns during various MI tasks, leading to an improvement 

in classification accuracy in four-class MI tasks. Real-time 

rehabilitation systems can benefit greatly from the high 

classification accuracy and low processing load. The subject-

independent channel selection for BCI applications based on 

motor imagery was the main emphasis of this paper. In order 

to achieve this, we looked at the channel reduction strategy 

that limits the classification accuracy to a reasonable range. 

By concentrating on channels that reliably transmit task-

related information across individuals, channel selection 

based on MI can improve generalization and increase the 

model's capacity to generalize to new data. When paired with 

spatial filtering methods like FBCSP, MI-based channel 

selection can maximize the selection of pertinent channels 

for use in later feature extraction, which results in more 

efficient and condensed feature representations. The 

proposed method outperforms other methods in comparison 

like, LSTM-CNN, SVM-SCSP, SRDA, and FBCSP-PLV. 

The proposed model gives better results on both datasets, 

BCI IV 2a and BCI IV 2b. 
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