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Abstract: Aquaculture has emerged as a critical component in satisfying the world's increasing demand for high-quality protein while 

relieving strain on wild fish populations. Oreochromis niloticus, also known as Nile tilapia, is one of the most economically important 

aquaculture species. Optimizing manufacturing efficiency and limiting resource waste, on the other hand, remains a difficulty. The 

construction of an Intelligent Recirculating Aquaculture System (IRAS) powered by a Feed-Conversion-Ratio (FCR)-based Machine 

Learning (ML) framework is used in this study to improve the sustainability and productivity of Oreochromis niloticus aquaculture. To 

establish a closed-loop aquaculture environment, the IRAS incorporates advanced sensor technologies, real-time data monitoring, and 

control systems. The use of machine learning algorithms trained on historical and real-time FCR data to anticipate and improve the feeding 

regime for Nile tilapia is central to this approach. The ML model modifies feeding schedules and quantities to enhance growth while 

decreasing feed waste and the associated environmental effects by continuously learning from FCR patterns. Furthermore, this study shows 

the feasibility and usefulness of the FCR-based ML strategy in enhancing feed utilization efficiency, growth rates, and overall performance 

of Oreochromis niloticus in an IRAS through a series of studies. The results show a significant reduction in feed waste and expenses, 

resulting in improved economic viability and environmental sustainability of the aquaculture system. Furthermore, the ML-driven system 

adapts to changing environmental conditions and improves the fish population's general health and well-being.. 
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1. Introduction 

Aquaculture is one of the areas of the global food supply that is 

growing at the fastest rate and provides people with a source of 

high-quality protein [1][2][3]. However, the world's population 

consumes 88% of this continually increasing aquatic output [4].  

The demand for aquatic food products is rising because of the 

expanding global population. The production of capture fisheries 

has stabilized, and the majority of the prime fishing grounds have 

reached their limit. In most regions of the world, aquaculture is 

seen to close the supply and demand gap for aquatic food because 

catch fisheries will not be able to keep up with the rising global 

demand for aquatic food [5][6].  

In order for the industry to fulfill this promise, many obstacles 

must be overcome. The sector is intensifying and diversifying, 

using new species, and changing its methods and procedures, 

according to key development patterns [3]. Additionally, 

aquaculture farms and culture-based fisheries in open waters 

produce less as a result of climate change. It poses a danger to 

global food security by altering biodiversity, ecosystems, and 

global fish output by displacing fish stocks from their natural 

habitats [7].  

Advances in automation and intelligent technology have caused 

aquaculture to develop gradually around the world in a more 

intensive and intelligent direction. The breeding environment has 

also gradually changed to a sustainable aquaculture system, 

greatly increasing aquaculture efficiency [3][7].  

Aquaculture has been impacted by farming organisms, 

aquaculture habitat, and other changeable factors despite the large 

number of workers needed. Due to the aforementioned, several 

concerns with aquaculture include fish nutrition, illness, water 

contamination, and more. As a component of the third green 

revolution, intelligent aquaculture will be devoted to resolving 

issues with fisheries development and increasing aquaculture 

productivity [3].  

Intelligent aquaculture is made possible by high-performance 

computers and machine learning technologies, which herald a new 

era for the fishing business. These technologies can also extract 

high-dimensional qualities and depth information from data [8].  

Machine learning, a core component of artificial intelligence, may 

be learned without requiring extensive programming knowledge 

and is a crucial technique for creating intelligent decision-making 

systems. The use of AI in recirculating aquaculture systems 

increases the precision with which water quality indicators are 

monitored and presents new ideas for how to slightly reduce 

energy consumption during breeding [7].  

With the gaps in the aquaculture industry presented, this work 

aims to develop an AI-based model to be used as technological 

support to enhance the aquaculture industry of the country. 

Further, through the development of a supervised machine 

learning technique, this work tries to innovate the current state of 

tilapia farming in the Philippines, providing technological 

advancements through an intelligent aquaculture system. 

2. Methodology 

The RAS was composed of different water tanks and sensors. The 

Main tank is considered the fish stocking tank. The Detection tank 
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was where the different sensors would be placed. The filtration 

tank will be composed of mechanical and biological filtering 

methods. The Water solution tank was where the water stocking 

tank was ready to be filled in the fish tank. Figure 1 presents the 

Recirculating Aquaculture System Architectural System.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. RAS Architectural System 

 

Table 1 shows the different materials used for building of 

Recirculating Aquaculture System. 

To acquire water quality parameters the study used an 

Arduino microcontroller device and sensors, the sensors in the 

microcontroller send the water parameter data to the PC to be 

evaluated by the system. Listed below are the hardware 

components that were used in this study.  

• Arduino Dissolved Oxygen Sensor  

• DFRobot Gravity: analog electrical conductivity 

sensor/meter (K=10) for Arduino  

• PH Meter Sensor Analog Kit 

• DHT11 Temperature and Humidity Sensor 

• Turbidity Sensor Suspended Turbidity Value Detector 

Module 

• Arduino UNO R3 

The hardware component of this study was used to 

monitor water parameters, which include water dissolved oxygen, 

Total Dissolved Solid, PH value, and Temperature using the 

developed microcontroller through the use of sensors. Ammonia 

is monitored by deriving these parameters using the data obtained 

from other settings. 

 

Table 1. Material used in RAS 

 

Particular Specification Purpose 

1 - IBC Water Tank 1000 Liters Capacity 

1 x 1 x 1.2 (meters) 

Main tank 

4 – water container 168 Liters Capacity 

ordinary 

1- Detection, 2- 

Filtration 

& 1- Solution Tank 

PBC pipe 2 inches Connect the different 

tanks 

1 - Aerator/ air pump 45 Watts Generate dissolved 

Oxygen 

1 – 

submersible 

water pump 

55 Watts, 3000L per 

hour 

Recirculate water from 

the 

solution tank going 

back to the Main 

tank 

1 – portable 

submersible 

heater 

300 watts To increase the water 

temperature level 

Mechanical & 

Biological 

Filtration 

Net, pebbles, sand, 

stone, 

foam, water purifier 

lilies 

Filter the water from 

the 

Main tank 

 

Figure 2. shows the circuit design of the different sensor 

interfaces used in the development of the system. 

Water quality requirements for aquaculture like tilapia, 

milkfish, and shrimp came from the BFAR office and were 

validated using previews related research [9][10]11]12].  

This study considered indoor fish farming where it used a 

1000-liter IBC water storage tank as a pond. It has dimensions of 

1m x 1.15m x 1.2m. The pond is connected by PBC pipes to three 

more water containers namely the detection tank, filtration tank, 

and solution tank. The setup is considered an intensive culture 

system for tilapia since the fish was solely dependent on the feed 

provided and water was closely monitored and maintained. 

 

 

 

 

 

Fig. 2. Sensors Interface 

Water ammonia was often altered due to the feeding of 

cultured fish in fishponds. This impacts aquaculture development 

and survival, which is why the experiment was monitored 

frequently. The total ammonia was measured using the pH and 

temperature data. First calculate the pKa, which is the ionization 

constant of the ammonium ion. To calculate the pKa value the 

researcher used the below equation: 

 

 

 

 

Where T= temperature in Degree Celsius. 

To compute the fraction of NH3 or Ammonia, the equation 

below was used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Dataset Gathering and AI Training and Validation Block 

Diagram 

(1) 

(2) 
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Figure 3 shows the block diagram for the extraction of 

biophysical variables of the RAS to be used in the development of 

the AI model likewise the training and validation of the developed 

AI model. 

To get data inputs for the machine learning to predict the 

tilapia right amount of feeds, the researcher, daily monitors the 

water Total Dissolved Solid (TDS), temperature, and pH level to 

get the average values for each day. The researcher also collects 

and measures daily the fish waste and food waste trapped in the 

filtration tank. To ensure that the maximum fish waste was 

collected, the researcher also manually collected using a net in the 

fish tank. 

Temperate and pH levels are two water parameters to determine 

the amount of ammonia in the water. The increase of feed waste 

in the water will result in an increase in the ammonia level. 

Moreover, the Water Temperature level affects the tilapia's 

feeding behavior and metabolism. If the temperature decreases 

from the optimal level (25 - 30 degrees Celsius) tilapia fish tend 

not to eat. [12][13].  

 

For the training and testing of the AI model, this study 

considered multiple linear regression machine-learning 

algorithms. The researcher used this algorithm to predict the right 

amount of feeds in a day using the water temperature level, Total 

Stocking Capacity (TSC), and Average Body Weight (ABW) of 

tilapia correlation on the feeding of tilapia as variables. 

In addition, to derive the ABW, the researcher used Total 

Stocking Capacity (TSC), Total Dissolved Solids (TDS), and 

Ammonia as variables. 

The researcher used the Jupyter Notebook Python 3 for the 

development and training of the AI model with the 364 recorded 

data that was collected in 3 months. After which the developed AI 

model undergoes cross-validation using the provided feature of 

sklearn in Python 3 through the use of ten thousand (10000) of test 

data. 

 

 

Fig. 4 Cross-validation of a fish Weight Prediction model using 

Multiple Linear Regression in Python 

 

Figure 4 shows the cross-validation of the fish weight prediction 

model using multiple linear regression in Python. 

Fig. 5 Cross-Validation of AI Feeds Prediction using Multiple 

Linear Regression in Python 

 

Figure 5 shows the cross-validation of the fish weight 

prediction model using multiple linear regression in Python.  After 

the cross-validation, the AI model was extracted and deployed in 

the Arduino Uno for the actual testing and validation for at least 7 

days. 

The implementation of this project will be evaluated using 

the Feed- Conversion- Ratio to measure the efficiency with which 

the bodies of tilapia convert aquatic animal feed into the desired 

output. 

 

FCR = Ammount of feeds consumed (kgs)/Wet 

weight gain of fish (kgs) 

 

During the experiment period the researcher used 150 pcs 

of tilapia as the Total Stocking Capacity (TSC). The Tilapia 

Average Body Weight (ABW) started from 72 grams up to 251 

grams which then reached a Total Wet weight gain of fish (grams) 

= 30,622. 

3. Results And Discussion 

In this study, the researcher was able to build a Recirculating 

Aquaculture System using low-cost and locally available materials 

such as 1m x 1.15m x 1.2m 1000 Liters IBC water storage tank, 

and three more water containers for the detection tank, filtration 

tank, and solution tank. These four tanks were connected using 

PBC pipes. The setup is considered a super-intensive culture 

system for tilapia since the fish were solely dependent on the feed 

provided and water is closely monitored and maintained. The 

Water used in the experiment was from deep-well and through the 

water recirculating feature, it can save water to a considerable 

amount. The water from the deep well was considered good for 

the survival and growth of the tilapia as presented in the water 

quality parameters reading. The readings were all in the allowable 

range and good for the growth of tilapia. 

Table 2. Initial Water Parameter Reading of deep-well water 

Water Parameter Readings 

pH level 8.6 

Dissolved Oxygen 7.94 ppm 

TDS Total Dissolved Solids 283 ppm 

Temperature 25 degrees Celsius 

Ammonia 0.2 ppm 

 

Table 2 shows the initial water parameter reading of water coming 

from a deep well. This means that the water coming from deep-

well is a desirable water quality for the growth of Nile tilapia based 

(3) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 122–128 |  125 

on the gathered water index suitable to the survival and growth of 

tilapia. 

 

Table 3. Average Water Parameter Index Reading Comparison 

 

Water 

Parameter 

Reading when 

Recirculating 

is OFF at least 

12 hours 

Reading 

when 

recirculating 

is ON at least 

1 hour 

Reading 

continuous 

recirculating 

during 

daytime 

pH level 5.67 7.79 7.43 

Dissolved 

Oxygen 

3 ppm 6 ppm 7 ppm 

(TDS) Total 851 ppm 483 ppm 383 ppm 

Dissolved 

Solid 

Temperature 29 ⁰C 27 ⁰C 25 ⁰C 

Ammonia 2 ppm 0.2 ppm 0.01 ppm 

Table 3 shows the water parameter index reading in different 

scenarios. This means that the recirculating system of the project 

maintains the water quality parameters to desirable levels for the 

survivability and growth of the Nile Tilapia. The mechanical and 

biological filtration included in the recirculated aquaculture 

system limits the amount of Ammonia, pH level, and TDS keeping 

the water quality at a desirable range for tilapia growth. It also 

contributes to maintaining a water temperature of 25 to 30 ⁰C 

which is good for the optimal growth of tilapia. 

 

Fig. 6. Functional Block Diagram of the Intelligent RAS 

Figure 6 shows the functional block diagram of how the 

intelligent RAS works. The intelligent feature of the system starts 

from the detection of the water quality parameter index by the 

different sensors namely the temperature, pH, TDS, and dissolved 

oxygen. Ammonia is being monitored mathematically using the 

temperature and pH level. Reading from the sensors will then be 

sent to the Arduino UNO where the main program is being stored. 

The reading will be processed and it will be displayed in the 

graphical user interface of the system on a laptop or PC and 

provided a proper notification message. The sensor readings were 

also used by the AI model to make the prediction. For cases where 

there is a water quality parameter index reading beyond the normal 

range of water quality, the main circuit which is the Arduino will 

send a signal to the relay to take necessary action to gain back the 

normal range of water quality suited for the survival and growth 

of tilapia. The aerator device will automatically switch ON when 

the dissolved oxygen reading is below 0.02 ppm, open the heater 

device when the water temperature drops to less than 20 ⁰C, and 

simultaneously provide a warning notification through the system 

interface for the fish farmer’s information. 

The 150 pieces of grow-out tilapia with an average of 72 

grams in weight were the subject of the experimentation. The 

BFAR feeding schedule and feeding rate were observed during the 

experimentation period. 

 

Table 4. Extracted Biophysical variables of the experiment. 

 

Tilapia 

Averag

e body 

weight 

(grams) 

Amount 

of 

feeds.da

y 

(grams) 

Averag

e Food 

waste 

(grams) 

Averag

e Waste 

(Grams

) 

Averag

e TDS 

Level 

Average 

Ammoni

a Level 

72 400 134 387 742 3 

85.5 500 102 443 732 2 

102 450 92 423 718 1 

127 500 32 456 698 1 

162 450 75 490 705 1 

205 600 89 581 714 1 

253 700 106 587 734 2 

 

Table 4 shows the total amount of feeds given per day based on 

tilapia’s average body weight. The feeding schedule adopted the 

twice-a-day scheme specifically at nine in the morning and three 

in the afternoon. The amount of feeds given per day in this table 

was derived using the formula on Daily Feed Rate (DFR) from 

BFAR: 

DFR=ABW*Stocking Density*feeding rate 

 

Furthermore, Table 4 shows the extracted biophysical variables 

such as the average food waste, average waste, average TDS 

reading, and average level of ammonia reading. This means that 

the increase in food waste resulted in a higher level of TDS and 

Ammonia in the water. The average Body Weight of tilapia can be 

directly associated with the amount of waste produced. As the 

weight of tilapia gets heavier, it produces more waste. 

 

 
 

Fig.  6. Relationship of Food waste and Water Temperature 

 

Figure 6 shows the relationship between water temperatures with 

food waste. This means that when the temperature is low, there is 

more food waste. This means that tilapia tends not to eat when the 

temperature is low. This was backed up by the fish farmer's 

practice of not feeding tilapia just after the rain or during the rainy 

days or cold season. 
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Table 5. Comparison of Predicted Amount of Feeds 

Tilapia 

Average 

Body 

Weight 

(grams) 

Amount of 

Feeds using 

BFAR 

formula 

(grams) 

Actual amount 

given during 

experimentation 

(grams) 

Amoun of 

feeds 

Predicted 

(grams) 

72 432 400 408 

85.5 384 350 360.87 

102 257 278.57 265.53 

127 310 297 308.53 

162 395 407 396 

205 500 450 499.97 

253 617 600 612.93 

 

Table 5 shows the comparison of the predicted amount of feeds to 

the actual given amount during experimentation and the amount of 

feeds derived using the BFAR formula. The figure presented in the 

table is the average feed per day derived based on the weight of 

tilapia. During the experimentation, there were dead tilapia. The 

initial 150 pieces became 122 pieces during the harvest time. The 

said dead was also considered in the computation of the amount of 

feeds. In the prediction model amount of feeds considered the 

temperature thus, it adjusts the amount when the temperature is 

low. 

 

Table 6. Comparison of the Food-Conversion-Ratio 

Amount of Feeds 

using BFAR 

formula 

(grams) 

Actual amount 

given during 

experimentation 

(grams) 

Amount of 

feeds Predicted 

(grams) 

 

 

Accuracy 

35,333 32,850 35,324.99998 99.98% 

 

Table 6 shows the total amount of feeds given during the 

experimentation derived using the BFAR formula specified in 

equation 3, the prediction model, and the actual feeds given during 

the entire experimentation period. The daily feed or actual feed 

intake of fish in the tank was derived by the researcher by 

calculating the difference between the amount fed and the amount 

of waste feed collected (corrected for leaching losses). The 

predicted amount of feed is 99.98% compared to the BFAR 

formula and 93% compared to the amount of feeds given during 

the experimentation period. 

The AI model for the prediction of feeds and prediction 

of ABW were also cross-validated as shown in Figure 9-10 in 

methodology where both get 98% linearity. This verified the 

accuracy of the prediction. The system was evaluated using the 

Feed-Conversion Ratio and its acceptability. Table 11 in 

methodology shows a comparison of the derived Feed-

Conversion-Ratio or FCR. The result showed the feed prediction 

model is accurate as it has an FCR of 1.15 which according to 

BFAR a better fish feed. FCR is a formula used to compare and 

evaluate the efficiency with which the bodies of tilapia convert 

aquatic animal feed into the desired output. 

4. Summary And Conclusion 

In conclusion, this study represents a substantial advance 

in aquaculture, particularly with regard to the production of 

Oreochromis niloticus. The study has shown the potential to 

revolutionize the effectiveness, sustainability, and commercial 

viability of tilapia aquaculture by integrating an Intelligent 

Recirculating Aquaculture System (IRAS) with a Feed-

Conversion-Ratio (FCR)-based Machine Learning (ML) method. 

Feed Efficiency is improved: The incorporation of 

machine learning algorithms into the aquaculture environment 

allows for precise and real-time adjustment of feeding schedules 

and quantities based on FCR data. This results in significant feed 

waste reduction, a vital part of sustainable aquaculture, as well as 

significant cost savings for producers. 

Improved Growth and Performance: The results show that 

the FCR-based ML technique improves Oreochromis niloticus 

growth rates and overall performance. The adaptive feeding 

method guarantees that fish get enough nourishment, resulting in 

healthier and more robust populations. 

Economic viability: Feed cost reductions and improved 

growth rates contribute to aquaculture businesses' economic 

viability. Sustainable techniques that limit resource waste are not 

only good for the environment, but also good for business. 

Sustainability in the Environment: The Intelligent 

Recirculating Aquaculture System reduces the environmental 

impact of traditional aquaculture systems. It decreases water 

pollution and the total ecological footprint of fish aquaculture by 

maximizing resource consumption. 

Adaptation: The ML-driven system demonstrated 

adaptation to changing environmental circumstances, offering 

resilience in the face of unanticipated hurdles in aquaculture 

output. 

In summary, findings in this study show that the FCR-

based Machine Learning technique, when used in the context of 

an Intelligent Recirculating Aquaculture System, has the potential 

to improve the productivity and sustainability of Oreochromis 

niloticus aquaculture. Beyond this single species, the ideas 

revealed in this study hold promise for the larger aquaculture 

industry, providing a route toward more ethical and efficient aqua 

animal production that matches global food security and 

environmental preservation aims. As aquaculture continues to play 

an important part in supplying the world's protein demands, the 

new solutions presented here mark an important step forward in 

the industry's pursuit of a more sustainable and productive future. 

 

5. Implications And Recommendations 

5.1. Implications  

In a worldwide context, the development of the 

aforementioned project can aid in the improvement and innovation 

of fish farming by allowing fish farmers to site their farms close to 

the populous and markets, allowing them to regulate year-round 

production and avoid weather extremes. Furthermore, the use of 

Artificial Intelligence would improve its sustainability and 

profitability, as well as provide fish farmers with convenience and 

comfort in administering their ponds or farms. 

In an economic context, the development of a recirculated 

aquaculture system in fish farming helps promote a healthy 

environment for aquaculture products, which promotes fast 

growth, which can boost aquaculture production by providing fish 

vendors or businesses with a means to mitigate fish kills during 

transport and/or stocking, thereby providing consumers with 

fresher and healthier tilapia fish. 

In the context of the environment, the development of this 

study enables aquaculture to take the technological turn required 

for the growth of this area with an eye toward environmental 

sustainability. 
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The implementation of research work could lead to the 

following: 

Enhanced Aquaculture Efficiency: The integration of a 

supervised feed-conversion-ratio-based machine learning 

approach into the recirculating aquaculture system (RAS) for 

Oreochromis niloticus holds significant promise for improving 

overall efficiency. By continuously learning and optimizing the 

feeding process, the system can potentially reduce the wastage of 

feed, minimize environmental impact, and achieve higher fish 

growth rates. 

Sustainable Aquaculture Practices: Sustainability is a 

crucial concern in modern aquaculture. This research highlights 

the importance of implementing intelligent systems in aquaculture 

to reduce the reliance on external inputs and decrease the overall 

ecological footprint. Such sustainable practices can help to 

preserve aquatic ecosystems and foster long-term viability for the 

aquaculture industry. 

Application of Machine Learning in Aquaculture: The 

successful application of a supervised machine learning approach 

in the aquaculture system of Oreochromis niloticus opens doors 

for further research and application of artificial intelligence in 

other aquaculture settings. Researchers and industry professionals 

can explore the potential of machine learning for optimizing other 

processes, such as disease detection, water quality management, 

and species-specific husbandry practices. 

Economic Viability: As aquaculture continues to play a 

crucial role in global seafood production, finding ways to reduce 

operational costs and increase productivity is essential. The 

incorporation of intelligent systems can lead to better resource 

management, reduced labor costs, and higher yields, ultimately 

contributing to the economic viability of the aquaculture industry. 

5.2. Recommendations 

Further Validation and Testing: While the initial results of 

this research are promising, further validation and testing of the 

intelligent recirculating aquaculture system are necessary. 

Conducting experiments in real-world conditions with larger 

sample sizes and varying environmental factors would provide 

more robust data to support the efficiency and effectiveness of the 

system. 

Consideration of Different Fish Species: The focus of this 

research is on Oreochromis niloticus, but the approach should be 

evaluated for its applicability to other fish species commonly 

raised in aquaculture. Different fish species may have unique 

feeding behaviors and responses to environmental conditions, so 

adaptability should be thoroughly investigated. 
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