

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 12

Development of Functional Test Cases Using FSM and UML Activity

Diagrams for MDT

1Dr. Vinod H. Patil, 2A. Deepak, 3Dr. Himanshu Sharma, 4Lavanaya Vaishnavi D. A., 5Upendra Singh

Aswal, 6Mr. K. K. Bajaj, 7Dr. Anurag Shrivastava

 Submitted: 06/12/2023 Revised: 17/01/2024 Accepted: 27/01/2024

Abstract: This study's testing of The SDLC's software phase is crucial. This stage does more than only evaluate the software's quality.

Model-driven testing and code-driven testing are the two categories that make up this testing procedure. Code-driven testing is based on

testing the entire program, line by line. A control flow and data flow that is sequential drives code-driven testing. The model-driven testing

method focuses on the executable module rather than each line of code since it supports third-party modules, APIs, and components. One

need not be an expert in every field because the tester will focus on how well each component works individually. The combination of an

extended finite state machine with a sequence diagram is covered in this essay. One of the most important areas that must be effectively

handled to provide effective testing of the given project is model-driven testing. The system that has been implemented combines UML

with FSM to cover every situation and all potential outcomes. This situation inspires us to establish a framework for generating test cases

automatically, covering every potential pathway (leveraging UML activity diagrams to account for all pathways) and situations (utilizing

Finite State Machine to describe various scenarios). The Finite Machine also operates based on triggers, where scenarios are established,

and if these criteria are met, the subsequent action is carried out. Model-driven testing is created by considering all scenarios, pathways,

and situations.

Keywords: Extended File System, Model-Driven Testing, Finite State Machine, Coverage of paths and conditions, Activity Diagram.

1. Introduction

Software testing is an important phase in the software

development life cycle since it allows the product's

quality to be verified. This stage enables evaluation of

the program's suitability for the user's demands. Several

testing methods can be used to achieve this, with test

case development being the most successful. All

components or features will be examined in these test

scenarios. All performance-related parameters for these

components or capabilities are anticipated to meet the

benchmark. The chosen software development life

cycle, such as the waterfall model, spiral model, and

others, has an impact on the testing approaches used. The

particular stage emphasized, hereafter referred to as a

phase, dictates the chosen testing approach. Testing

stands out as the single most critical phase in the

software creation process. The field of software testing

is continually advancing. Recent frameworks like

TestNG prove highly effective for data-driven testing,

particularly when dealing with substantial volumes of

data. Among the most popular technologies available

today is the Selenium suite, comprising Selenium Web

Driver, Selenium Grid, and Selenium RC tools for

remote control and distributed computing. QTP, a

Windows-based testing tool, is employed to validate

software running on the Windows operating system.

Industry standards necessitate an agile and adaptable

approach. All of this promotes a methodology where

1Department of E&TC Engineering, Bharati Vidyapeeth

(Deemed to be University) College of Engineering, Pune

vhpatil@bvucoep.edu.in

2Saveetha School of Engineering, Saveetha Institute of

Medical and Technical Sciences, Saveetha University,

Chennai, Tamilnadu

*deepakarun@saveetha.com

3Associate Professor, Department of Computer Engineering

and Applications, GLA University, Mathura

himanshu.sharma@gla.ac.in

4Assistant Professor, Dept of ECE., R L JALAPPA INSTITUTE

OF TECHNOLOGY, DODDABALLAPUR, KARNATAKA

lavanyavaishnavi@gmail.com

5Associate Professor, Department of Computer Science and

Engineering, Graphic Era Deemed to be University,

Dehradun, Uttarakhand

upendrasinghaswal@geu.ac.in

6RNB Global University, Bikaner

vc.kkb@rnbglobal.edu.in

7Saveetha School of Engineering, Saveetha Institute of

Medical and Technical Sciences,

Chennai, Tamilnadu

Anuragshri76@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 13

each component can be assessed for compliance with

specifications. The fields of electronics, mechanical

engineering, civil engineering, and bioinformatics have

all witnessed substantial automation growth. This

underscores the importance of software quality checks

across these domains. At the heart of the software testing

process lie unit and functionality tests encompassing all

scenarios. The rigour and approach employed in testing

both impact the software's quality. This form of quality

assessment can be conducted in conjunction with UML

diagrams, which allow for the examination of diverse

software functionalities and dimensions.

2. Literature Survey

The selection of research papers focusing on Model

Driven Testing involved an examination of various

scholarly works. Several important methodologies

were considered to define the problem statement and

provide guidelines for addressing existing issues.

A method known as ESG4WS, developed by Andr'e

Takeshi Endo et al. [1], combines Model-Driven

Testing with structural testing for web services. To

guarantee that the programme fulfils the quality

requirements listed in the software requirement papers,

structural testing is used [10] [11] [12] [14]. With this

method, testing can end when good findings are

obtained. To gain a comprehensive understanding of

the software's behaviour, particularly when the

application's coverage and scope become evident, an

Event Sequence Graph of the application under test is

constructed. The authors emphasized both data flow

and control flow analysis. Control flow [13] is

employed to assess the coverage of all nodes and edges,

while data flow [7] addresses data usage and potential

usage. There is room for improvement in the system's

ability to detect faults.

 Using a Finite State Machine (FSM) is an alternate

approach for determining conditions [2]. In this

approach, each step includes condition checks, and the

upcoming route to be walked is decided based on these

evaluations. Rules are formulated to enhance the

utility's performance, and these rules are enforced

during traversal to ensure that the system examines all

potential conditions in the form of Boolean values

[6][9]. However, a limitation of this approach lies in its

reliance on Boolean values, which provide only two

condition options. This limitation may be problematic

when dealing with data scenarios that involve more

than two conditions.

 The Finite State Machine (FSM) functions by taking

into account multiple conditions at each node and

determining the subsequent course of action based on

desired parameter outcomes.

The FSM process can be divided into three segments:

● E-block: Evaluates triggers for all states.

● FSM-block: Calculates the next state following

the current state and a signal that governs the A-

block.

● A-block: To execute the necessary data

operations and manage data movement.[5]

There is potential for enhancement since the system is

focused on web services and exclusively supports

utilities developed in Java[3].

Metamodel Transformation [4] has introduced five

transformations that are detailed about five distinct

metamodels. Metamodels provide insights into

functionality, with the initial two metamodels outlining

functional requirements, the third specifying test

scenarios for evaluation, the fourth dealing with

associated values, and the fifth metamodel

amalgamating all inputs into organized test case formats

[7][8].

After a thorough examination of these methodologies,

addressing the challenge of creating a system capable of

comprehensively covering all paths and rigorously

evaluating all conditions at each node may be a

formidable task.

3. Mathematical Modelling

Input: Finite State Machine (FSM), XML

representation of an activity diagram

Process: FSM⊕ ACTIVITY

Output: Generate test cases encompassing all

pathways, prioritize them, and eliminate any

redundancies.

Data Structure: Table No. 1

Serial

Number

Variable Meaning

1. F Functionalities

2. S States

3. C Conditions

4. E Edges

5. N Nodes

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 14

6. T test cases

7. S serial number

8. Se Sender

9. Re Receiver

SN- 0

For (i=0; i<=#F;i++)

{

For (j=0; j<=#C;j++)

{

For (k=0; k<=#E;k<=#N;k++)

{

T – (SN, condition, Cs, Se, Re) SN++; T++;

Display T;

}

}

}

4 . System Architecture

4.1 Modules

1.Input Activity Diagram:

Activity diagrams are accepted as input for the

proposed task. Every activity diagram is theoretically

capable of producing its own ADT, which entails having

all the necessary information to modify the model and

examine the capabilities and functions of every activity

diagram. Technically, the ADT can then produce the

ADG. For all necessary and practical test techniques,

ADG is accessed through DFS. To have the best test

cases, the whole major points are added to every checked

path using the ADT. Each activity diagram needs to be

run through each of the four modules to create the best

possible collection of really affordable test cases.

Fig 1: System Architecture of MDT using ADT &FSM

2. Activity Dependency Table Generation

Every activity diagram is essentially employed for the

creation of an ADT (Activity Dependency Table),

iterations, synchronization, and procedures that depict

the activities of tasks. This scheme delineates the tasks

earmarked for transfer to various entities that can aid in

system, integration, and regression testing.

Furthermore, it encompasses the input data alongside

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 15

the expected output values for each system operation.

Activity Dependency Table makes every interaction

between activities very evident. Every activity has a

unique symbol that makes it simple to refer to it within

relevant dependencies and to use it within various

concerned system components. Permanent activity is

dispersed completely inside one picture, reducing the

searches of the produced ADG (which will be

explained more in this section)., Permanent activities

are divided solely within one image as opposed to

having numerous symbols for a single activity.

3. DFSM Graph Generator

This module elaborates on the specifics of the

controlling criteria that are used to regulate the

generation of test cases. The DFSM generator addresses

the situation where only a singular output is generated.

4. Test Suit Generation

• Round Trip - The path's total round journeys are

covered and reported.

• Sequence - The total number of input sequences

that this sequence covers.

All acts in the path must be visited a minimum of

once.

• Event - Every event in the test cases' path must be

visited.

• State - Every state needs to be considered at least

once throughout the life cycle.

• Transition - It refers to all of the transitions that are

included in the coverage.

5. Implementation and Result

The experiment was conducted using the PIN change

functionality of an ATM as an example. The

investigation utilized a distinct methodology, where the

route was independently computed using the FSM and

Activity diagram (Figure 3: Individual Approach). In

the unified approach (Figure 5: Combined Approach),

the results from both approaches were merged, and

duplications were removed before test case generation.

Subsequently, the generated test cases underwent a

thorough check to identify and remove any duplicates.

The ultimate result of employing the combined

approach in Model-Based Testing (MBT) was the

production of a larger set of test cases, as evidenced by

the total count of 83 test cases. Simultaneously,

unnecessary, redundant test cases were filtered out.

The registration system was selected and presented in a

manner designed to facilitate reader comprehension.

It's a straightforward system where users input their

login credentials. Upon verification, if the user is

registered, they can successfully log in and proceed

with the authentication process. Access is granted only

when the specified criteria are met on both the client

and server sides.

User Login System:

Table No. 2 Test Cases

Activity Diagram

Inputs

Test Cases

Insert Card

Validation

● Wrongly Insert

Card

● Card Not Valid

● Valid Card

Language Selection

Process

● Language Selected

● Cancel

ATM Pin

Validation

● Valid PIN

● Invalid PIN

● Cancel

Selection Menu ● Withdraw

● Transfer

● Balance Enquiry

Balance Detail ● Balance Enquiry

● Print Mini

Statement

● Cancel

Transfer ● Possible

● Cancel

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 16

Control Flow Standards:

● Every node within the registration process must

be accessible at least once.

● It is required that every edge within the

registration system is traversed at least once.

Data Flow Standards:

● Each utilization of data should be attainable.

● Every potential data usage should be reached.

Based on the decision tree charted, a successful test case is

determined by the adherence to predefined parameters. For

instance, to utilize the login system, a successful login

attempt must satisfy Rules 1, 2, 3, and 4, with Rule 3 being

optional. The validity of the results is confirmed through the

application of positive and negative values.

In the context of the registration system's login model,

achieving a user's visitation of 70% of all nodes is deemed

acceptable.

Table No.3 Verification of the results login module of the registration system

 All Nodes All Edges All Uses All pot

uses

Positive 70 80 78 90

Negative 30 20 22 10

Fig 2: MDT for ATM PIN change

Fig 3: User Login

Withdraw ● Collect Cash

● Not Sufficient

Amount in ATM.

● Not Sufficient

Amount in

Account.

● Exceed Limit.

Transaction Slip ● Possible

● Cancel

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 17

Fig 4: Verification of results login module of registration system

Combination of the Extended Finite State Machine

(EFSM) and UML Sequence Diagram:

• Trigger conditions and the essential information are

included in the Extended Finite Machine diagram.

Three parts may be identified in the EFSM process:

• E-block: To evaluate all condition triggers.

• FSM-block: Determine the subsequent state using the

current state and an A-block control signal.

• A-block: To carry out the necessary data moves and

activities.

In addition to the state diagram, a sequence diagram is

appended because when the focus is on functionality,

dependencies need to be checked. This aspect is crucial

because coding is not explored in Model-Based Testing

(MBT), and a dependency check is required to ensure

the proper invocation of the embedded entity. Table No.

3 provides information on path coverage for the

Extended Finite State Machine and Sequential Test

Model. For each step, it includes the associated message,

the number of states, and transitions.

The total for path coverage, state coverage, and

transition coverage reflect the cumulative result of

covered paths. As an illustration, the overall number of

tests executed for the state is equivalent to 24 by

multiplying 2, 1, 2, 3, 2 and 1. All these parameters offer

insights into the total number of tests within their

respective domains.

Table No.4 Path coverage EFSM_SeTM

Service Name Message #State #Transition

Authentication Verify () 2 2

Validation Validate () 1 3

Registration Signup () 2 2

All Path P1*p2*…*Pn 3 1

All State S1*S2*…*Sn 2 1

All Transitions T1*T2*…*Tn 1 2

Fig 5: Path coverage by EFSM_SeTM

Opportunities for enhancement in EFSM_SeTM lie in
the system's compatibility, which is currently limited to

web services specifically crafted using Java.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 18

5. Conclusion

The system is capable of producing a suitable result, as

evidenced by the fact that the elimination of redundancy

drastically decreased the number of steps required to

verify all requirements and cover all paths from 83 to 63.

To verify every last detail of the system's functioning,

the number of test cases must be increased. Redundancy

in the test cases must also be eliminated to avoid testing

superfluous functionality. Since each of these systems

depends heavily on functionality, the system may suffer

if the functionality input is improperly collected. It is

crucial to use a model-driven testing methodology that

includes complete testing coverage, consideration of

events, and inter-module communication. It is also

required to correctly design a template or system to run

test cases. Then, utilising metrics, these test cases should

be thoroughly examined.

Future Scope:

Automation and Tool Development: As technology

continues to evolve, there's potential for more

sophisticated tools and frameworks to be developed that

automate the process of generating functional test cases

from FSMs and UML Activity Diagrams. These tools

could utilize advanced AI techniques to identify test

scenarios, boundary conditions, and edge cases, making

the testing process more efficient and thorough.

7. References

[1] A. Bandyopadhyay and S. Ghosh, "Test Input

Generation Using UML Sequence and State

Machines Models," 2009 International Conference

on Software Testing Verification and Validation,

Denver, CO, USA, 2009, pp. 121-130, doi:

10.1109/ICST.2009.23.

[2] Vikas Panthi, Durga Prasad Mohapatra,

“Automatic Test Case Generation using Sequence

Diagram”, International Journal of Applied

Information Systems (IJAIS) – ISSN: 2249-0868

Foundation of Computer Science FCS, New York,

USA Volume 2– No.4, May 2012 – www.ijais.org

[3] Md Azaharuddin Ali et al. “Test Case Generation

using UML State Diagram and OCL Expression”,

International Journal of Computer Applications

(0975 – 8887) Volume 95– No. 12, June 2014

[4] S. ShanmugaPriya et.al, “ Test Path Generation

Using UML Sequence Diagram”, Volume 3, Issue

4, April 2013 ISSN: 2277 128X International

Journal of Advanced Research in Computer

Science and Software Engineering

[5] Ching-Seh Wu, Chi-Hsin Huang," The Web

Services Composition Testing Driven on Extended

Finite State Machine and UML Model", 2013 Fifth

International Conference on Service Science and

Innovation.

[6] M. Benjamin, D. Geist, A. Hartman, Y.

Wolfsthal, G. Mas and R. Smeets, "A study in

coverage-driven test generation", In Proc. of the

36th Conference on Design Automation

Conference, pp. 970-975, 1999.

[7] M. Born, I. Schieferdecker, H.-G. Gross, and P.

Santos. “Model-Driven Development and Testing

– A Case Study”. In Proc. of the 1st European

Workshop on Model Driven Architecture with

Emphasis on Industrial Application, pp. 97-104,

2004

[8] C. Crichton, A. Cavarra, and J. Davies, “Using

UML for Automatic Test Generation”, In Proc. of

the Automation of Software Testing, 2007.

[9] S. R. Ganov, C. Killmar, S. Khurshid, and D. E.

Perry. “Test Generation for Graphical User

Interfaces Driven on Symbolic Execution”. In

Proc. Proc. of the 3rd International Workshop on

Automation of Software Test, pp. 33-40, 2008.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe,

"CADP 2006: A Toolbox for the Construction

and Analysis of Distributed Processes", In Proc.

of the 19th International Conference on Computer

Aided Verification, pp. 158-163, 2007.

[11] J. R. Calame, “Specification-Driven Test

Generation with TGV”, Technical Report SEN-

R0508, Centrum voor WiskundeenInformatica,

2005.

[12] Benjamin, M., D. Geist, A. Hartman, Y.

Wolfsthal, G. Mas and R. Smeets, "A study in

coverage-driven test generation", In Proc. of the

36th Conference on Design Automation

Conference, pp. 970-975, 1999.

[13] Born, M., I. Schieferdecker, H.-G. Gross, and P.

Santos. “Model-Driven Development and Testing

– A Case Study”. In Proc. of the 1st European

Workshop on Model Driven Architecture with

Emphasis on Industrial Application, pp. 97-104,

2004

[14] Bouquet, F., C. Grandpierre, B. Legeard, and F.

Peureux, ”A Test Generation Solution to

Automate Software Testing”, In Proc. of the 3rd

international workshop on Automation of

software test, pp. 45-48, 2008. 51828

[15] Bouquet, F., C. Grandpierre, B. Legeard, F.

Peureux, N. Vacelet, and M. Utting, “A subset of

precise UML for Model-based Testing”, In Proc.

of the 3rd International Workshop Advances in

Model Based Testing (AMOST), pp. 95-104,

http://www.ijais.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 19

2007. Calame, J. R. 2005.

[16] The Web Services Composition Testing Based on

Extended Finite State Machine and UML Model",

2013 Fifth International Conference on Service

Science and Innovation Crichton, C., A. Cavarra,

and J. Davies,

[17] “Using UML for Automatic Test Generation”, In

Proc. of the Automation of Software Testing,

2007. Farooq, Q., M. Z. Z. Iqbal, Z. I. Malik and

A. Nadeem,

[18] Garavel, H., F. Lang, R. Mateescu, and W. Serwe,

"CADP 2006: A Toolbox for the Construction

and Analysis of Distributed Processes", In Proc.

of the 19th International Conference on Computer

Aided Verification, pp. 158-163, 2007.

[19] MdAzaharuddin Ali et al. “Test Case Generation

using UML State Diagram and OCL Expression”,

International Journal of Computer Applications

(0975 – 8887) Volume 95– No. 12, June 2014

[20] ShanmugaPriya S. et al, “ Test Path Generation

Using UML Sequence Diagram”, Volume 3,

Issue 4, April 2013 ISSN: 2277 128X

International Journal of Advanced Research in

Computer Science and Software Engineering

[21] VikasPanthi, Durga Prasad Mohapatra, 2012.

“Automatic Test Case Generation using

Sequence Diagram”, International Journal of

Applied Information Systems (IJAIS) – ISSN:

2249-0868 Foundation of Computer Science

FCS, New York, USA Volume 2– No.4,

www.ijais.org.

[22] P. Mohagheghi, W. Gilani, A. Stefanescu, M.

Fernandez, An empirical study of the state of the

practice and acceptance of model-based

engineering in four industrial cases, Empirical

Software Engineering (2012) 1–28.

[23] Asaithambi SPR, Jarzabek S. Pragmatic Approach

to Test Case Reuse-A Case Study in Android OS

BiDiTests Library. Software Reuse for Dynamic

Systems in the Cloud and Beyond. Springer; 2014.

p.122–38.

[24] Ke Z, Bo J, Chan WK. Prioritizing Test Cases for

Regression Testing of Location-Based Services:

Metrics, Techniques, and Case Study. IEEE

Transactions on Services Computing.. 2014;

7(1):54–67.

[25] Papadakis M, Malevris N. Mutation-based test case

generation via a path selection strategy.

Information and Software Technology. 2012;

54(9):915–32.

[26] Zhang C, Groce A, Alipour MA, editors. Using test

case reduction and prioritization to improve

symbolic execution. Proceedings of the 2014

International Symposium on Software Testing and

Analysis. ACM; 2014.

[27] Mondal SK, Tahbildar H. Regression Test Cases

Minimization for Object Oriented Programming

using New Optimal Page Replacement Algorithm.

International Journal of Software Engineering and

Its Applications. 2014; 8(6):253–64

[28] Zhang W, Zhao D. Reuse-Oriented Test Case

Management Framework. International Conference

on Computer Sciences and Applications

(CSA).IEEE; 2013.

[29] Asaithambi S, Jarzabek S. Towards Test Case

Reuse: A Study of Redundancies in Android

Platform Test Libraries, Berlin Heidelberg.

Springer; 2013. p. 49–64.

[30] Fowler M. Refactoring: Improving the design of

existing code. India: Pearson Education; 1999.

[31] Lashari SA, Ibrahim R, Senan N. Fuzzy Soft Set

based Classification for Mammogram Images.

International Journal of Computer Information

Systems and Industrial Management Applications.

2015; 7:66–73.

[32] Ahmed M, Ibrahim R, Ibrahim N. An Adaptation

Model for Android Application Testing with

Refactoring. Growth. 2015; 9(10):65–74.

[33] Fowler M. Refactoring: Improving the Design of

Existing Code. 1997. Available from:

http://www.martinfowler.com/

books/refactoring.html.

[34] Al Dallal J. Identifying refactoring opportunities in

object-oriented code: A systematic literature

review. Information and Software Technology.

2015; 58:231–49.

[35] Jena SKSAK, Mohapatra DP. A Novel Approach

for Test Case Generation from UML Activity

Diagram. 2014.

[36] Ibrahim R, Saringat MZ, Ibrahim N, Ismail N. An

Automatic Tool for Generating Test Cases from the

System’s Requirements. 2007;861–6.

[37] Nguyen CD, Marchetto A, Tonella P, editors.

Combining model-based and combinatorial testing

for effective test case generation. Proceedings of

the 2012 International Symposium on Software

Testing and Analysis, ACM; 2012.

[38] Swain R, Panthi V, Behera PK, Mohapatra DP.

Automatic test case generation from UML state

chart diagram. International Journal of Computer

Applications. 2012; 42(7):26–36.

[39] Khan SUR, Lee SP, Ahmad RW, Akhunzada A,

Chang V. A Survey on Test Suite Reduction

Frameworks and Tools. International Journal of

http://www.ijais.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 20

Information Management. 2016; 36(6): Part A,

963–75.

[40] Shrivastava, A., Chakkaravarthy, M., Shah,

M.A..A Novel Approach Using Learning

Algorithm for Parkinson’s Disease Detection with

Handwritten Sketches. In Cybernetics and

Systems, 2022

[41] Shrivastava, A., Chakkaravarthy, M., Shah, M.A.,

A new machine learning method for predicting

systolic and diastolic blood pressure using clinical

characteristics. In Healthcare Analytics, 2023, 4,

100219

[42] Shrivastava, A., Chakkaravarthy, M., Shah,

M.A.,Health Monitoring based Cognitive IoT using

Fast Machine Learning Technique. In International

Journal of Intelligent Systems and Applications in

Engineering, 2023, 11(6s), pp. 720–729

[43] Shrivastava, A., Rajput, N., Rajesh,

P., Swarnalatha, S.R., IoT-Based Label

Distribution Learning Mechanism for Autism

Spectrum Disorder for Healthcare Application. In

Practical Artificial Intelligence for Internet of

Medical Things: Emerging Trends, Issues, and

Challenges, 2023, pp. 305–321

[44] Boina, R., Ganage, D., Chincholkar,

Y.D., .Chinthamu, N., Shrivastava, A., Enhancing

Intelligence Diagnostic Accuracy Based on

Machine Learning Disease Classification. In

International Journal of Intelligent Systems and

Applications in Engineering, 2023, 11(6s), pp.

765–774

[45] Shrivastava, A., Pundir, S., Sharma, A., ...Kumar,

R., Khan, A.K. Control of A Virtual System with

Hand Gestures. In Proceedings - 2023 3rd

International Conference on Pervasive Computing

and Social Networking, ICPCSN 2023, 2023, pp.

1716–1721

[46] Rieger M, Van Rompaey B, Du Bois B, Meijfroidt

K, Olivier P. Refactoring for performance: An

experience report. Proc. Software Evolution. 2007;

2(9):1–9.

[47] Yoshioka N, Washizaki H, Maruyama K. A survey

on security patterns. Progress in informatics. 2008;

5(5):35–47.

[48] Garrido A, Rossi G, Distante D. Refactoring for

usability in web applications. IEEE Software.

2011; 28(3):60.

[49] Al Dallal J. Constructing models for predicting

extract subclass refactoring opportunities using

object-oriented quality metrics. Information and

Software Technology. 2012; 54(10):1125–41.

[50] Bavota G, De Lucia A, Marcus A, Oliveto R.

Automating extract class refactoring: an improved

method and its evaluation. Empirical Software

Engineering. 2014; 19(6):1617–64.

[51] Palomba F, Bavota G, Oliveto R, De Lucia A. Anti-

Pattern Detection: Methods, Challenges, and Open

Issues. Advances in Computers. 2014; 95:201–38.

[52] Silva D, Terra R, Valente MT. JExtract: An Eclipse

Plug-in for Recommending Automated Extract

Method Refactorings. Federal University of Minas

Gerais: Brazil. 2014, pp.1-8.

[53] Fokaefs M, Tsantalis N, Stroulia E, Chatzigeorgiou

A. JDeodorant: Identification and application of

extract class refactorings. Proceedings of the 33rd

International Conference on Software Engineering,

Waikiki, Honolulu, HI, USA.ACM; 2011. p. 1037–

9.

[54] Yoo S, Harman M. Pareto efficient multi-objective

test case selection. Proceedings of the 2007

International Symposium on Software Testing and

Analysis, London, United Kingdom. ACM; 2007.

P. 140–50.

[55] S. Mohite, R. Phalnikar, M. Joshi, S. D. Joshi, and

S. Jadhav, "Requirement and interaction analysis

using aspect-oriented modelling," 2014 IEEE

International Advance Computing Conference

(IACC), 2014, pp. 1448-1453, doi:

10.1109/IAdCC.2014.6779539.

[56] S. Jadhav, S. B. Vanjale and P. B. Mane, "Illegal

Access Point detection using clock skews method

in wireless LAN," 2014 International Conference

on Computing for Sustainable Global Development

(INDIACom), 2014, pp. 724-729, doi:

10.1109/IndiaCom.2014.6828057.

[57] S. Mohite, A. Sarda and S. D. Joshi, "Analysis of

System Requirements by Aspects-J Methodology,"

2021 International Conference on Computing,

Communication and Green Engineering (CCGE),

2021, pp. 1-6, doi:

10.1109/CCGE50943.2021.9776384.

[58] Mohite, S., Phalnikar, R., Joshi, S.D.,”

Requirement and interaction analysis using aspect-

oriented modelling”, New Trends in Networking,

Computing, E-learning, Systems Sciences, and

Engineering. Lecture Notes in Electrical

Engineering, Vol 312. Springer, 2015, Cham.

https://doi.org/10.1007/978-3-319-06764-3_54

[59] P. A. Jadhav, C. Vinotha, S. K. Gupta, B. Dhyani,

V. H. Patil, and R. Kumar, "Asset Class Market

Investment Portfolio Analysis and Tracking," 2022

5th International Conference on Contemporary

Computing and Informatics (IC3I), Uttar Pradesh,

https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=57446568500
https://www.scopus.com/authid/detail.uri?authorId=58090397100
https://www.scopus.com/authid/detail.uri?authorId=58090397100
https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2157599
https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2157599
https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2157599
https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=57446568500
https://www.scopus.com/authid/detail.uri?authorId=58090397100
https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=57446568500
https://www.scopus.com/authid/detail.uri?authorId=58090397100
https://www.scopus.com/authid/detail.uri?authorId=58090397100
https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=54791425500
https://www.scopus.com/authid/detail.uri?authorId=58103338800
https://www.scopus.com/authid/detail.uri?authorId=58103338800
https://www.scopus.com/authid/detail.uri?authorId=58103870300
https://www.scopus.com/authid/detail.uri?authorId=58499637800
https://www.scopus.com/authid/detail.uri?authorId=43761071500
https://www.scopus.com/authid/detail.uri?authorId=57190346237
https://www.scopus.com/authid/detail.uri?authorId=57190346237
https://www.scopus.com/authid/detail.uri?authorId=58176111100
https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=58035982500
https://www.scopus.com/authid/detail.uri?authorId=56046765500
https://www.scopus.com/authid/detail.uri?authorId=57220907015
https://www.scopus.com/authid/detail.uri?authorId=58598435500
https://www.scopus.com/authid/detail.uri?authorId=58598435500
https://www.scopus.com/authid/detail.uri?authorId=58629887600
https://doi.org/10.1007/978-3-319-06764-3_54

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 12–21 | 21

India, 2022, pp. 973-981, doi:

10.1109/IC3I56241.2022.10072525.

[60] Patil, V., Kadam, P., Jadhav, P., & Kadam, A.

(2022). Intelligent Agricultural System Based on

IoT and Machine Learning. Available at SSRN

4203128.

[61] Suryawanshi, P. K., Kadam, A. K., Dhotre, P. S. S.,

& Jadhav, P. A. (2021). A Novel Approach for

Women Security with Information Fusion for

Multi-Sensory Data. Turkish Online Journal of

Qualitative Inquiry, 12(8).

[62] Dr Vinod H Patil, Dr Anurag Shrivastava, Devvret

Verma, Dr A L N Rao, Prateek Chaturvedi, Shaik

Vaseem Akram, “Smart Agricultural System Based

on Machine Learning and IoT Algorithm”, 2nd

International Conference on Technological

Advancements in Computational Sciences

(ICTACS), 2022. DOI: DOI:

10.1109/ICTACS56270.2022.9988530.

[63] Dr Vinod H Patil, Dr Pramod A. Jadhav, Dr C.

Vinotha, Dr Sushil Kumar Gupta, Bijesh Dhyani,

Rohit Kumar,” Asset Class Market Investment

Portfolio Analysis and Tracking”, 5th International

Conference on Contemporary Computing and

Informatics (IC3I), December 2022. DOI:

10.1109/IC3I56241.2022.10072525.

[64] Dr. Vinod H Patil, Prasad Kadam, Sudhir Bussa,

Dr. Narendra Singh Bohra, Dr. ALN Rao,

Professor, Kamepalli Dharani,” Wireless

Communication in Smart Grid using LoRa

Technology”, 5th International Conference on

Contemporary Computing and Informatics (IC3I),

December 2022, DOI:

10.1109/IC3I56241.2022.10073338

[65] Vinod H. Patil, Dr. Shruti Oza, Vishal Sharma,

Asritha Siripurapu, Tejaswini Patil, “A Testbed

Design of Spectrum Management in Cognitive

Radio Network using NI USRP and LabVIEW”,

International Journal of Recent Technology and

Engineering (IJRTE) ISSN: 2277-3878, Volume-8

Issue-2S8, August 2019.

[66] Vinod H. Patil, Shruti Oza, “Green Communication

for Power Distribution Smart Grid”, International

Journal of Recent Technology and Engineering™

(IJRTE), ISSN:2277-3878(Online), Reg. No.:

C/819981, Volume-8, Issue-1, Page No. 1035-

1039, May-19.

[67] Patil, V.H., Oza, S., Sharma, V., Siripurapu, A.,

Patil, T.,” A testbed design of spectrum

management in cognitive radio network using NI

USRP and LabVIEW”, International Journal of

Innovative Technology and Exploring

Engineering, 2019, 8(9 Special Issue 2), pp. 257–

262.

[68] S. Bussa, A. Bodhankar, V. H. Patil, H. . Pal, S. K.

. Bunkar, and A. R. . Khan Qureshi, “An

Implementation of Machine Learning Algorithm

for Fake News Detection”, International Journal on

Recent and Innovation Trends in Computing and

Communication, ISSN: 2321-8169, Volume: 11

Issue: 9s, pp. 392–401, Aug. 2023. DOI:

https://doi.org/10.17762/ijritcc.v11i9s.7435

[69] Kadam, A. K., Krishna, K. H., Varshney, N.,

Deepak, A., Pokhariya, H. S., Hegde, S. K., & Patil,

V. H., “Design of Software Reliability Growth

Model for Improving Accuracy in the Software

Development Life Cycle (SDLC)”, International

Journal of Intelligent Systems and Applications in

Engineering, vol. 12, Issue No. 1s, pp. 38–50, Sep.

2023.

https://ijisae.org/index.php/IJISAE/article/view/33

93

