

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 168

Classification of Android Applications and Performance Evaluation of

Machine Learning Model with HFST

Umesh V. Nikam#1, Vaishali M. Deshmukh*2

Submitted: 25/11/2023 Revised: 05/01/2024 Accepted: 15/01/2024

Abstract: In the dynamic landscape of mobile applications, Android devices seamlessly integrate into our daily lives, offering diverse

functionalities through various applications. However, the surge in malware and malicious software poses a significant challenge for

security professionals and users alike. To address this issue, researchers and cyber security experts actively explore innovative methods.

This research paper delves into the crucial domain of Android application categorization, evaluating the performance of a novel machine

learning model incorporating a Hybrid Feature Selection Technique (HFST). Initially, the study identifies the top twenty significant

features through information gain, feature selection, and chi-square methods. The classifier's performance is then assessed using these

features. Subsequently, all 60 features selected through the three techniques are merged and out of the 60 features, 11 are identified as

hybrid features that are common in at least two techniques. The study re-evaluates machine learning classifiers' performance using these

11 hybrid features, comparing the results with existing state-of-the-art techniques to illustrate the superiority of the proposed HFST-

based technique. Furthermore, the study measures its impact on various performance metrics, including classification accuracy,

precision, and f-measure, revealing notable enhancements across these parameters when employing the HFST. The application of this

hybrid feature selection technique significantly improves the classification process, ultimately achieving an impressive classification

accuracy of 98.11%, with precision at 97.56 and an f-measure of 97.99 for distinguishing between malicious and benign apps.

Keywords: Machine learning algorithms, Hybrid features, Classification and detection, Performance evaluation.

1. Introduction

Targeted cyber attacks pose a significant and alarming

threat on the Internet. The use of conventional executable

files as a standard payload remains a prevalent choice

among attackers. A report has indicated that executable

files rank second among the most common types of

malicious email attachments. To bypass antivirus programs,

malicious actors often employ obfuscated malware.

Traditional antivirus programs, relying on pattern

matching-based detection, struggle to identify novel forms

of malware. Although dynamic analysis is a potent

technique, it consumes substantial time when scrutinizing

suspicious files from the web. Moreover, it necessitates

high-performance servers and licenses, which encompass

commercial operating systems and applications.

To address this challenge, static detection methods, in

conjunction with machine learning, offer a viable solution.

These methods involve the extraction of features from an

app's manifest file. The AndroidManifest.xml file within

the APK contains crucial information about the application,

encompassing permission, activities, services, and

receivers. The extraction & analysis of this information

facilitate a deeper understanding of app's capabilities and

prerequisite.

The recent advancements in machine learning have

amplified the effectiveness of app permissions in the

realm of malware detection. Consequently, a

combination of app permissions and machine learning

techniques proves to be a valuable asset in the fight

against malware.

In this study, we leverage machine learning techniques

for the purpose of malware detection. Our research

underscores the effectiveness of app permissions in

conjunction with machine learning in a practical

setting. Our dataset, sourced from various outlets,

comprises 4890 samples spanning 13 distinct malware

families. The experimental results strongly support the

efficiency of our approach in detecting malware, even

against packed malware and anti-debugging

mechanisms. This paper contributes following key

findings:

• App permissions, when combined with machine

learning techniques, exhibit effectiveness in

practical malware detection.

• Our method extends its effectiveness not only to

known malware types but also to emerging ones.

• Our approach is robust against the packed malware

& countermeasures against debugging.

1.Department of Computer Science & Engineering,

Prof. Ram Meghe Institute of Technology &research, Badnera, India

 umeshnikam3@gmail.com

ORCID ID : 0009-0005-8257-6656
2 Department of Computer Science & Engineering,

Prof. Ram Meghe Institute of Technology &research, Badnera, India

vmdeshmukh@mitra.ac.in

*Corresponding Author Email: umeshnikam3@gmail.com

https://orcid.org/0000-0002-2013-3164?lang=en
mailto:anandrajavat@yahoo.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 169

The paper is structured as follows: Section 2 delves

into related studies, while Section 3 explores the

machine learning techniques pertinent to this research.

Section 4 provides a detailed account of our

experiment, and Section 5 evaluates the model using

some parameters and comparative analysis with latest

techniques. Finally, Section 6 concludes this study.

2. Related Work

The paper introduces a new machine learning model for the

detection of Android malware, emphasizing the abnormal

co-existence patterns of permissions and APIs in malware

compared to benign apps. They create a novel dataset with

varying co-existed permissions and API call levels,

employing the FP-growth algorithm to extract relevant

features. The model is evaluated against conventional

machine learning methods and achieves a high accuracy of

98% in classifying Android malware, surpassing the state-

of-the-art model (87% accuracy). Notably, frequent API co-

existence proves more effective than using API features

alone. This approach holds promise for future use with

dynamic features in malware detection. [1]

The paper introduces a two-stage detection framework, FE-

CaDF, for Android malware detection during the spread or

downloads stage. It employs CNN for classifying binary

malicious apps in the first stage and Principal Component

Analysis (PCA) for multi-classification of malware types in

the second stage. Features extracted are combined with

traffic payload for classification. The cascade deep forest

method adapts to various sample scales and proves

effective in detecting encrypted Android malware

transmission, even for unknown attacks. The framework

has potential for extending to iOS and Windows application

detection in future research. [2]

This paper offers a comprehensive review and taxonomy of

machine learning methods for malware detection,

addressing the challenges posed by evolving cyber threats.

It analyzes 77 research works, focusing on accuracy,

analysis type, and detection approaches. The research

classifies machine learning algorithms into categories,

evaluates recent methods, discusses detection challenges,

and proposes solutions. An empirical study assesses

multiple machine learning algorithms, with the aim of

advancing malware detection techniques and inspiring

future research in cybersecurity. [3]

Recent research has underlined the significant threat of

malware in the digital world, leading to the adoption of new

security measures. Traditional methods have struggled

against modern, obfuscated malware. Deep Learning (DL)

has gained prominence for its ability to detect novel

malware and provide quick analysis. This paper

investigates DL-based malware detection systems, focusing

on various malware types like mobile, Windows, IoT,

APTs, and Ransomware. It highlights the importance of

proactive security and addresses the limitations of

traditional methods. The research offers insights and a

taxonomy for developing more effective mitigation

approaches against both common and complex malware.

[4]

The paper introduces NT-GNN, a novel graph neural

network model for detecting Android malware based on

network traffic graphs. Unlike other systems focusing on

pairwise traffic, NT-GNN considers complex structural

relationships, achieving a 97% accuracy on Android

malware datasets. It outperforms deep learning methods

with high precision, recall, and F1 scores. Future work

involves classifying malware into families and comparing

NT-GNN with other graph representation models, as well

as enhancing performance by extracting static and dynamic

features from the dataset. [5]

The increasing popularity of mobile devices has led to a

surge in malicious Android apps, which are becoming

harder to detect due to advanced obfuscation. Manual and

static methods are insufficient, and dynamic analysis is

time-consuming. To tackle this, a hybrid approach

combining static and dynamic analysis features is proposed.

Two datasets for malware detection and family

classification were created for research, and machine

learning algorithms were used. This hybrid approach

outperformed using static or dynamic features alone,

offering benchmark datasets for testing new techniques.

Future work will address data imbalance in malware

classification using deep learning and big data tools. [6]

Traditional malware detection methods are ineffective

against new and generic malware. Researchers created a

dataset with 16,300 records and 215 features from various

malware sources. They propose a supervised machine

learning approach using feature reduction and ensembling

techniques, with CatBoost showing the highest

performance (93.15% accuracy, ROC 0.91, Kappa Score

81.56%). This study underscore using machine learning for

detecting malware and highlights the need for

comprehensive datasets. The proposed method, particularly

with the CatBoost classifier, yields promising results in

accurate malware prediction and classification. [7]

This paper assesses the effectiveness of multiple machine

learning techniques for detection and classification of

malwares. Techniques like SMOTE, feature normalization,

and PCA are applied to enhance accuracy. The paper

introduces a Light Gradient Boosting Model to classify

Android malware into five categories. The research uses a

substantial dataset of 11,598 APKs from diverse sources

provided by the Canadian Institute of Cybersecurity,

addressing the challenges of malware classification. [8]

Executable files, often obfuscated, remain a popular threat

to endpoint computers. Dynamic analysis of such files is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 170

time-consuming. This paper suggests using natural

language processing (NLP) techniques on printable strings

for efficient malware detection. It's applied to a dataset of

over 500,000 samples, proving effective against various

types of malware, including new and packed ones.

Although the study has limitations, it lays the foundation

for practical performance evaluation. Future work will

concentrate on analyzing sample specifics & enhance

packer detection. [9]

This paper introduces a hybrid analysis approach, merging

static and dynamic malware analysis for better Android

malware detection and classification. The framework

consists of three phases: pre-processing, feature selection,

and a detection model using an enhanced neural network

and improved HHO optimization. This hybrid approach

demonstrates enhanced accuracy in Android malware

detection and classification compared to analyzing static

and dynamic aspects separately. [10] Summary of related

work is shown in Table1 below.

Table

Table 1. Related Work Summary

References Dataset Used Algorithms Used

Advantages
[1] New dataset with

different levels of co-

existed permissions and

API calls

Frequent pattern growth (FP-

growth) algorithm

• High accuracy in classifying Android

malware. Outperforms state-of-the-art model with

98% accuracy using Malgenome dataset compared

to 87% with state-of-the-art.

• Frequent API co-existence more effective

than using API features alone.

[2] Various datasets

including encrypted

transmission of Android

malware

CNN, PCA

cascade deep forest method

• Effective in detecting encrypted

transmission of Android malware, including

unknown attacks.

• Potential for detecting iOS and Windows

applications.

[3] 77 selected research

works

Various machine learning

algorithms based on

performance accuracy,

analysis type, and detection

approaches

• Provides taxonomy for classifying ML

algorithms in malware detection.

• Aims to foster improvements in malware

detection techniques.

[4] Android malware

datasets

CICAndMal2017 and

AAGM

NT-GNN (Graph Neural

Network model)

• Outperforms other DL approaches with

high precision, recall, and F1 scores.

[5] Two datasets for

detection and family

classification of

Android malware

Hybrid approach with

machine learning algorithms

• Improved accuracy in detecting and

classifying Android malware compared to static or

dynamic features alone.

[6] Custom dataset with

various malware files

Machine learning classifiers. • Accuracy of machine learning algorithms

is improved with hybrid features.

[7] Comprehensive dataset

of 16,300 records and

215 features

Supervised machine learning

classifiers, feature reduction

techniques, ensembling

techniques

• CatBoost classifier shows highest

performance with 93.15% accuracy, ROC value of

91%, 81.56% Cohen Kappa Score.

[8] Dataset consisting of

11,598 APKs

Synthetic Minority

Oversampling Technique

(SMOTE), feature

normalization, Principal

Component Analysis (PCA)

• Light Gradient Boosting Model classifies

Android malware into five classes with high

accuracy.

[9] Dataset with over NLP techniques on printable • Effective against existing, packed and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 171

3. Proposed Work

Below Figure 1, shows a proposed methodology for hybrid

feature selection technique. All the phases are explained

below in three phases:

Fig. 1 Proposed Model

a. Pre-processing Phase: For optimal results in

machine learning, thorough pre-processing is vital. This

includes tasks like removing duplicates, handling missing

values (NaN), and normalizing or scaling data. MinMax

scaling is a method used for feature normalization,

particularly suitable for datasets with low variance. [11]

Normalization involves rescaling values to a specified

interval, often between 0 and 1, ensuring proper scaling for

models dependent on input feature values. The formula for

MinMax scaling (Equation 1) is employed for data

normalization.

𝑌norm =
𝑌𝑖−𝑌min

𝑌max−𝑌min
 Eq.(1)

 Here, Yi represents the initial value of the

feature, and the denominator reflects the range between a

new normalized max and minimum values for that feature.

Duplicate Android apps can be removed with

drop_duplicates() function. [12] Malware features are

extracted through static analysis, which involves collecting

API calls, intents, permissions and command strings using

a custom Python script with Apk tool. A prominent feature

set with the highest importance is then created using hybrid

feature selection techniques. [13]

b. Prominent Feature Selection Phase: Selecting

the right features plays a pivotal role in virus detection.

Inaccurate feature choices can lead to diminished model

accuracy, while judicious selections can yield a high level

of precision. [14] To address this concern, we utilize three

distinct methods of feature selection namely: information

gain, a feature importance and a chi square technique. In an

initial step, we pick the top 20 attributes from each of these

techniques. Subsequently, we aggregate all 60 features, and

the ones that overlap across at least two of these methods

are designated as the ultimate hybrid features. [15] The

subsequent section outlines these techniques of feature

selection in detail.

Information gain technique furnishes us with the gain

associated with each feature in a given dataset. The utmost

significance lies in the feature with the highest gain value.

Figure 2 serves as an illustrative catalogue of top 20

features that have been singled out using the IG

methodology.

500,000 samples strings. new malware and anti-debugging techniques.

[10] Custom datasets for

detection and family

classification of

Android malware

Hybrid approach with neural

network optimized by

advanced HHO version.

• Improved accuracy in detecting and

classifying Android malware compared to static or

dynamic features alone.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 172

Fig. 2 Top (20) Features with Information Gain.

Chi-Square technique, aims to identify robust associations

between dependent and independent features. [16] By

considering the highest 20 association values, this approach

selects 20 features from a four used datasets as shown in

Figure 3.

Fig. 3 Top (20) Features with Chi-square.

Feature Importance Approach, allows for the

assessment of the importance of each feature within a

dataset, with greater importance associated with higher

feature weight. [17] List of these top 20 features in a

dataset based on the weight attributed to each feature is

shown in Figure 4 below.

Fig. 4 Top (20) Features with Feature Importance.

From a close examination of Figure 2, 3, and 4, it

becomes evident that each of these techniques has

unearthed a distinct set of the top 20 features. To

harness the collective strength of these methodologies

for effective malware identification, we combine all the

60 features derived from three techniques.

Subsequently, we pinpoint & designate as "hybrid

features" those are common to at least two (2) of these

methods. This results in the identification of 11 hybrid

features out of the total 60. Below is a list for hybrid

features shown in Table 2.

Table 2. Hybrid Features Common in At least Two

Techniques.

S.

N

Common Hybrid Features.

a. RECEIVE_1M1

b. LANDROID.CONTENT.CONTEXT.REGI1TERR

ECEIVER

c. ANDROID.TELEPHONY.1M1MANAGER

d. ANDROID.CONTENT.PM.1IGNATURE

e. LJAVA.NET.URLDECODER

f. 1END_1M1

g. ANDROID.O1.0INDER

h. 1ERVICECONNECTION

i. 0INDLERVICE

j. ONLERVICECONNECTED

k. TRANLACT

Below algorithm explain steps of finding hybrid

features.

a. Evaluation Parameters & Experimental

Setup: Various metrics employed to assess the

performance of classifiers are explained below:

True Positive Rate-Recall: TPR is also called Recall.

It can be calculated with the division of count of

correctly identified positive samples by the total count

of positive samples. [18] As depicted in the equation

(2). It is computed using the below formula:

 TPR = TP/(TP+FN) Eq. (2)

False Positive Rate: FPR indicates a fraction of false

positive instances concerning the overall count of of

true negative instances. [19] Below equation (3) outline

computation of this. FPR = FP/(TN+FP) Eq. (3)

Precision: Precision is calculated with the division of

number of correct instances by the total count of

accurate instances. [20] It is computed with equation

(4).

Precision = TP/(TP+FP) Eq. (4)

F-Measure: It represents the harmonic average of

recall & precision. [21] It is determined with equation

(5). F-

measure=(2*Precision*Recall)/(Precision+Recall)

 Eq. (5)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 173

Accuracy: It can be computed by a division of count of

cases with a sum of true negatives and true positive

instances. [22] The calculation for accuracy is as

follows in equation (6).

Accuracy=(TP+TN)/(TP+FP+FN+TN) Eq. (6)

MCC (Matthews correlation coefficient): It serves as

a benchmark for assessing the performance of binary

classifiers. [23] It falls within the numeric range of +1

to -1. In this context, a value of +1 means accurate

prediction, & a -1 meaning opposite prediction. The

calculation for MCC, as represented by equation (7), is

as follows:

MCC=(TP*TN-FP*FN)/√[(TP+FN)(TP+FP)

(TN+FP)(TN+FN)] Eq. (7)

AUC-ROC Curve: This curve is used for the

assessment of a classification model. [24] Its function

is to quantitatively measure model's ability to

distinguish between different classes.

In this context, True Positives (TP) represents instances

correctly classified as "Yes," whereas False Positive

(FP) is when an instance is mistakenly classified as

"Yes." [25] True Negative denotes cases that were

correctly excluded from the "Yes" category when

expected. Conversely, False Negatives (FN) refers to

cases that were predicted to not belong to the "Yes"

category but actually did. [26]

4. Experiment

An experiment was conducted to assess the

effectiveness of two sets of features in enhancing

machine learning classifier performance: one set of

hybrid features presented in Table 2 and another set of

top 20 features displayed in Figure 2, 3 & 4. As

depicted in Figure 1 under the Methodology section, a

ten-fold cross-validation technique was employed,

which is statistically reliable for evaluating classifier

performance. 70:30 atios are used for training & testing

of a dataset. Accuracy, FPR, TPR, Precision, F-

measure, MCC & AUC were utilized to gauge

classifier performance. Table 4, 5 & 6 showcases the

comparative performance of classifiers with the use of

chi-square, IG and feature importance methods. Table

4 reveals that chi-square technique led to improved

performance across all classifiers as compared to IG,

and feature selection techniques. With chi-square

technique as shown in Table 4, the Random Forest

algorithm has shown the highest precision, accuracy

and F Measure while Table 7 illustrates performance of

classifiers when employing HFST technique with chi-

square features.

Following a performance evaluation of classifier with

20 top features, the impact of hybrid features was also

examined. A subsequent experiment was carried out,

and the same classifiers were assessed using the hybrid

features detailed in Table 2. The results are presented

in Table 8. A comparison between the outcomes in

Table 7 and Table 8 clearly demonstrates a significant

enhancement in classifier performance with the

inclusion of hybrid features.

a. Dataset Used: In this study, four distinct

datasets were employed, sourced from Kaggle [27].

These datasets comprise a collection of 1910 instances

of malware samples and 2980 instances of benign

samples. Together, they encompass 215 attributes, with

the distribution as follows: manifest permissions

account for 53%, API call signatures for 33%, and the

remaining 14% encompass other attributes. Each

dataset entry pertains to the attributes associated with

various applications, with values denoted as 0 or 1. A

value of 0 signifies that a specific attribute does not

necessitate permission, whereas a value of 1 indicates

the requirement for permission. [28] Additionally, each

dataset incorporates a column indicating whether an

application is categorized as malicious or benign. For a

detailed breakdown of the collected samples used to

construct our dataset, please refer to Table 3.

Table 3. Distribution of Used Dataset.

Used Dataset Total

Sample

Malwares

Count

Benign

Count

DREBIN 1400 450 950

CICANDMAL 2017 1240 450 790

APK MIRROR 1200 410 790

VIRUS SHARE 1050 600 450

TOTAL 4890 1910 2980

b. Detecting Malwares with Static Features:

As previously discussed, the chi square method has

proven to be the preferred choice for selecting static

features. Table 4 to 6 present findings related to

classification precision, accuracy, and F-measure

scores obtained by applying various classification

algorithms using chi square, IG and a Feature

Importance Techniques respectively. The results in

these tables clearly indicate that, on average, chi-square

outperforms the other metrics in terms of selecting

static features. Table 7 outlines the outcomes of binary

detection with static features. Remarkably, with HFST,

we attain a peak accuracy of 96.91%, showcasing its

remarkable performance. As for other methods such as

SMO, KNN, SVM, DT, RF, NB, and MLP, their

accuracy rates range from 92.31% to 95.52%. It's worth

noting that Naïve Bayes accuracy relies on probability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 174

distribution, and it could potentially benefit from

additional data examples to enhance its performance. In

summary, HFST technique demonstrates commendable

performance in binary classification with static

features. HFST, in particular, achieves an impressive

MCC (Matthews correlation coefficient) of 93.8%,

signifying a substantial performance improvement

compared to other standard models. During testing,

HFST consistently reaches a peak accuracy value of

96.91% on a 7th epoch, while the accuracy of training

varies between 81.11% to 98.71%, indicating a stable

convergence of training accuracy. Test accuracy falls

within the range of 79.55% to 95.11%.

Table 4. Evaluation of Classifiers with Chi-square method.

 Table 5. Evaluation of Classifiers with Information Gain Method.

Table 6. Evaluation of Classifiers with Feature Selection Method.

ALGORITHMS KNN SMO SVM Random

Forest

Decision

Tree

Naïve

Bayes

MLP Average

Accuracy 0.9322 0.9332 0.9162 0.9342 0.9483 0.9444 0.9311 0.9342

Precision 0.9221 0.9273 0.9102 0.9312 0.9163 0.9154 0.9271 0.9213

F Measure 0.9254 0.9215 0.9112 0.9281 0.9444 0.9404 0.9282 0.9284

Table 7. Performance Evaluation of various classifiers & HFST technique with Chi-square features.

ALGORITHMS KNN SMO SVM Random

Forest

Decision

Tree

Naïve

Bayes

MLP HFST

Technique

Accuracy 0.9231 0.9352 0.9234 0.9552 0.9504 0.9421 0.9352 0.9691

False Positive Rate 0.0711 0.0642 0.0776 0.0498 0.0561 0.0691 0.0582 0.0292

True Positive Rate 0.9172 0.9333 0.9242 0.9662 0.9573 0.9572 0.9263 0.9672

Precision 0.9172 0.9253 0.9082 0.9422 0.9334 0.9172 0.9334 0.9672

F-Measure 0.9172 0.9291 0.9162 0.9542 0.9452 0.9362 0.9293 0.9672

MCC 0.8452 0.8686 0.8453 0.9156 0.8997 0.8842 0.8695 0.9381

AUC 0.9232 0.9312 0.9152 0.9465 0.9396 0.9243 0.9388 0.9692

c. Malware Classification with Hybrid Features: The challenge of accurately classifying

malware arises from its characteristics of execution

ALGORITHMS KNN SMO SVM Random

Forest

Decision

Tree

Naïve

Bayes

MLP Average

Accuracy 0.9231 0.9350 0.9231 0.9582 0.9504 0.9421 0.9351 0.9382

Precision 0.9172 0.9291 0.9081 0.9423 0.9336 0.9171 0.9332 0.9258

F Measure 0.9172 0.9291 0.9162 0.9543 0.9451 0.9365 0.9294 0.9325

ALGORITHMS KNN SMO SVM Random

Forest

Decision

Tree

Naïve

Bayes

MLP Average

Accuracy 0.9041 0.9152 0.9023 0.9123 0.9411 0.9223 0.9421 0.9199

Precision 0.9252 0.9254 0.9012 0.9092 0.9334 0.9103 0.9305 0.9193

F Measure 0.9041 0.9123 0.9012 0.9044 0.9402 0.9164 0.9335 0.9160

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 175

stalling and obfuscation, making it difficult to achieve

with a single static or dynamic technique. [29] In order

to address this issue, we have adopted a hybrid features

approach. In an initial step, we pick the top 20

attributes from each of these techniques. Subsequently,

we aggregate all 60 features, and the ones that overlap

across at least two of these methods are designated as

the ultimate hybrid features. In our analysis, we applied

seven different machine learning classifiers for

detecting and classifying binary malwares. The

outcomes of binary classification evaluations, utilizing

machine learning techniques on hybrid features, are

presented in Table 7. Notably, a HFST model

outperforms the previously mentioned classifiers in

terms of accuracy. Specifically, HFST achieves an

accuracy rate of 98.11%, surpassing Random Forest

and Decision Tree, which attain 96.99% & 96.22%

result, respectively. Performance of all the classifiers is

shown in figure 5.

Fig. 5 Performance of Various Classifiers.

d. Accuracy Comparison: As shown in Table 9,

HFST technique has shown highest accuracy using

both for static & hybrid features. However it has shown

accuracy of 98.11% notably with hybrid features and

96.11 with static features. The findings in the Table 9

graphs in figure 6 & 7 reveal that use of hybrid features

has enhanced accuracy of all classifiers by nearly 2%.

Table 8. Performance of various classifiers & HFST technique with hybrid features.

ALGORITHMS KNN SMO SVM Random

Forest

Decision

Tree

Naïve

Bayes

MLP HFST

Technique

Accuracy 0.9466 0.9581 0.9423 0.9699 0.9622 0.9465 0.9466 0.9811

False Positive Rate 0.0681 0.0490 0.0632 0.0355 0.0420 0.0564 0.0566 0.0210

True Positive Rate 0.9655 0.9666 0.9492 0.9755 0.9669 0.9497 0.9499 0.9832

Precision 0.9177 0.9423 0.9211 0.9588 0.9509 0.9333 0.9333 0.9756

F-Measure 0.9404 0.9542 0.9377 0.9666 0.9588 0.9411 0.9411 0.9799

MCC 0.8923 0.9152 0.8843 0.9388 0.9233 0.8923 0.8922 0.9612

AUC 0.9244 0.946 0.9311 0.9623 0.9543 0.9387 0.9388 0.9777

Table 9. Accuracy comparison of various classifiers with HFST technique.

ALGORITHMS KNN SM

O

SV

M

RF DT NB ML

P

HFST

Technique
Findings

ACCURACY

(Hybrid Features)

0.946

6

0.95

81

0.94

23

0.96

99

0.96

22

0.94

65

0.94

66
0.9811

The use of hybrid

features has

enhanced the

accuracy of all

classifiers by

nearly 2%.

ACCURACY

(Static Features)

0.923

1

0.93

52

0.92

34

0.95

52

0.95

04

0.94

21

0.93

52
0.9691

5. Comparative Analysis

Precision and recall metrics were assessed, as detailed

in Tables X. The research conducted by Laya Taheri et

al. [32] involved the utilization of the random forest

algorithm to compute precision and recall for the

dataset. In contrast, our approach, employing the HFST

algorithm, yielded the most impressive outcomes. Our

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 176

study represents advancement over previous research in

the realms of static feature analysis. As depicted in

Table 10, our methodology attains a highest recall rate

of 97.99% while classifying malware binaries. In

comparison with state-of-the-art methods, our approach

significantly enhances the performance of binary

malware classification in static categorization. In Table

10, the result also shows that HFST achieves the

highest precision level of 97.56%. In contrast, other

investigations report their top precision rates at 93.8%,

89%, and 85.9%.

Fig. 6 Accuracy comparison of static & hybrid features Fig. 7 Accuracy comparison of static & hybrid features

Table 10. Comparative analysis of HFST with latest techniques.

Various Techniques Results Precision Recall

Mohammad Kamel A. Abuthawabeh et. al. [31] 89%(Random Forest) 83.22%(Random Forest)

Laya Taheri et. al.[32] 85.9%(Random Forest) 88.3%(Random Forest)

Mohammad Kamel A. Abuthawabeh et. al. [31] 85.8%(Decision Tree) 86.1%(Decision Tree)

Arash Habibi Lashkari et. al.[33] 85.4%(KNN) 88.2%(KNN)

Ibrahim Aljarah et. al. [34] 93.8%(Decision Tree) 94.36%(Decision Tree)

HFST Technique 97.56% (Hybrid Features) 97.99% (Hybrid Features)

a. Feature Selection Effect: The suggested

method for selecting hybrid features has a notable

influence on the quantity of features. A reduction in the

number of features has a positive effect on the

performance of evaluation metrics. [30] In the case of

static features, filter methods are employed to identify

the most prominent feature subset to engage in the

malware detection process. By implementing the

suggested model for malware detection in feature

selection, this approach enhances detection accuracy

while simultaneously diminishing the occurrence of

false negatives and false positives in identifying

malware applications.

6. Conclusion & Future Work

Constant vigilance is crucial for Android users due to

the persistent threat of mobile viruses. The paper

explores the effectiveness of hybrid features derived

from three selection strategies in malware detection,

demonstrating that the hybrid approach is the most

effective, resulting in 98.11% classification accuracy

for distinguishing malicious and benign apps. Future

research directions includes adaptive algorithms, deep

learning and multi-modal analysis for an improved

detection, as well as for the investigation of federated

learning, enhancing explain ability, & addressing

challenges for large-scale deployment in order to

enhance use privacy & effectiveness. This work can be

expanded for zero day malware detection, real time

monitoring, & in-depth analysis of the Android app

market to proactively address evolving threats.

Acknowledgment

The author wish to convey his appreciation to Dr.

Vaishali M. Deshmukh for her assistance and

encouragement during the course of the research.

Author contributions

Umesh V. Nikam is a main author for implementing a

concept, calculating results and a documentation of

paper. Vaishali M. Deshmukh has reviewed the work

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 177

and guided for implementation and writing of this

research paper.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] E. Odat and Q. M. Yaseen, "A Novel Machine

Learning Approach for Android Malware

Detection Based on the Co-Existence of

Features," in IEEE Access, vol. 11, pp. 15471-

15484, 2023, doi:

10.1109/ACCESS.2023.3244656.

[2] X. Zhang, J. Wang, J. Xu and C. Gu, "Detection

of Android Malware Based on Deep Forest and

Feature Enhancement," in IEEE Access, vol. 11,

pp. 29344-29359, 2023, doi:

10.1109/ACCESS.2023.3260977.

[3] N. Z. Gorment, A. Selamat, L. K. Cheng and O.

Krejcar, "Machine Learning Algorithm for

Malware Detection: Taxonomy, Current

Challenges and Future Directions," in IEEE

Access, doi: 10.1109/ACCESS.2023.3256979.

[4] Gopinath M., Sibi Chakkaravarthy Sethuraman, A

comprehensive survey on deep learning based

malware detection techniques, Computer Science

Review, Volume 47, 2023, 100529, ISSN 1574-

0137,https://doi.org/10.1016/j.cosrev.2022.10052

9.

[5] Liu, Tianyue & Li, Zhenwan & Long, Haixia &

Bilal, Anas. (2023). NT-GNN: Network Traffic

Graph for 5G Mobile IoT Android Malware

Detection.

Electronics.12.10.3390/electronics12040789.

[6] Dhalaria, Meghna & Gandotra, Ekta. (2020). A

Hybrid Approach for Android Malware Detection

and Family Classification. International Journal of

Interactive Multimedia and Artificial Intelligence.

In Press. 1. 10.9781/ijimai.2020.09.001.

[7] P. Agrawal and B. Trivedi, "Evaluating Machine

Learning Classifiers to detect Android Malware,"

2020 IEEE International Conference for

Innovation in Technology (INOCON), Bangluru,

India, 2020, pp. 1-6, doi:

10.1109/INOCON50539.2020.9298290.

[8] AlOmari, Hani & Yaseen, Qussai & Al-Betar,

Mohammed. (2023). A Comparative Analysis of

Machine Learning Algorithms for Android

Malware Detection. Procedia Computer Science.

220. 763-768. 10.1016/j.procs.2023.03.101.

[9] Mimura, M., Ito, R. Applying NLP techniques to

malware detection in a practical environment. Int.

J. Inf. Secur. 21, 279–291 (2022).

[10] Taher, Dr. Fatma & AlFandi, Omar & Kfairy,

Mousa & Al Hamadi, Hussam & Alrabaee, Saed.

(2023). DroidDetectMW: A Hybrid Intelligent

Model for Android Malware Detection.

10.20944/preprints202305.0333.v1.

[11] Bherde, Gajanan & Pund, Mahendra. (2020).

Strategy and Knowledge-Based XML Attack

Detection Systems using Ontology. International

Journal of Recent Technology and Engineering

(IJRTE). 8. 798-801.

10.35940/ijrte.E5786.018520.

[12] A. A. Darem, F. A. Ghaleb, A. A. Al-Hashmi, J.

H. Abawajy, S. M. Alanazi and A. Y. Al-Rezami,

"An Adaptive Behavioral-Based Incremental

Batch Learning Malware Variants Detection

Model Using Concept Drift Detection and

Sequential Deep Learning," in IEEE Access, vol.

9, pp. 97180-97196, 2021, doi:

10.1109/ACCESS.2021.3093366.

[13] Agrawal, Prerna & Trivedi, Bhushan. (2021).

AndroHealthCheck: A Malware Detection System

for Android Using Machine Learning.

10.1007/978-981-16-0965-7_4.

[14] Shhadat, Ihab & Al-bataineh, Bara & Hayajneh,

Amena & Al-Sharif, Ziad. (2020). The Use of

Machine Learning Techniques to Advance the

Detection and Classification of Unknown

Malware. Procedia Computer Science. 170. 917-

922. 10.1016/j.procs.2020.03.110.

[15] Li, Shanxi & Zhou, Qingguo & Zhou, Rui & Lv,

Qingquan. (2022). Intelligent malware detection

based on graph convolutional network. The

Journal of Supercomputing. 78. 10.1007/s11227-

021-04020-y.

[16] Zhang, Xiao-Lei & Xu, Menglong. (2022). AUC

optimization for deep learning-based voice

activity detection. EURASIP Journal on Audio,

Speech, and Music Processing. 2022.

10.1186/s13636-022-00260-9.

[17] Akhtar, Muhammad Shoaib & Feng, Tao. (2022).

Malware Analysis and Detection Using Machine

Learning Algorithms. Symmetry. 14. 2304.

10.3390/sym14112304.

[18] Kim, Jinsung & Ban, Younghoon & Ko,

Eunbyeol & Cho, Haehyun & Yi, Jeong. (2022).

MAPAS: a practical deep learning-based android

malware detection system. International Journal

of Information Security. 21. 1-14.

10.1007/s10207-022-00579-6.

https://doi.org/10.1016/j.cosrev.2022.100529
https://doi.org/10.1016/j.cosrev.2022.100529

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 168–178 | 178

[19] Peng, T., Hu, B., Liu, J., Huang, J., Zhang, Z., He,

R., & Hu, X. (2022). A Lightweight Multi-Source

Fast Android Malware Detection Model. Applied

Sciences, 12(11), 5394. MDPI AG. Retrieved

from http://dx.doi.org/10.3390/app12115394

[20] Taha, Altyeb. (2016). Classification of Android

Malware Applications using Feature Selection

and Classification Algorithms. VAWKUM

Transactions on Computer Sciences. 10. 1.

10.21015/vtcs.v10i1.412.

[21] Aljanabi, Maryam & Altamimi, Ahmad. (2022).

A Comparative Analysis of Machine Learning

Techniques for Classification and Detection of

Malware.

[22] Diptiben Ghelani. A perspective study on

Malware detection and protection, A

review. Authorea. September 13, 2022.

DOI: 10.22541/au.166308976.63086986/v1

[23] Sunil Gupta, Kamal Saluja, Ankur Goyal, Amit

Vajpayee, Vipin Tiwari,Comparing the

performance of machine learning algorithms

using estimated accuracy, Measurement:

Sensors,Volume24,2022,100432,ISSN

26659174,https://doi.org/10.1016/j.measen.2022.1

00432.

[24] Asam, Dr & Khan, Saddam & Akbar, Altaf &

Bibi, Sameena & Jamal, Tauseef & Khan,

Asifullah & Ghafoor, Usman & Bhutta, Raheel.

(2022). IoT malware detection architecture using

a novel channel boosted and squeezed CNN.

Scientific Reports. 12. 10.1038/s41598-022-

18936-9.

[25] P. R. K. Varma, K. P. Raj and K. V. S. Raju,

"Android mobile security by detecting and

classification of malware based on permissions

using machine learning algorithms," 2017

International Conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC),

Palladam, India, 2017, pp. 294-299, doi:

10.1109/I-SMAC.2017.8058358.

[26] V. J. Raymond and R. J. R. Raj, "Investigation of

android malware with machine learning classifiers

using enhanced pca algorithm," Computer

Systems Science and Engineering, vol. 44, no.3,

pp. 2147–2163, 2023.

[27] Albakri, Ashwag & Alhayan, Fatimah & Alturki,

Nazik & Ahamed, Saahirabanu & Shamsudheen,

Shermin. (2023). Metaheuristics with Deep

Learning Model for Cybersecurity and Android

Malware Detection and Classification. Applied

Sciences. 13. 2172. 10.3390/app13042172.

[28] U. V. Nikam and V. M. Deshmuh, "Performance

Evaluation of Machine Learning Classifiers in

Malware Detection," 2022 IEEE International

Conference on Distributed Computing and

Electrical Circuits and Electronics (ICDCECE),

Ballari, India, 2022, pp. 1-5, doi:

10.1109/ICDCECE53908.2022.9793102.

[29] U. Nikam and V. M. Deshmukh, “Hybrid Feature

Selection Technique to classify Malicious

Applications using Machine Learning

approach”, J Integr Sci Technol, vol. 12, no. 1, p.

702, Aug. 2023.

[30] Nikam, U.V., Deshmukh, V.M. (2023). Efficient

Approach for Malware Detection Using Machine

Learning Classifier. In: Tiwari, R., Pavone, M.F.,

Saraswat, M. (eds) Proceedings of International

Conference on Computational Intelligence. ICCI

2022. Algorithms for Intelligent Systems.

Springer, Singapore. https://doi.org/10.1007/978-

981-99-2854-5_14

[31] M. K. A. Abuthawabeh and K. W. Mahmoud,

"Android Malware Detection and Categorization

Based on Conversation-level Network Traffic

Features," 2019 International Arab Conference on

Information Technology (ACIT), Al Ain, United

Arab Emirates, 2019, pp. 42-47, doi:

10.1109/ACIT47987.2019.8991114.

[32] L. Taheri, A. F. A. Kadir and A. H. Lashkari,

"Extensible Android Malware Detection and

Family Classification Using Network-Flows and

API-Calls," 2019 International Carnahan

Conference on Security Technology (ICCST),

Chennai, India, 2019, pp. 1-8, doi:

10.1109/CCST.2019.8888430.

[33] A. H. Lashkari, A. F. A. Kadir, L. Taheri and A.

A. Ghorbani, "Toward Developing a Systematic

Approach to Generate Benchmark Android

Malware Datasets and Classification," 2018

International Carnahan Conference on Security

Technology (ICCST), Montreal, QC, Canada,

2018, pp. 1-7, doi: 10.1109/CCST.2018.8585560.

[34] I. Aljarah et al., "A Robust Multi-Objective

Feature Selection Model Based on Local

Neighborhood Multi-Verse Optimization," in

IEEE Access, vol. 9, pp. 100009-100028, 2021,

doi: 10.1109/ACCESS.2021.3097206.

http://dx.doi.org/10.3390/app12115394
https://doi.org/10.22541/au.166308976.63086986/v1
https://doi.org/10.1007/978-981-99-2854-5_14
https://doi.org/10.1007/978-981-99-2854-5_14

