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Abstract: In the dynamic landscape of mobile applications, Android devices seamlessly integrate into our daily lives, offering diverse 

functionalities through various applications. However, the surge in malware and malicious software poses a significant challenge for 

security professionals and users alike. To address this issue, researchers and cyber security experts actively explore innovative methods. 

This research paper delves into the crucial domain of Android application categorization, evaluating the performance of a novel machine 

learning model incorporating a Hybrid Feature Selection Technique (HFST). Initially, the study identifies the top twenty significant 

features through information gain, feature selection, and chi-square methods. The classifier's performance is then assessed using these 

features. Subsequently, all 60 features selected through the three techniques are merged and out of the 60 features, 11 are identified as 

hybrid features that are common in at least two techniques. The study re-evaluates machine learning classifiers' performance using these 

11 hybrid features, comparing the results with existing state-of-the-art techniques to illustrate the superiority of the proposed HFST-

based technique. Furthermore, the study measures its impact on various performance metrics, including classification accuracy, 

precision, and f-measure, revealing notable enhancements across these parameters when employing the HFST. The application of this 

hybrid feature selection technique significantly improves the classification process, ultimately achieving an impressive classification 

accuracy of 98.11%, with precision at 97.56 and an f-measure of 97.99 for distinguishing between malicious and benign apps. 

Keywords: Machine learning algorithms, Hybrid features, Classification and detection, Performance evaluation. 

1. Introduction 

Targeted cyber attacks pose a significant and alarming 

threat on the Internet. The use of conventional executable 

files as a standard payload remains a prevalent choice 

among attackers. A report has indicated that executable 

files rank second among the most common types of 

malicious email attachments. To bypass antivirus programs, 

malicious actors often employ obfuscated malware. 

Traditional antivirus programs, relying on pattern 

matching-based detection, struggle to identify novel forms 

of malware. Although dynamic analysis is a potent 

technique, it consumes substantial time when scrutinizing 

suspicious files from the web. Moreover, it necessitates 

high-performance servers and licenses, which encompass 

commercial operating systems and applications. 

To address this challenge, static detection methods, in 

conjunction with machine learning, offer a viable solution. 

These methods involve the extraction of features from an 

app's manifest file. The AndroidManifest.xml file within 

the APK contains crucial information about the application, 

encompassing permission, activities, services, and 

receivers. The extraction & analysis of this information 

facilitate a deeper understanding of app's capabilities and 

prerequisite. 

The recent advancements in machine learning have 

amplified the effectiveness of app permissions in the 

realm of malware detection. Consequently, a 

combination of app permissions and machine learning 

techniques proves to be a valuable asset in the fight 

against malware. 

In this study, we leverage machine learning techniques 

for the purpose of malware detection. Our research 

underscores the effectiveness of app permissions in 

conjunction with machine learning in a practical 

setting. Our dataset, sourced from various outlets, 

comprises 4890 samples spanning 13 distinct malware 

families. The experimental results strongly support the 

efficiency of our approach in detecting malware, even 

against packed malware and anti-debugging 

mechanisms. This paper contributes following key 

findings: 

• App permissions, when combined with machine 

learning techniques, exhibit effectiveness in 

practical malware detection. 

• Our method extends its effectiveness not only to 

known malware types but also to emerging ones. 

• Our approach is robust against the packed malware 

& countermeasures against debugging. 
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The paper is structured as follows: Section 2 delves 

into related studies, while Section 3 explores the 

machine learning techniques pertinent to this research. 

Section 4 provides a detailed account of our 

experiment, and Section 5 evaluates the model using 

some parameters and comparative analysis with latest 

techniques. Finally, Section 6 concludes this study. 

2. Related Work 

The paper introduces a new machine learning model for the 

detection of Android malware, emphasizing the abnormal 

co-existence patterns of permissions and APIs in malware 

compared to benign apps. They create a novel dataset with 

varying co-existed permissions and API call levels, 

employing the FP-growth algorithm to extract relevant 

features. The model is evaluated against conventional 

machine learning methods and achieves a high accuracy of 

98% in classifying Android malware, surpassing the state-

of-the-art model (87% accuracy). Notably, frequent API co-

existence proves more effective than using API features 

alone. This approach holds promise for future use with 

dynamic features in malware detection. [1] 

The paper introduces a two-stage detection framework, FE-

CaDF, for Android malware detection during the spread or 

downloads stage. It employs CNN for classifying binary 

malicious apps in the first stage and Principal Component 

Analysis (PCA) for multi-classification of malware types in 

the second stage. Features extracted are combined with 

traffic payload for classification. The cascade deep forest 

method adapts to various sample scales and proves 

effective in detecting encrypted Android malware 

transmission, even for unknown attacks. The framework 

has potential for extending to iOS and Windows application 

detection in future research. [2] 

This paper offers a comprehensive review and taxonomy of 

machine learning methods for malware detection, 

addressing the challenges posed by evolving cyber threats. 

It analyzes 77 research works, focusing on accuracy, 

analysis type, and detection approaches. The research 

classifies machine learning algorithms into categories, 

evaluates recent methods, discusses detection challenges, 

and proposes solutions. An empirical study assesses 

multiple machine learning algorithms, with the aim of 

advancing malware detection techniques and inspiring 

future research in cybersecurity. [3] 

Recent research has underlined the significant threat of 

malware in the digital world, leading to the adoption of new 

security measures. Traditional methods have struggled 

against modern, obfuscated malware. Deep Learning (DL) 

has gained prominence for its ability to detect novel 

malware and provide quick analysis. This paper 

investigates DL-based malware detection systems, focusing 

on various malware types like mobile, Windows, IoT, 

APTs, and Ransomware. It highlights the importance of 

proactive security and addresses the limitations of 

traditional methods. The research offers insights and a 

taxonomy for developing more effective mitigation 

approaches against both common and complex malware. 

[4] 

The paper introduces NT-GNN, a novel graph neural 

network model for detecting Android malware based on 

network traffic graphs. Unlike other systems focusing on 

pairwise traffic, NT-GNN considers complex structural 

relationships, achieving a 97% accuracy on Android 

malware datasets. It outperforms deep learning methods 

with high precision, recall, and F1 scores. Future work 

involves classifying malware into families and comparing 

NT-GNN with other graph representation models, as well 

as enhancing performance by extracting static and dynamic 

features from the dataset. [5] 

The increasing popularity of mobile devices has led to a 

surge in malicious Android apps, which are becoming 

harder to detect due to advanced obfuscation. Manual and 

static methods are insufficient, and dynamic analysis is 

time-consuming. To tackle this, a hybrid approach 

combining static and dynamic analysis features is proposed. 

Two datasets for malware detection and family 

classification were created for research, and machine 

learning algorithms were used. This hybrid approach 

outperformed using static or dynamic features alone, 

offering benchmark datasets for testing new techniques. 

Future work will address data imbalance in malware 

classification using deep learning and big data tools. [6] 

Traditional malware detection methods are ineffective 

against new and generic malware. Researchers created a 

dataset with 16,300 records and 215 features from various 

malware sources. They propose a supervised machine 

learning approach using feature reduction and ensembling 

techniques, with CatBoost showing the highest 

performance (93.15% accuracy, ROC 0.91, Kappa Score 

81.56%). This study underscore using machine learning for 

detecting malware and highlights the need for 

comprehensive datasets. The proposed method, particularly 

with the CatBoost classifier, yields promising results in 

accurate malware prediction and classification. [7] 

This paper assesses the effectiveness of multiple machine 

learning techniques for detection and classification of 

malwares. Techniques like SMOTE, feature normalization, 

and PCA are applied to enhance accuracy. The paper 

introduces a Light Gradient Boosting Model to classify 

Android malware into five categories. The research uses a 

substantial dataset of 11,598 APKs from diverse sources 

provided by the Canadian Institute of Cybersecurity, 

addressing the challenges of malware classification. [8]  

Executable files, often obfuscated, remain a popular threat 

to endpoint computers. Dynamic analysis of such files is 
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time-consuming. This paper suggests using natural 

language processing (NLP) techniques on printable strings 

for efficient malware detection. It's applied to a dataset of 

over 500,000 samples, proving effective against various 

types of malware, including new and packed ones. 

Although the study has limitations, it lays the foundation 

for practical performance evaluation. Future work will 

concentrate on analyzing sample specifics & enhance 

packer detection. [9] 

This paper introduces a hybrid analysis approach, merging 

static and dynamic malware analysis for better Android 

malware detection and classification. The framework 

consists of three phases: pre-processing, feature selection, 

and a detection model using an enhanced neural network 

and improved HHO optimization. This hybrid approach 

demonstrates enhanced accuracy in Android malware 

detection and classification compared to analyzing static 

and dynamic aspects separately. [10] Summary of related 

work is shown in Table1 below. 

 

Table 

Table 1. Related Work Summary

References Dataset Used Algorithms Used 
 

Advantages  
[1] New dataset with 

different levels of co-

existed permissions and  

API calls 

Frequent pattern growth (FP-

growth) algorithm 

• High accuracy in classifying Android 

malware. Outperforms state-of-the-art model with 

98% accuracy using Malgenome dataset compared 

to 87% with state-of-the-art.  

• Frequent API co-existence more effective 

than using API features alone. 

[2] Various datasets 

including encrypted 

transmission of Android 

malware 

CNN, PCA 

cascade deep forest method 

• Effective in detecting encrypted 

transmission of Android malware, including 

unknown attacks.  

• Potential for detecting iOS and Windows 

applications. 

[3] 77 selected research 

works 

Various machine learning 

algorithms based on 

performance accuracy, 

analysis type, and detection 

approaches 

• Provides taxonomy for classifying ML 

algorithms in malware detection.  

• Aims to foster improvements in malware 

detection techniques. 

[4] Android malware 

datasets 

CICAndMal2017 and 

AAGM 

NT-GNN (Graph Neural 

Network model) 

• Outperforms other DL approaches with 

high precision, recall, and F1 scores. 

[5] Two datasets for 

detection and family 

classification of 

Android malware 

Hybrid approach with 

machine learning algorithms 

• Improved accuracy in detecting and 

classifying Android malware compared to static or 

dynamic features alone. 

[6] Custom dataset with 

various malware files 

Machine learning classifiers.  • Accuracy of machine learning algorithms 

is improved with hybrid features. 

[7] Comprehensive dataset 

of 16,300 records and 

215 features 

Supervised machine learning 

classifiers, feature reduction 

techniques, ensembling 

techniques 

• CatBoost classifier shows highest 

performance with 93.15% accuracy, ROC value of 

91%, 81.56% Cohen Kappa Score. 

[8] Dataset consisting of 

11,598 APKs 

Synthetic Minority 

Oversampling Technique 

(SMOTE), feature 

normalization, Principal 

Component Analysis (PCA) 

• Light Gradient Boosting Model classifies 

Android malware into five classes with high 

accuracy. 

[9] Dataset with over  NLP techniques on printable • Effective against existing, packed and 
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3. Proposed Work 

Below Figure 1, shows a proposed methodology for hybrid 

feature selection technique. All the phases are explained 

below in three phases: 

 

Fig. 1 Proposed Model 

a. Pre-processing Phase: For optimal results in 

machine learning, thorough pre-processing is vital. This 

includes tasks like removing duplicates, handling missing 

values (NaN), and normalizing or scaling data. MinMax 

scaling is a method used for feature normalization, 

particularly suitable for datasets with low variance. [11] 

Normalization involves rescaling values to a specified 

interval, often between 0 and 1, ensuring proper scaling for 

models dependent on input feature values. The formula for 

MinMax scaling (Equation 1) is employed for data 

normalization. 

𝑌norm =
𝑌𝑖−𝑌min

𝑌max−𝑌min
              Eq.(1) 

  Here, Yi represents the initial value of the 

feature, and the denominator reflects the range between a 

new normalized max and minimum values for that feature. 

Duplicate Android apps can be removed with 

drop_duplicates() function. [12] Malware features are 

extracted through static analysis, which involves collecting 

API calls, intents, permissions and command strings using 

a custom Python script with Apk tool. A prominent feature 

set with the highest importance is then created using hybrid 

feature selection techniques. [13] 

b. Prominent Feature Selection Phase: Selecting 

the right features plays a pivotal role in virus detection. 

Inaccurate feature choices can lead to diminished model 

accuracy, while judicious selections can yield a high level 

of precision. [14] To address this concern, we utilize three 

distinct methods of feature selection namely: information 

gain, a feature importance and a chi square technique. In an 

initial step, we pick the top 20 attributes from each of these 

techniques. Subsequently, we aggregate all 60 features, and 

the ones that overlap across at least two of these methods 

are designated as the ultimate hybrid features. [15] The 

subsequent section outlines these techniques of feature 

selection in detail.                                                                                                                                                                          

 

Information gain technique furnishes us with the gain 

associated with each feature in a given dataset. The utmost 

significance lies in the feature with the highest gain value. 

Figure 2 serves as an illustrative catalogue of top 20 

features that have been singled out using the IG 

methodology. 

500,000 samples strings.  new malware and anti-debugging techniques. 

[10] Custom datasets for 

detection and family 

classification of 

Android malware 

Hybrid approach with neural 

network optimized by 

advanced HHO version. 

• Improved accuracy in detecting and 

classifying Android malware compared to static or 

dynamic features alone. 
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Fig. 2 Top (20) Features with Information Gain. 

Chi-Square technique, aims to identify robust associations 

between dependent and independent features. [16] By 

considering the highest 20 association values, this approach 

selects 20 features from a four used datasets as shown in 

Figure 3. 

 

Fig. 3 Top (20) Features with Chi-square. 

Feature Importance Approach, allows for the 

assessment of the importance of each feature within a 

dataset, with greater importance associated with higher 

feature weight. [17] List of these top 20 features in a 

dataset based on the weight attributed to each feature is 

shown in Figure 4 below. 

 

Fig. 4 Top (20) Features with Feature Importance. 

From a close examination of Figure 2, 3, and 4, it 

becomes evident that each of these techniques has 

unearthed a distinct set of the top 20 features. To 

harness the collective strength of these methodologies 

for effective malware identification, we combine all the 

60 features derived from three techniques. 

Subsequently, we pinpoint & designate as "hybrid 

features" those are common to at least two (2) of these 

methods. This results in the identification of 11 hybrid 

features out of the total 60. Below is a list for hybrid 

features shown in Table 2. 

Table 2. Hybrid Features Common in At least Two 

Techniques. 

S.

N 

Common Hybrid Features. 

a. RECEIVE_1M1 

b. LANDROID.CONTENT.CONTEXT.REGI1TERR

ECEIVER 

c. ANDROID.TELEPHONY.1M1MANAGER 

d. ANDROID.CONTENT.PM.1IGNATURE 

e. LJAVA.NET.URLDECODER 

f. 1END_1M1 

g. ANDROID.O1.0INDER 

h. 1ERVICECONNECTION 

i. 0INDLERVICE 

j. ONLERVICECONNECTED 

k. TRANLACT 

Below algorithm explain steps of finding hybrid 

features.  

a. Evaluation Parameters & Experimental 

Setup: Various metrics employed to assess the 

performance of classifiers are explained below:  

True Positive Rate-Recall: TPR is also called Recall. 

It can be calculated with the division of count of 

correctly identified positive samples by the total count 

of positive samples. [18] As depicted in the equation 

(2). It is computed using the below formula:  

  TPR = TP/(TP+FN)  Eq. (2) 

False Positive Rate: FPR indicates a fraction of false 

positive instances concerning the overall count of of 

true negative instances. [19] Below equation (3) outline 

computation of this. FPR = FP/(TN+FP)  Eq. (3) 

Precision: Precision is calculated with the division of 

number of correct instances by the total count of 

accurate instances. [20] It is computed with equation 

(4). 

Precision = TP/(TP+FP)    Eq. (4) 

F-Measure: It represents the harmonic average of 

recall & precision. [21] It is determined with equation 

(5).               F-

measure=(2*Precision*Recall)/(Precision+Recall) 

    Eq. (5) 
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Accuracy: It can be computed by a division of count of 

cases with a sum of true negatives and true positive 

instances. [22] The calculation for accuracy is as 

follows in equation (6).  

Accuracy=(TP+TN)/(TP+FP+FN+TN)  Eq. (6) 

MCC (Matthews correlation coefficient): It serves as 

a benchmark for assessing the performance of binary 

classifiers. [23] It falls within the numeric range of +1 

to -1. In this context, a value of +1 means accurate 

prediction, & a -1 meaning opposite prediction. The 

calculation for MCC, as represented by equation (7), is 

as follows: 

MCC=(TP*TN-FP*FN)/√[(TP+FN)(TP+FP) 

(TN+FP)(TN+FN)]           Eq. (7) 

AUC-ROC Curve: This curve is used for the 

assessment of a classification model. [24] Its function 

is to quantitatively measure model's ability to 

distinguish between different classes. 

In this context, True Positives (TP) represents instances 

correctly classified as "Yes," whereas False Positive 

(FP) is when an instance is mistakenly classified as 

"Yes." [25] True Negative denotes cases that were 

correctly excluded from the "Yes" category when 

expected. Conversely, False Negatives (FN) refers to 

cases that were predicted to not belong to the "Yes" 

category but actually did. [26] 

4. Experiment  

An experiment was conducted to assess the 

effectiveness of two sets of features in enhancing 

machine learning classifier performance: one set of 

hybrid features presented in Table 2 and another set of 

top 20 features displayed in Figure 2, 3 & 4. As 

depicted in Figure 1 under the Methodology section, a 

ten-fold cross-validation technique was employed, 

which is statistically reliable for evaluating classifier 

performance. 70:30 atios are used for training & testing 

of a dataset. Accuracy, FPR, TPR, Precision, F-

measure, MCC & AUC were utilized to gauge 

classifier performance. Table 4, 5 & 6 showcases the 

comparative performance of classifiers with the use of 

chi-square, IG and feature importance methods. Table 

4 reveals that chi-square technique led to improved 

performance across all classifiers as compared to IG, 

and feature selection techniques. With chi-square 

technique as shown in Table 4, the Random Forest 

algorithm has shown the highest precision, accuracy 

and F Measure while Table 7 illustrates performance of 

classifiers when employing HFST technique with chi-

square features. 

Following a performance evaluation of classifier with 

20 top features, the impact of hybrid features was also 

examined. A subsequent experiment was carried out, 

and the same classifiers were assessed using the hybrid 

features detailed in Table 2. The results are presented 

in Table 8. A comparison between the outcomes in 

Table 7 and Table 8 clearly demonstrates a significant 

enhancement in classifier performance with the 

inclusion of hybrid features. 

a. Dataset Used: In this study, four distinct 

datasets were employed, sourced from Kaggle [27]. 

These datasets comprise a collection of 1910 instances 

of malware samples and 2980 instances of benign 

samples. Together, they encompass 215 attributes, with 

the distribution as follows: manifest permissions 

account for 53%, API call signatures for 33%, and the 

remaining 14% encompass other attributes. Each 

dataset entry pertains to the attributes associated with 

various applications, with values denoted as 0 or 1. A 

value of 0 signifies that a specific attribute does not 

necessitate permission, whereas a value of 1 indicates 

the requirement for permission. [28] Additionally, each 

dataset incorporates a column indicating whether an 

application is categorized as malicious or benign. For a 

detailed breakdown of the collected samples used to 

construct our dataset, please refer to Table 3. 

Table 3. Distribution of Used Dataset. 

Used Dataset Total 

Sample 

Malwares 

Count 

Benign 

Count 

DREBIN 1400 450 950 

CICANDMAL 2017 1240 450 790 

APK MIRROR 1200 410 790 

VIRUS SHARE 1050 600 450 

TOTAL 4890 1910 2980 

b. Detecting Malwares with Static Features: 

As previously discussed, the chi square method has 

proven to be the preferred choice for selecting static 

features. Table 4 to 6 present findings related to 

classification precision, accuracy, and F-measure 

scores obtained by applying various classification 

algorithms using chi square, IG and a Feature 

Importance Techniques respectively. The results in 

these tables clearly indicate that, on average, chi-square 

outperforms the other metrics in terms of selecting 

static features. Table 7 outlines the outcomes of binary 

detection with static features. Remarkably, with HFST, 

we attain a peak accuracy of 96.91%, showcasing its 

remarkable performance. As for other methods such as 

SMO, KNN, SVM, DT, RF, NB, and MLP, their 

accuracy rates range from 92.31% to 95.52%. It's worth 

noting that Naïve Bayes accuracy relies on probability 
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distribution, and it could potentially benefit from 

additional data examples to enhance its performance. In 

summary, HFST technique demonstrates commendable 

performance in binary classification with static 

features. HFST, in particular, achieves an impressive 

MCC (Matthews correlation coefficient) of 93.8%, 

signifying a substantial performance improvement 

compared to other standard models. During testing, 

HFST consistently reaches a peak accuracy value of 

96.91% on a 7th epoch, while the accuracy of training 

varies between 81.11% to 98.71%, indicating a stable 

convergence of training accuracy. Test accuracy falls 

within the range of 79.55% to 95.11%.  

Table 4. Evaluation of Classifiers with Chi-square method.

 

 Table 5. Evaluation of Classifiers with Information Gain Method.  

Table 6. Evaluation of Classifiers with Feature Selection Method. 

ALGORITHMS KNN SMO SVM Random 

Forest 

Decision 

Tree 

Naïve 

Bayes 

MLP Average 

Accuracy 0.9322 0.9332 0.9162 0.9342 0.9483 0.9444 0.9311 0.9342 

Precision 0.9221 0.9273 0.9102 0.9312 0.9163 0.9154 0.9271 0.9213 

F Measure 0.9254 0.9215 0.9112 0.9281 0.9444 0.9404 0.9282 0.9284 

 

Table 7. Performance Evaluation of various classifiers & HFST technique with Chi-square features. 

ALGORITHMS KNN SMO SVM Random 

Forest 

Decision 

Tree 

Naïve 

Bayes 

MLP HFST  

Technique 

Accuracy 0.9231 0.9352 0.9234 0.9552 0.9504 0.9421 0.9352 0.9691 

False Positive Rate 0.0711 0.0642 0.0776 0.0498 0.0561 0.0691 0.0582 0.0292 

True Positive Rate 0.9172 0.9333 0.9242 0.9662 0.9573 0.9572 0.9263 0.9672 

Precision 0.9172 0.9253 0.9082 0.9422 0.9334 0.9172 0.9334 0.9672 

F-Measure 0.9172 0.9291 0.9162 0.9542 0.9452 0.9362 0.9293 0.9672 

MCC 0.8452 0.8686 0.8453 0.9156 0.8997 0.8842 0.8695 0.9381 

AUC 0.9232 0.9312 0.9152 0.9465 0.9396 0.9243 0.9388 0.9692 

c. Malware Classification with Hybrid Features: The challenge of accurately classifying 

malware arises from its characteristics of execution 

ALGORITHMS KNN SMO SVM Random 

Forest 

Decision 

Tree 

Naïve 

Bayes 

MLP Average 

Accuracy 0.9231 0.9350 0.9231 0.9582 0.9504 0.9421 0.9351 0.9382 

Precision 0.9172 0.9291 0.9081 0.9423 0.9336 0.9171 0.9332 0.9258 

F Measure 0.9172 0.9291 0.9162 0.9543 0.9451 0.9365 0.9294 0.9325 

ALGORITHMS KNN SMO SVM Random 

Forest 

Decision 

Tree 

Naïve 

Bayes 

MLP Average 

Accuracy 0.9041 0.9152 0.9023 0.9123 0.9411 0.9223 0.9421 0.9199 

Precision 0.9252 0.9254 0.9012 0.9092 0.9334 0.9103 0.9305 0.9193 

F Measure 0.9041 0.9123 0.9012 0.9044 0.9402 0.9164 0.9335 0.9160 
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stalling and obfuscation, making it difficult to achieve 

with a single static or dynamic technique. [29] In order 

to address this issue, we have adopted a hybrid features 

approach. In an initial step, we pick the top 20 

attributes from each of these techniques. Subsequently, 

we aggregate all 60 features, and the ones that overlap 

across at least two of these methods are designated as 

the ultimate hybrid features. In our analysis, we applied 

seven different machine learning classifiers for 

detecting and classifying binary malwares. The 

outcomes of binary classification evaluations, utilizing 

machine learning techniques on hybrid features, are 

presented in Table 7. Notably, a HFST model 

outperforms the previously mentioned classifiers in 

terms of accuracy. Specifically, HFST achieves an 

accuracy rate of 98.11%, surpassing Random Forest 

and Decision Tree, which attain 96.99% & 96.22% 

result, respectively. Performance of all the classifiers is 

shown in figure 5. 

 

Fig. 5 Performance of Various Classifiers. 

d. Accuracy Comparison: As shown in Table 9, 

HFST technique has shown highest accuracy using 

both for static & hybrid features. However it has shown 

accuracy of 98.11% notably with hybrid features and 

96.11 with static features. The findings in the Table 9 

graphs in figure 6 & 7 reveal that use of hybrid features 

has enhanced accuracy of all classifiers by nearly 2%.  

  

Table 8. Performance of various classifiers & HFST technique with hybrid features.

ALGORITHMS KNN SMO SVM Random 

Forest 

Decision 

Tree 

Naïve 

Bayes 

MLP HFST 

Technique 

Accuracy 0.9466 0.9581 0.9423 0.9699 0.9622 0.9465 0.9466 0.9811 

False Positive Rate 0.0681 0.0490 0.0632 0.0355 0.0420 0.0564 0.0566 0.0210 

True Positive Rate 0.9655 0.9666 0.9492 0.9755 0.9669 0.9497 0.9499 0.9832 

Precision 0.9177 0.9423 0.9211 0.9588 0.9509 0.9333 0.9333 0.9756 

F-Measure 0.9404 0.9542 0.9377 0.9666 0.9588 0.9411 0.9411 0.9799 

MCC 0.8923 0.9152 0.8843 0.9388 0.9233 0.8923 0.8922 0.9612 

AUC 0.9244 0.946 0.9311 0.9623 0.9543 0.9387 0.9388 0.9777 

Table 9. Accuracy comparison of various classifiers with HFST technique.

ALGORITHMS KNN SM

O 

SV

M 

RF DT NB ML

P 

HFST 

Technique 
Findings 

ACCURACY 

(Hybrid Features) 

0.946

6 

0.95

81 

0.94

23 

0.96

99 

0.96

22 

0.94

65 

0.94

66 
0.9811 

The use of hybrid 

features has 

enhanced the 

accuracy of all 

classifiers by 

nearly 2%. 

ACCURACY 

(Static Features) 

0.923

1 

0.93

52 

0.92

34 

0.95

52 

0.95

04 

0.94

21 

0.93

52 
0.9691 

 

5. Comparative Analysis  

Precision and recall metrics were assessed, as detailed 

in Tables X. The research conducted by Laya Taheri et 

al. [32] involved the utilization of the random forest 

algorithm to compute precision and recall for the 

dataset. In contrast, our approach, employing the HFST 

algorithm, yielded the most impressive outcomes. Our 
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study represents advancement over previous research in 

the realms of static feature analysis. As depicted in 

Table 10, our methodology attains a highest recall rate 

of 97.99% while classifying malware binaries. In 

comparison with state-of-the-art methods, our approach 

significantly enhances the performance of binary 

malware classification in static categorization. In Table 

10, the result also shows that HFST achieves the 

highest precision level of 97.56%. In contrast, other 

investigations report their top precision rates at 93.8%, 

89%, and 85.9%. 

 

Fig. 6 Accuracy comparison of static & hybrid features             Fig. 7 Accuracy comparison of static & hybrid features 

Table 10. Comparative analysis of HFST with latest techniques. 

Various Techniques Results Precision  Recall 

Mohammad Kamel A. Abuthawabeh et. al. [31] 89%(Random Forest) 83.22%(Random Forest) 

Laya Taheri et. al.[32] 85.9%(Random Forest)   88.3%(Random Forest)   

Mohammad Kamel A. Abuthawabeh et. al. [31] 85.8%(Decision Tree)   86.1%(Decision Tree)   

Arash Habibi Lashkari et. al.[33] 85.4%(KNN)   88.2%(KNN)   

Ibrahim Aljarah et. al. [34] 93.8%(Decision Tree) 94.36%(Decision Tree) 

HFST Technique 97.56% (Hybrid Features) 97.99% (Hybrid Features) 

 

a. Feature Selection Effect: The suggested 

method for selecting hybrid features has a notable 

influence on the quantity of features. A reduction in the 

number of features has a positive effect on the 

performance of evaluation metrics. [30] In the case of 

static features, filter methods are employed to identify 

the most prominent feature subset to engage in the 

malware detection process. By implementing the 

suggested model for malware detection in feature 

selection, this approach enhances detection accuracy 

while simultaneously diminishing the occurrence of 

false negatives and false positives in identifying 

malware applications. 

6. Conclusion & Future Work 

Constant vigilance is crucial for Android users due to 

the persistent threat of mobile viruses. The paper 

explores the effectiveness of hybrid features derived 

from three selection strategies in malware detection, 

demonstrating that the hybrid approach is the most 

effective, resulting in 98.11% classification accuracy 

for distinguishing malicious and benign apps. Future 

research directions includes adaptive algorithms, deep 

learning and multi-modal analysis for an improved 

detection, as well as for the investigation of  federated 

learning, enhancing explain ability, & addressing 

challenges for large-scale deployment in order to 

enhance use privacy & effectiveness. This work can be 

expanded for zero day malware detection, real time 

monitoring, & in-depth analysis of the Android app 

market to proactively address evolving threats. 
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