
International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799  www.ijisae.org Original Research Paper 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 179–187 |  179 

neurological disorder Parkinson's (PD) remained 

mysterious. The annual economic burden of Parkinson's 

illness (PD) in the United States is projected to surpass $52 

billion. This figure incorporates the expenses associated 

with medical care, contributions to welfare, and the income 

that has been foregone. Undoubtedly, the global prevalence 

of Parkinson's disease (PD) exceeds 10 million individuals. 

According to reference [2], it is crucial to prioritise the early 

identification of Parkinson's disease. This allows for 

effective treatment and greatly reduces discomfort. Hence, 

it is imperative to promptly and identify Parkinson's disease 

(PD) to decelerate the advancement of the ailment and 

maybe enable individuals to get disease-modifying drugs 

upon their availability. Parkinson's disease (PD) is 

characterised by involuntary repetitive movement of the 

hands and feet, known as tremors, which are beyond the 

patient's control. Currently, there is no reliable method 

available to diagnose Parkinson's disease (PD) [2]. 

Conversely, there is frequently a confluence of diagnostic 

techniques and symptoms that coexist. 

2. Literature Review

Researchers have explored a diverse range of biomarkers in 

order to identify Parkinson's disease at its first stages and 

impede its advancement. While there are several drugs 

available to treat symptoms of Parkinson's condition, none 

of them possess the ability to decelerate or halt the 

advancement of the ailment. Speech data, gait patterns [7], 
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hold the 14th position in the country. The aetiology of the 

1. Introduction

Parkinson's disease, commonly referred to as PD, is a 

progressive disorder that impacts the brain and nervous 

system and greatly reduces the standard of life for numerous 

elderly adults globally [1]. In order to meet the intrinsic 

variability, the symptoms may manifest differently in an 

individual. Tremors are the most prominent manifestation 

experienced by individuals with Parkinson's disease, 

occurring during the patient's sleep. Additional symptoms 

encompass hand tremors, limb stiffness, and challenges 

with ambulation or maintaining an upright posture. 

The 

symptoms of the neurological disorder Parkinson's can 

generally be categorised into two main groups: motor 

manifestations, which are related to movements, and non-

motor manifestations, which are unrelated to movement. 

Individuals with non-motor manifestations are more prone 

to suffering negative impacts compared to those primarily 

experiencing motor impairment. Non-motor manifestations, 

with motor manifestations, encompass cognitive 

impairment, indications of sadness, sleep disturbances, and 

anosmia. As per the rankings by the US Centre for Disease 

Control and Prevention (CDC) on causes of mortality, 

health issues associated with Parkinson's disease currently 
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force tracking data [8], smell recognition data [9], and 

impulsive cardiovascular oscillations [10] have all been 

utilised as sources of knowledge for various techniques 

involving the use of Type-2 Fuzzy AHP (T2F AHP) [7] to 

aid in the identification of Parkinson's disease (PD). The 

sawtooth-based pitch estimator [11] is a technique 

employed to assess speech impairments caused by different 

forms of Parkinson's disease. This method employs the 

sawtooth-inspired pitch predictor algorithm, which 

necessitates the use of a smartphone to capture voice data.  

Fig.1. depicts a model that integrates Parkinson 

Progression Measures (PPMs) with mathematical 

modelling [10]. 

This method evaluates the extent of disorder severity. In 

order to accomplish this, a wide range of feature sets with 

significant variations are retrieved.The SWIPE technique 

was successfully applied to distinguish between persons 

having Parkinson's disease and individuals in good health, 

yielding positive results. However, to attain effective noise 

resistance and lower the signal-to-noise ratio at the same 

time, a more effective technique is needed. S. Kim et al [12] 

suggests an early diagnosis approach for Parkinson's disease 

by taking advantage of the characteristics of compressed 

speech. The information presented indicates that the 

implementation of Wrappers selection of subsets is deemed 

appropriate due to the minimal dimension of the feature that 

was chosen and the possibility of increased PD detection 

capabilities. A. Prado et al [13] suggested a technique that 

uses a single-dimensional artificial neural network (1D NN) 

with gait data. However, voice recordings' susceptibility to 

background noise frequently compromises the accuracy of 

diagnosing Parkinson's disease (PD) using speech and gait 

analyses, leading to a high rate of both missed and false 

alarms. In this sense, both of these kinds of questions are 

accurate. The associated gait monitoring and assessment are 

completed online. For this purpose, extra space is needed for 

walking around as well as special equipment [14]. [15] 

M. Ricci et al [15] suggest employing wavelet analysis in

interpretation to assess data from Parkinson's disease

patients who wore smartwatches. This technique

demonstrated exceptional precision in detecting

bradykinesia, dyskinesia, and tremor symptoms throughout

testing. C. Laganas et al [16] offers a method for using

smartphone touchscreen typing to identify motor

dysfunction in Parkinson's patients. The method that has 

been suggested makes use of touchscreen typing metrics to 

identify motor symptoms associated with Parkinson's 

disease. Descriptive statistical measures like covariance, 

skewness, and kurtosis, as well as temporal data, are 

examples of these metrics. For the purpose of making 

predictions of Parkinson's disease (PD) in [17], they also 

combine information from all of these different sources, 

combining imaging, genetics, and clinical data, with 

demographic data. Parkinson's disorder is a degenerative 

neurological condition. In some research that are 

occasionally quoted, it was even taken into consideration as 

a component of the Parkinson's disease diagnostic 

techniques. A description of the diagnostic technology for 

Parkinson's disease (PD) can already be found in reference 

u. To ascertain if a person has the condition or not, it uses

handwritten data that they have submitted.

Research has already shown that if information on age and 

gender are included in the flow of decision-making, both its 

accuracy rate for diagnosing Parkinson’ s disease increases. 

In line with the results of the experiments conducted in [15, 

16], it is suggested that Temporal Self-Attention models be 

applied to improve Parkinson's disease diagnosis accuracy. 

A correct and early diagnosis of PD is critical, since it can 

provide substantial clues that may impede the development 

talked about above. To handle this problem, a variety of 

data-driven approaches have evolved over time for more 

accurate screening and diagnosis in Parkinson's disease. The 

ingredients Didn't more than that Just for the record to set 

themselves apart from model-based detection methods, 

data-driven techniques have only needed to prove they 

could make something out of available past data. Moreover, 

model-based detection methods rely on having a 

computational analytical model in the past when such 

detections were made. It has been discovered that machine 

learning is capable of being used as a rapid diagnostic tool 

for Parkinson's disease. And both educational institutions 

and corporate enterprises have suddenly started to look into 

the topic in recent years. This investigation is being carried 

out through the utilisation of residual network (ResNet) and 

its variation approaches [17, 18, 19, 20]. All of these 

investigations are being carried out in recent times. It is via 

the utilisation of data-driven approaches that machine 

learning (ML) has brought about a dramatic transformation 

in the extraction and processing of relevant data from 

Parkinson's disease (PD) biomarkers. In addition, the 

techniques of machine learning provide pertinent 

information that assists in the identification and 

categorization of PD, which in turn speeds up the process of 

decision-making. Through the application of a number of 

different machine learning strategies, the problem of 

diagnosing Parkinson's disease has been attempted to be 

solved in published research. Measures of dysphonia were 

employed by researchers in [21] in order to differentiate 
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between patients who were diagnosed with Parkinson's 

disease and those who were healthy. The SVM is based on 

the concept of deducing nonlinearity from a “kernel,” and 

therefore can only be applied to classifying four dysphonic 

characteristics which are linked with Parkinson’ s disease 

(PD). That discussed in [6] employed random forest (RF), 

support vector machine, and neural network models using 

acoustic properties of speech to identify Parkinson's disease. 

Even so, research has already proven that the RF and SVM 

are both showing promising results in early diagnosis of 

other long-term disorders like Parkinson's disease (PD). By 

comparison with three other classifiers (including Decision 

Trees, Regression and DMneural), one can see that the most 

effective tool for detecting Parkinson's disease was a neural 

network; its accuracy rate reached 92.9 %. Founded on this, 

Neural Networks are also now known as the most reliable 

method of diagnosing Parkinson's disease. The remaining 

classifiers were DM neural, decision trees and regression. 

Deeply learning Recently, great attention has been paid to 

applying deep-learning algorithms for assisting in the 

diagnosis of parkinson's disease (PD) [3, 23]. This is 

possible because these algorithms can deal with massive 

quantities of data and high levels of accuracy, while making 

only a small number of assumptions about the distribution. 

The Freezing of Gait (FOG) [23, 24,25] employing a Long 

Short Term Memory Model (LSTM) to recognize motion 

detected occurrences that indicated foreshadowed falls 

among Parkinson's disease patients at high risk for tripping 

or dropping down suddenly without warning. Empirical 

evidence has shown that the LSTM outperforms SVM in 

detecting FOG. Despite this, the classification models 

currently implemented in clinical practice are limited on 

both scores. These drawbacks arise due to the complex 

nature of these models, or because they do not cover such 

factors as various organ characteristics.  

The next part will talk about a possible answer to this 

problem in the form of a suggestion: creating a unique dual-

level bioinspired feature selection model that uses ensemble 

classifiers. This model's accuracy, precision, memory, and 

latency are all looked at to see how well it works. It is then 

put up against a number of new methods. As the study 

comes to an end, some background information about the 

proposed model is given, along with some suggestions for 

how to make it more useful while used in clinical settings. 

3. Proposed Methodology

Existing Parkinson's detection models are overly complex, 

or fail to consider multi organ feature interactions, making 

them not suitable for widespread applicability. In this 

section, a novel approach Dual-level bioinspired ensemble 

feature selection is proposed which bypasses these 

restrictions to detect Parkinson's disorders. Figure 2 

illustrates the flow diagram of the proposed model. Initially, 

patient datasets are collected from multiple sources, 

including voice, physical activity, and psychological 

patterns. These datasets are then filtered employing the 

dual-level genetic algorithms (DLGA) model, which assists 

in identifying highly variant inter-class features. A 

composite classification layer that integrates classifier from 

Naive Bayes (NB), Deep Forest (DF), Multilayer Perceptron 

(MLP), 1D Convolution Neural Network (CNN), and 

Logistic Regression (LR) is employed for analysing these 

features. The selection of these classifiers is based on their 

performance in experimental accuracy conditions. 

The model first gathers Voice Samples (VS), EEG readings, 

and Physical activity datasets from various sources. It then 

collects Mel Frequency Cepstral Coefficients (MFCC), 

iVectors, Wavelet Coefficients, and Fourier Coefficients. 

This is done to enable the representation of input samples in 

several domains. In order to construct MFCC Vectors, the 

input samples that have been gathered are quantized using 

equation 1. 

𝑸𝒂

=
𝑵𝒂 −𝒎𝒊𝒏⁡(𝑵𝒂)

(𝑵𝒂) ⁡− 𝒎𝒊𝒏⁡(𝑵𝒂)⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝟏) 

Where, N_a represents the normalised samples' real value, 

and Qa their quantized levels. Equation 2 estimates Mel 

scales for each input sample, 

𝑴𝒂

= 𝟒 ∗ 𝒇𝒔

∗ (𝟏 +
𝑸𝒂

𝒇𝒔
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝟐) 

Where, 𝑓𝑠 is the sampling frequency, and is decided by

periodicity of collected samples. 

Fig. 2. Proposed bioinspired computing model's overall 

flow for Parkinson disease identification 
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Using these Mel Scales, Cepstrum Values are estimated via 

equation 3, 

𝐶𝑎
= 𝑖𝑓𝑓𝑡[𝑙𝑜𝑔 𝑙𝑜𝑔⁡(𝑓𝑓𝑡[𝑀𝑎])⁡]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)

Each cepstrum coefficient has some DC offsets, which are 

removed via normalizing the signals as per equation 4, 

𝑁𝑜𝑟𝑚𝑎

=
(𝐶𝑎 − ∑

𝐶𝑎𝑖
𝑁

𝑁
𝑖=1 ) ∗ (𝑁 − 1)

√∑ (𝐶𝑎𝑗 − ∑
𝐶𝑎𝑖
𝑁

𝑁
𝑖=1

2

)𝑁
𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

Where, 𝑁 represents total number of samples present in the 

cepstrum coefficient sets. To further filter out invariant 

samples, a triangulation filter is applied as per equation 5, 

𝑇𝑎

= ∑[𝑁𝑜𝑟𝑚𝑎𝑖
]
2

𝑁−1

𝑖=0

∗ 𝑀ℎ𝑖
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)

Where, 𝑀ℎ is a pre-decided filter bank coefficient set, which

is capable of extracting Mel Frequency Components as per 

equation 6, 

𝑀ℎ(𝑖)

=
𝑖 − 𝑓(ℎ − 1)

𝑓(ℎ) − 𝑓(ℎ − 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Based on these values, the MFCCs are extracted via 

equation 7, 

𝑀𝐹𝐶𝐶𝑖 = ∑𝑙𝑜𝑔 𝑙𝑜𝑔⁡[𝑇𝑎(𝑚)]

𝑀

𝑚=1

⁡ ∗

𝑐𝑜𝑠 𝑐𝑜𝑠⁡ [𝑖 ∗ (𝑚 −
1

2
)

∗
𝑝𝑖

𝑀
]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

These components are extended via equation 8 for 

estimation of iVector components, 

𝑖𝑉𝑒𝑐𝑡𝑜𝑟𝑖 = 𝑀𝐴𝑋(⋃𝑗=1
𝑁 𝑀𝐹𝐶𝐶𝑗)

+ [(1,1)𝑣𝑎𝑟 ⁡⋯⁡(1, 𝑛)𝑣𝑎𝑟 ⁡ ⋮⁡⋱⁡

⋮ ⁡ (𝑛, 1)𝑣𝑎𝑟 ⁡⋯⁡(𝑛, 𝑛)𝑣𝑎𝑟 ⁡]

∗ 𝑀𝐹𝐶𝐶𝑖⁡⁡⁡⁡⁡⁡⁡⁡(8)

Here, the value of correlative variance (𝑛, 𝑛)𝑣𝑎𝑟  is estimated

via equation 9, 

(𝑛,𝑚)𝑣𝑎𝑟

=
𝑒𝑥𝑝 𝑒𝑥𝑝⁡ (

𝑛2

2
)⁡

2 ∗ 𝑝𝑖 ∗ 𝑣𝑎𝑟(𝑛) ∗ 𝑣𝑎𝑟(𝑚)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

And the variance levels are estimated via equation 10, 

𝑣𝑎𝑟(𝑥) =
1

𝑁 − 1
∗∑(𝑥𝑖 −∑

𝑥𝑗

𝑁

𝑁

𝑗=1

)

2
𝑁

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

These coefficients are cascaded with approximate & 

detailed Wavelet components, that are extracted via 

equations 11 and 12 as follows, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤𝑖𝑎𝑝𝑝𝑟𝑜𝑥

=
𝑥𝑖 + 𝑥𝑖+1

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

𝑤𝑖𝑑𝑒𝑡𝑎𝑖𝑙

=
𝑥𝑖 − 𝑥𝑖+1

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

Finally, Fourier components are extracted via equation 13 

as follows, 

𝐹𝑖 = ∑ 𝑥𝑗

𝑁−1

𝑗=0

∗ [𝑐𝑜𝑠 𝑐𝑜𝑠⁡ (2 ∗ 𝑝𝑖 ∗ 𝑖 ∗
𝑗

𝑁
) ⁡− √−1 ∗

𝑠𝑖𝑛 𝑠𝑖𝑛⁡ (2 ∗ 𝑝𝑖 ∗ 𝑖

∗
𝑗

𝑁
)⁡] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

The various coefficients are consolidated to create a Super 

Feature Vector (SFV), which is depicted in figure 3 as 

follows, 

Fig. 3. The SFV generated after combining all Feature 

Vectors 
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Table 1. Parameters used for different classifiers 

Classifier Parameter Used 

NB 

Priors = Featured Selection Variance. 

Smoothing Value 𝑆𝑉 =
𝑉𝑎𝑟(𝐹)

𝑀𝑒𝑎𝑛(𝐹)
… (17) 

Where Var and Mean denote the 

amounts of variance and average of the 

attributes that were chosen. 

DF 

The quantity of estimators = 10 ∗ 𝑁𝑓𝑒𝑎𝑡

Classification Criteria = Entropy 

Split Samples = 
𝑁𝑓𝑒𝑎𝑡

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
… (18) 

Where, 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠  represents number of

classes in the datasets 

Class Weights = Class-based variance 

levels 

MLP 

Quantity of concealed levels = 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

Function of activation = Rectilinear unit 

Adam is the solver type. 

Learned Value = L_r 

1D CNN 

Same as MLP but each layer has Max 

Pooling of sizes 1x4, 1x8, 1x16 and 

1x32 with Drop Out and Convolutional 

feature extraction layers 

LR 

Tolerance = 0.001 

Class Weights refer to the variation 

levels specific to each class. 

The solver type is linear, and the 

maximum number of iterations is 10 

times the number of features. 

4. Comparison & Statistical Analysis

The suggested approach intelligently identifies Parkinson 

disease kinds using multiple feature extraction, Genetic 

Algorithm, and ensemble classification. This model was 

assessed based on classification accuracy (A), precision (P), 

recall (R), and delay needed to classify patient data from 

Kaggle & IEEE Data Port. These samples were Normal and 

Parkinson. Recently suggested classification models T2F 

AHP [5], TSA [16], and Res Net [18] performed well 

against the model. From equations 20, 21, 22, and 23, 

accuracy, precision, recall, and delay were assessed. 

𝐴

=
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

𝑃

=
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

𝑅

=
𝑡𝑝

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(22) 

𝑑

=
1

𝑁
∑𝑡𝑒𝑛𝑑𝑖

𝑁

𝑖=1

− 𝑡𝑠𝑡𝑎𝑟𝑡𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23)

The rates of true positives (t_p), false positives (f_p), true 

negatives (t_n), and false negatives (f_n) are denoted by the 

corresponding variables. The dates and time stamps of the 

beginning and ending processes during processing of N 

samples are represented by the parameters t_end and t_start, 

respectively. A grand total of 3000 samples were utilised for 

the purpose of assessment, with 60% allocated for training, 

20% for testing, and the remaining 20% for validation 

procedures. Table 2 examined the accuracy of this method 

by comparing it with respect to... The number of test 

samples (NTS) is as follows: 

Table 2. Classification accuracy for identification of 

Parkinson disease w.r.t. different models 

NTS 
T2F 

AHP [5] 

TSA 

[16] 

Res Net 

[18] 

Proposed 

Work 

133 81.86 86.25 88.59 95.95 

267 81.93 86.75 88.89 95.99 

400 81.98 87.25 89.12 96.06 

533 82.01 87.56 89.36 96.15 

667 82.05 87.75 89.6 96.26 

800 82.11 87.88 89.87 96.34 

933 82.17 88.17 90.03 96.42 

1067 82.23 88.54 90.15 96.48 

1200 82.28 88.96 90.21 96.56 

1333 82.33 89.28 90.41 96.64 

1467 82.38 89.61 90.64 96.7 

1667 82.43 89.93 90.94 96.74 

2000 82.48 90.26 91.15 96.75 

2167 82.53 90.59 91.36 96.76 

2333 82.59 90.91 91.57 96.76 

2667 82.64 91.24 91.77 96.76 

2833 82.7 91.56 91.98 96.84 

3000 82.75 91.89 92.19 96.94 
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Fig. 4. Accuracy of Parkinson disease classification 

according to several models 

According to this assessment and figure 4, the suggested 

model demonstrated a 12.4% higher accuracy compared to 

T2F AHP [5], a 4.5% higher accuracy compared to TSA 

[16], and a 3.9% higher accuracy compared to Res Net [18]. 

This indicates that the model is extremely valuable for 

various real-time classification situations. This is a result of 

employing a high variance feature selection and ensemble 

classification procedure. Table 3 examined the precision of 

categorization in a similar manner. 

Table 3. Classification Precision for Identification of 

Parkinson disease w.r.t. different models 

NTS 
T2F AHP 

[5] 
TSA [16] 

Res Net 

[18] 

Proposed 

Work 

133 79.95 82.81 85.78 94.85 

267 80.00 83.17 86.02 94.93 

400 80.04 83.43 86.25 95.02 

533 80.09 83.65 86.47 95.11 

667 80.14 83.89 86.67 95.19 

800 80.19 84.18 86.81 95.26 

933 80.25 84.51 86.94 95.34 

1067 80.30 84.85 87.09 95.40 

1200 80.35 85.19 87.28 95.46 

1333 80.40 85.50 87.50 95.51 

1467 80.45 85.81 87.73 95.54 

1667 80.50 86.12 87.95 95.55 

2000 80.55 86.43 88.15 95.56 

2167 80.60 86.74 88.35 95.58 

2333 80.65 87.05 88.55 95.63 

2667 80.70 87.36 88.75 95.70 

2833 80.75 87.66 88.94 95.79 

3000 80.80 87.95 89.13 95.86 

Fig. 5. Precision of classification for the identification of 

Parkinson's disease with respect to several models 

According to this assessment and figure 5, it was noted that 

the suggested model demonstrated an accuracy 

improvement of 15.2% compared to T2F AHP [5], 8.3% 

compared to TSA [16], and 6.5% compared to Res Net [18]. 

This makes it very valuable for a range of real-time 

classification applications. This is a result of employing the 

maximisation of variance method in feature selection, as 

well as effectively combining ensemble classification 

approaches. Table 4 tested the recall of categorization in a 

similar manner. 

Table 4. Classification recall for identification of 

Parkinson disease w.r.t. different models 

NTS T2F AHP 

[5] 

TSA 

[16] 

Res Net 

[18] 

Proposed 

Work 

133 78.95 84.74 86.24 94.25 

267 79.01 85.15 86.49 94.32 

400 79.05 85.48 86.72 94.40 

533 79.09 85.71 86.94 94.49 

667 79.14 85.92 87.15 94.58 

800 79.20 86.18 87.32 94.66 

933 79.25 86.52 87.46 94.73 

1067 79.30 86.89 87.59 94.79 

1200 79.35 87.23 87.75 94.85 

1333 79.41 87.55 87.98 94.91 

1467 79.45 87.87 88.22 94.95 

1667 79.50 88.18 88.44 94.96 

2000 79.55 88.50 88.64 94.98 

2167 79.60 88.82 88.84 95.00 

2333 79.65 89.14 89.05 95.03 

2667 79.71 89.46 89.25 95.08 

2833 80.09 89.06 89.27 95.37 

3000 80.47 88.66 89.30 95.65 

According to the assessment and figure 6, the suggested 

model demonstrated a 14.5% higher recall compared to T2F 
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AHP [5], a 6.5% higher recall compared to TSA [16], and a 

6.2% higher recall compared to Res Net [18]. This indicates 

that the proposed approach is extremely valuable for various 

real-time categorization scenarios. This can be ascribed to 

the utilisation of highly varied feature sets and the 

incorporation of multiple classification models when 

evaluating different types of Parkinson's disease. Table 4 

analysed the latency of categorisation in a comparable 

fashion. 

Fig. 6. Classification recall for identification of Parkinson 

disease w.r.t. different models 

According to this assessment and the data presented in Table 

5 and figure 7, the suggested model exhibited a 4.5% 

increase in speed compared to T2F AHP [5], a 5.3% increase 

compared to TSA [16], and a 5.9% increase compared to 

Res Net [18]. This indicates that the proposed model is 

suitable for various real-time high-speed classification 

situations. This is because of the utilisation of elementary 

variant feature selection methods, which decrease 

redundancy in features during classification procedures.  

Table 5. Classification delay for identification of 

Parkinson disease w.r.t. different models 

NTS 
T2F 

AHP [5] 

TSA 

[16] 

Res Net 

[18] 

Proposed 

Work 

133 112.35 101.52 104.24 101.81 

267 112.43 102.03 104.56 101.87 

400 112.5 102.46 104.84 101.96 

533 112.55 102.77 105.11 102.05 

667 112.62 103.03 105.36 102.15 

800 112.7 103.29 105.6 102.24 

933 112.78 103.68 105.77 102.32 

1067 112.85 104.11 105.93 102.39 

1200 112.92 104.55 106.1 102.46 

1333 112.99 104.93 106.36 102.52 

1467 113.06 105.31 106.64 102.56 

1667 113.14 105.69 106.94 102.59 

2000 113.21 106.08 107.18 102.6 

2167 113.28 106.46 107.42 102.62 

2333 113.35 106.84 107.66 102.65 

2667 113.42 107.22 107.91 102.7 

2833 113.5 107.6 108.14 102.78 

3000 113.57 107.97 108.38 102.87 

Fig. 7. Classification delay for identification of Parkinson 

disease w.r.t. diverse models 

As a result of these improvements, the suggested approach 

was shown to be valuable for a diverse range of Parkinson 

classification applications. 

5. Conclusion

The suggested approach utilises multimodal feature 

extraction, Genetic Algorithm for feature selection, and 

multidomain feature classifiers to minimise feature 

redundancy and maximise the performance of Parkinson 

disease classification. The GA Model has the ability to 

detect feature sets that have a significant degree of variation, 

allowing the cascaded classifiers to more effectively 

identify Parkinson's illnesses. The model produced better 

results than T2F AHP by 12.4 %, TSA by 4.5 % and Res 

Net by 39 %. This feature renders it appropriate for a diverse 

array of real-time classification issues. This is related to the 

high volatility of feature selection and ensemble 

categorization. It had 15.2 % better accuracy than T2F AHP, 

8.3 % higher precision than the Taiwan Semantic 

Architecture (TSA) and Res Net of Hong Kong prototype 

Tom Lee (Res Net = residue network). This advances can 

be applied to many real-time categorization tasks. But it is 

for this reason that feature selection uses variance 

maximization and ensemble classification techniques are 

successfully combined. Compared to T2F AHP (5), the 

model has 14.5 % higher recall; compared with TSA [16] 

and Res Net [18], it offers six percentage points, 

respectively five percentage point improvements in 

performance. Consequently, it is of practical use for many 

real-time categorization applications. This is because a 

variety of data sets and models are used to derive estimates 

about Parkinson's disease types. This proposed model 

ranked higher than four other state-of-the art basics (T2F 

AHP, TSA and Res Net) by 4.5 %, 5.3 %and 5.9 %. 

Consequently, it is useful in a number of real-time high-

speed classification applications. These procedures utilize 

simplified variant feature selection methods, to eliminate 

redundant features. Changes in the model can serve many of 

Parkinson's classifications. Larger training sets should be 

used to evaluate the model, and Auto Encoders (AE), Deep 
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Neural Networks (DNN) and specifically designed Q-

Learning algorithms should also be added. In all application 

situations, bioinspired methods can make the model better 

at precision, recall and accuracy. 
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