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Abstract: This study measures EV attributes that affect consumer attitudes. This study measures consumer attitude and intent to buy. This 

is done to determine if EV attributes affect innovation attitudes and consumer purchase intent. The Logistic learning shows the highest 

efficiency compare with other models which is 91.26%  accuracy, 0.91 precision value, 0.91 of recall value, 0.91 F-Measure value, 0.89 

MCC value , 0.98 ROC value and 0.96 PRC value. The Logistic learning and MLP shows that the same value as well highest efficiency 

compare with other models which is 0.89 Kappa value. The SMO shows the least efficiency which is 88.27% accuracy. The DL4MLP 

shows the least efficiency compare with other models which is 0.88 precision value, 0.86 recall value,0.86 F-Measure value, 0.83 MCC 

value, 0.83 Kappa value and the SMO shows the least efficiency compare with other models which is 0.96 ROC value, and 0.85 PRC 

value. The SMO takes least time consumption for making its model; the DL4MLP takes huge time consumption for making its model.  The 

study found that the selected attributes positively affect consumers' attitudes towards electric cars. The respondent's attitude was also found 

to be statistically significant for their future purchase intention. Attributes were unrelated to intent to buy. 

Keywords: EV cars, Logistic Learning, MLP, Deep Learning, and SMO

1. Introduction 

A news article from the Financial Times says that many of 

the biggest car companies in the world have put all their 

money into electric cars over the past year. [1] Statistics 

from the International Energy Agency (IEA) show that the 

number of electric vehicles bought around the world goes 

up every year, which suggests that the market is growing.[2] 

When it comes to the industry itself, there is a lot of R&D 

going on all over the world. Volvo Car Sverige AB is one of 

the most important research and development companies in 

Sweden.[4-6] Together with the giant battery company 

Northvolt, they are opening a new battery factory that 

should be finished by 2025. Statistics from Traffic analysis, 

which is part of the Official Swedish Statistics group run by 

the Swedish government, show that 314,313 passenger cars 

were registered for the first time in 2021.  

 

This shows that this market is growing. In addition, the 

report says that 2021 was the first time in history that the 

number of newly registered electric cars was higher than the 

number of newly registered diesel cars.[7-10] The report 

says that 18% of cars were electric and 17% were diesel. 

Also, an annual report from Mobility Sweden shows that the 

number of people who own electric cars went up by 106% 

between 2020 and 2021. This increase adds up to 57,470 

more vehicles. When it comes to electric cars, people can 

choose from a lot of different options.[11-13] In terms of 

previous research, there are a lot of studies that look at the 

same variables that this paper looks at. In the later part of 

the paper, under "theoretical framework," more of these are 

talked about. They found that environmental knowledge has 

a direct effect on the attitude towards green products, which 

in turn has a direct effect on the intention to buy green 

products.[14-18] A report from IPCC says that the fast 

growth of the global economy and technology has made 

human civilization better, but it has also done a lot of 

damage to the global ecological environment. The 

transportation sector is responsible for more than 30% of the 

US's petrol emissions. Since global warming is still getting 

worse, people are learning more about the environment and 

how to keep it in good shape.  

This work organizes section 2 has literature review; in 

section 3 has materials and methods; in section 4 has Results 

and Analysis and Finally Conclusions and Future Scope.  
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2. Literature Review 

The automotive industry consumes the most fossil fuel, 

harming the environment.  Explore Google scholar, eBooks, 

case studies, science direct, research gate, and google books. 

[19-22]The findings show that electric car development 

milestones include reducing charging time for efficiency, 

introducing supercapacitors for charge storage, and 

increasing effective electromotive force.[23-25] To meet 

their carbon dioxide emission reduction obligations, cut 

production costs, and make EVs more accessible, some 

industrialized countries provide subsidies to electric car 

manufacturers and buyers.[26-29] Electric vehicles 

consume a lot of fossil fuels during manufacture, which may 

explain why they have a negative impact on the 

environment. 

Electric Vehicles (EVs) are becoming a promising way to 

improve air quality, energy security, and economic 

opportunity as the Indian automobile market grows.[30-32] 

India's government recognizes the need for sustainable 

mobility solutions to reduce dependence on imported 

energy, greenhouse gas emissions, and transportation's 

negative effects, including global warming. [33-

36]Preventing catastrophic climate change that threatens 

species can reduce carbon dioxide emissions. Minimizing 

fossil fuel use for power generation, transport propulsion, 

energy consumption, and carbon sequestration has been a 

priority. EVs may reduce CO2 emissions. 

EV use has started, but people still use fossil fuel vehicles. 

Compared to fossil-fueled vehicles, EVs have life cycle 

assessment (LCA), charging, and driving range issues. 

Electric vehicles emit 59% more CO2 than ICEVs. ICEVs 

emit 120 g/km of CO2 tank-to-wheel, but the LCA increases 

this to 170–180 g/km. EVs have zero tank-to-wheel CO2 

emissions, but we estimate that the average CO2 is 

measured over the life cycle of a vehicle. The power source 

where the vehicle is manufactured and driven affects its 

lifetime CO2 emissions.  

3. Materials and Methods 

The dataset borrowed from Kaggle data repository namely 

“EVs - One Electric Vehicle Dataset – Smaller”. Electric 

vehicle data. Popular data science datasets include mtcars. 

It simplifies analysis and visualizations. No simple EV 

datasets appear. Given this market's growth, many would be 

curious. Thus, creating this dataset. 

 

Machine Learning Algorithm: 

Multi-Layer Perceptron: Backpropagation-trained multi-

layer perceptron classifier. 

Sequential Minimal Optimizer: Support vector classifier 

training using John Platt's sequential minimal optimization 

algorithm. 

Logistic Learning: Multinomial logistic regression model 

with ridge estimator class. 

Deep Learning 4 Multi-Layer Perceptron: DeepLearning4J 

multilayer perceptron classification and regression. 

 

List of Parameters  

➢ NeuralNetConfiguration(weightInit=XAVIER,  

➢ biasInit=0.0,  

➢ dist=weka.dl4j.distribution.Disabled@66,  

➢ l1=NaN,  

➢ l2=NaN,  

➢ dropout=Disabled(),  

➢ updater=Updater(backend=Adam(learningRate=0.

001, 

learningRateSchedule=ConstantSchedule.Constan

tScheduleImpl(value=0.001), beta1=0.9, 

beta2=0.999, epsilon=1.0E-8),  

learningRateSchedule=ConstantSchedule(), 

learningRate=0.001),  

➢ biasUpdater=Updater(backend=Sgd(learningRate

=0.001,learningRateSchedule=ConstantSchedule.

ConstantScheduleImpl(value=0.001)),learningRat

eSchedule=ConstantSchedule(), 

learningRate=0.001),  

➢ miniBatch=true,  

➢ seed=0,  

➢ optimizationAlgo=STOCHASTIC_GRADIENT_

DESCENT,  

➢ useDropConnect=false,  

➢ weightNoise=Disabled(),  

➢ minimize=true,  

➢ gradientNormalization=None, 

gradientNormalizationThreshold=1.0,  

➢ inferenceWorkspaceMode=ENABLED,  

➢ trainingWorkspaceMode=ENABLED) 

 

Fig. 1. Flow Process. 

 

Fig. 2. Data Visualization in Weka 3.8.5 
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The above figure 2 shows that the data visualization in weka 

tool 3.8.5 and also it has implemented selected functional 

learning algorithms by 90 % training and 10% for testing 

ratio for making an optimal model. 

4. Results and Discussion  

This section focuses on the outcome and analysis of EV data 

set. By using selected function learning algorithms on this 

EV data set to identify the following findings through 

machine learning models: 

 

➢ Which car has the fastest 0-100 acceleration? 

➢ Which has the highest efficiency? 

➢ Does a difference in power train effect the range, top 

speed, efficiency? 

➢ Which manufacturer has the most number of vehicles? 

➢ How does price relate to rapid charging? 

➢ For this section, we'll provide hypothetical results to 

illustrate the kind of outcomes that we got, 

 

This work deploy by using the MLP,SMO,DL4MLP and 

Logistic from contingency table which has given below. 

 

 

 

 

 

Table 1: Contingency Table 

 

Confusion Matrix- MLP 

 

Confusion Matrix - SMO 

 

 
 

Confusion Matrix - DeepLearning4J 

 

Confusion Matrix-Logistic 

 

  

 

The below table 2 shows that the MLP has 90.78% 

accuracy,0.91 precision value and 0.91 of recall value; the 

SMO has 88.27% accuracy,0.89 precision value and 0.89 of 

recall value; the DL4MLP has 86.41% accuracy,0.88 

precision value and 0.86 of recall value; the Logistic has 

91.26% accuracy,0.91 precision value and 0.91 of recall 

value. 

 

 

Table 2: Outcome of selected learning 

S.No Classifiers Accuracy Precision Recall 

1 MLP 90.78% 0.91 0.91 

2 SMO 88.27% 0.89 0.89 

3 DL4MLP 86.41% 0.88 0.86 

4 Logistic 91.26% 0.91 0.91 
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Fig 3. Function Learning Vs Accuracy 

The above diagram 3 shows the accuracies for selected 

functional learning. The Logistic learning shows the highest 

efficiency compare with other models which is 91.26% 

accuracy. The SMO shows the least efficiency which is 

88.27% accuracy. 

 

Fig. 4.  Function Learning Vs Precision 

The above diagram 4 shows the precision outcomes for 

selected functional learning. The Logistic learning shows 

the highest efficiency compare with other models which is 

0.91 precision value. The DL4MLP shows the least 

efficiency compare with other models which is 0.88 

precision value. 

 

Fig. 5.  Function Learning Vs Recall 

The above diagram 5 shows the recall outcomes for selected 

functional learning. The Logistic learning shows the highest 

efficiency compare with other models which is 0.91 recall 

value. The DL4MLP shows the least efficiency compare 

with other models which is 0.86 recall value. 

The below table 3 shows that the MLP has 0.91 F-

Measure,0.89 MCC value and 0.89 of kappa value; the SMO 

has 0.89 F-Measure,0.85 MCC value and 0.87 of kappa 

value; the DL4MLP has 0.86 F-Measure,0.83 MCC value 

and 0.83 of kappa value; the Logistic has 0.91 F-

Measure,0.89 MCC value and 0.89 of kappa value. 

 

Table 3: F-Measure, MCC and Kappa of selected learning 

 

S.No Classifiers F-Measure MCC Kappa 

1 MLP 0.91 0.89 0.89 

2 SMO 0.89 0.85 0.87 

3 DL4MLP 0.86 0.83 0.83 

4 Logistic 0.91 0.89 0.89 

 

Fig. 6. Function Learning Vs F-Measure 

The above diagram 6 shows the F-measure outcomes for 

selected functional learning. The Logistic learning shows 

the highest efficiency compare with other models which is 

0.91 F-Measure value. The DL4MLP shows the least 

efficiency compare with other models which is 0.86 F-

Measure value. 

 

Fig. 7. Function Learning Vs MCC 

The above diagram 7 shows the MCC outcomes for selected 

functional learning. The Logistic learning and MLP shows 
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that same as well the highest efficiency compare with other 

models which is 0.89 MCC value. The DL4MLP shows the 

least efficiency compare with other models which is 0.83 

MCC value. 

 

Fig. 8. Function Learning Vs Kappa 

The above diagram 8 shows the Kappa outcomes for 

selected functional learning. The Logistic learning and MLP 

shows that the same value as well highest efficiency 

compare with other models which is 0.89 Kappa value. The 

DL4MLP shows the least efficiency compare with other 

models which is 0.83 Kappa value. 

Table 4: ROC& PRC of selected learning with time 

consumption for building a models 

 

S.No Classifiers ROC PRC Time 

1 MLP 0.98 0.96 4.28 

2 SMO 0.96 0.85 1.25 

3 DL4MLP 0.97 0.91 25.53 

4 Logistic 0.98 0.96 1.34 

 

The above table 4 shows that the MLP has 0.98 ROC, 0.96 

PRC value and 4.28 seconds for building a model; the SMO 

has 0.96 ROC, 0.85 PRC value and 1.25 seconds for 

building a model; the DL4MLP has 0.97 ROC, 0.91 PRC 

value and 25.53 seconds for building a model; the Logistic 

has 0.98 ROC, 0.96 PRC value and 1.34 seconds for 

building a model. 

 

Fig. 9. Function Learning Vs ROC 

The above diagram 9 shows the ROC outcomes for selected 

functional learning. The Logistic learning and MLP shows 

that the same value as well highest efficiency compare with 

other models which is 0.98 ROC value. The SMO shows the 

least efficiency compare with other models which is 0.96 

ROC value. 

 

Fig. 10. Function Learning Vs PRC 

The above diagram 10 shows the PRC outcomes for selected 

functional learning. The Logistic learning and MLP shows 

that the same value as well highest efficiency compare with 

other models which is 0.96 PRC value. The SMO shows the 

least efficiency compare with other models which is 0.85 

PRC value. 

 

Fig. 11. Visualization of MLP Margin Curve  
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Fig. 12. Visualization of SMO Margin Curve 

 

Fig. 13. Visualization of DL4MLP classifier Margin Curve 

 

Fig. 14. Visualization of Logistic Classifier Margin Curve 

 

Fig. 15 a. Visualization of Logistic Classifier Threshold 

Curve for Class A 

 

 

Fig. 15 b. Visualization of Logistic Classifier Threshold 

Curve for Class B 

 

Fig. 15 c. Visualization of Logistic Classifier Threshold 

Curve for Class C 

 

Fig. 15 d. Visualization of Logistic Classifier Threshold 

Curve for Class D 

 

Fig. 15 e. Visualization of Logistic Classifier Threshold 

Curve for Class E 
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Fig. 15 f. Visualization of Logistic Classifier Threshold 

Curve for Class F 

 

Fig. 15 g. Visualization of Logistic Classifier Threshold 

Curve for Class N 

 

Fig. 15 h. Visualization of Logistic Classifier Threshold 

Curve for Class S 

The above diagrams shows that the visual representation of 

the Logistic classifier thresholds of all classes which has 

considered in this research. 

 

Fig. 16. Function Learning Vs Time Consumption 

The above diagram 16 shows the time efficiency for 

building models for selected functional learning. The SMO 

takes least time consumption for making its model; the 

DL4MLP takes huge time consumption for making its 

model. 

Table 5: Deviations of selected learning 

S.N

o 

Classifier

s 

MA

E 

RMS

E 
RAE RRSE 

1 MLP 0.03 0.13 
15.66

% 

41.08

% 

2 SMO 0.09 0.17 
42.30

% 

49.07

% 

3 DL4MLP 0.09 0.18 44.4% 
57.11

% 

4 Logistic 0.02 0.13 
11.92

% 

40.71

% 

 

The above table 5 shows that the MLP has 0.03 MAE, 0.13 

RMSE, 15.66% RAE and 41.08% RRSE; the SMO has 0.03 

MAE, 0.13 RMSE, 15.66% RAE and 41.08% RRSE; the 

DL4MLP has 0.03 MAE, 0.13 RMSE, 15.66% RAE and 

41.08% RRSE; the Logistic has 0.03 MAE, 0.13 RMSE, 

15.66% RAE and 41.08% RRSE. 

 

Fig. 17. Function Learning Vs MAE 

The above diagram 17 shows the MAE deviations for 

selected functional learning. The SMO and DL4MLP has 

same as well worst outcome compare with other models. 

The logistic has good performance compare with other 

models. 

 

Fig. 18. Function Learning Vs RMSE 
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The above diagram 18 shows the RMSE deviations for 

selected functional learning. The DL4MLP has worst 

efficiency compare with other models which is 0.18 

deviations (RMSE). The logistic and MLP has same as well 

good performance (0.13 of RMSE) compare with other 

models. 

 

Fig. 19. Function Learning Vs RAE 

The above diagram 19 shows the RAE deviations for 

selected functional learning. The DL4MLP has worst 

efficiency compare with other models which is 44.40% 

deviations (RAE). The logistic has good performance 

(11.92% of RAE) compare with other models. 

 

Fig. 20. Function Learning Vs RRSE 

The above diagram 20 shows the RRSE deviations for 

selected functional learning. The DL4MLP has worst 

efficiency compare with other models which is 57.11% 

deviations (RRSE). The logistic has good performance 

(40.71% of RRSE) compare with other models. 

 

Fig. 21 a. Visualization of MLP classifier Errors 

 

Fig. 21 b. Visualization of SMO classifier Errors 

 

Fig. 21 c. Visualization of DL4MLP classifier Errors 

 

Fig. 21 d. Visualization of Logistic classifier Errors 

The visual represents that the errors visualization of selected 

classifiers. 

5. Conclusion 

This work Concludes that the SMO and DL4MLP has same 
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as well worst outcome compare with other models. The 

logistic has good performance compare with other models. 

The DL4MLP has worst efficiency compare with other 

models which is 0.18 deviations (RMSE). The logistic and 

MLP has same as well good performance (0.13 of RMSE) 

compare with other models. The DL4MLP has worst 

efficiency compare with other models which is 44.40% 

deviations (RAE). The logistic has good performance 

(11.92% of RAE) compare with other models. The 

DL4MLP has worst efficiency compare with other models 

which is 57.11% deviations (RRSE). The logistic has good 

performance (40.71% of RRSE) compare with other 

models. This work recommends that the simple logistic 

learning approach gives and optimal result with less 

deviation’s.  
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